
Proceedings of the

34th International Workshop

on Statistical Modelling
Volume I

July 7-12, 2019
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Preface iii

Preface

We welcome all attendees of the 34th International Workshop on Statistical Mod-
elling (IWSM) in Portugal, and we wish you all a very pleasant stay in Guimarães.
Besides being the town hosting the University of Minho, Guimarães is one of the
most beautiful towns in the Minho region. Guimarães is a magnificent city of
medieval origin, located in the North of Portugal and committed to be awarded
the label of European Green City for 2020. The conference will take place at the
Vila Flor Cultural Centre, in the city Centre of Guimarães.
For 34 years now, the International Workshop on Statistical Modelling (IWSM)
has been a reference for promoting and encouraging statistical modelling in its
widest sense. IWSM is now one of the most prestigious world conferences in
Statistical Modelling, regularly attracting academic, professional statisticians and
data analysts from all parts of the world.
The scientific programme of this year’s IWSM follows the well-established tradi-
tions of the workshop by having 5 invited lectures. We are glad that renowned ex-
perts as Adrian Bowman (University of Glasgow, United Kingdom), Julio Singer
(University of São Paulo, Brazil), Maria Antónia Turkman (University of Lisbon,
Portugal), Peter Diggle (Lancaster University, United Kingdom) and Philippe
Lambert(University of Liege, Belgium) have accepted the invitation to give a one
hour presentation each.
In addition to the contributed papers and posters, this year’s programme also
comprises two special sessions. One session in honor of Professor Murray Aytkin
and the other devoted to Statistics Portugal (Instituto Nacional de Estat́ıstica -
INE). The high standards of the conference and the quality of all presentations
were ensured by the scientific committee:

Lúıs Meira-Machado (University of Minho, Portugal)
Ana Lúısa Papoila (NOVA Medical School, Lisbon, Portugal)
Arminda Manuela Gonçalves (University of Minho, Portugal)
Brian Marx (Louisiana State University, USA)
Clarice Demétrio (University of São Paulo, Brazil)
David Conesa (University of Valencia, Spain)
Emilio Porcu (Newcastle University, UK)
Enrico Colosimo (Federal University of Minas Gerais - UFMG, Brazil)
Carlo Giovanni Camarda (French Institute for Demographic Studies - INED,
France)
John Hinde (University of Galway, Ireland)
Kenan Matawie (University of Western Sydney, Australia)
Maria Xosé Rodriguez Álvarez (Basque Center for Applied Mathematics, Bilbao,
Spain)
Ardo van den Hout (University College London)
Vito Muggeo (University of Palermo, Italy)
Vitor Leiva (Pontifical Catholic University of Valparaiso, Chile)



As usual in the IWSM events there was a large amount of excellent paper sub-
missions, and it was a really stimulating task to select from that big amount 54
abstracts for oral presentations. Each paper was reviewed and scored by three
members of the scientific committee. This was a very arduous work, and for their
valuable efforts we thank all members of the scientific committee.
It is important to mention that one important characteristic of IWSM workshops
is that there are no parallel sessions. We believe that this will provide a stimu-
lating atmosphere, encouraging exchange of ideas and cross-fertilization among
different areas of statistics. Also, there will be no oral presentations coinciding
with the poster session, so all participants are encouraged to attend and discuss
the work being presented.
According to the workshop tradition, in this edition student participation has
been strongly encouraged not only to attend the workshop but also to present
their work. Students attending the conference had the possibility to compete for
three awards: best student paper, best student oral presentation and best student
poster. In addition to this, two student travel grants have been provided by the
Statistical Modelling Society (SMS). We hope that the Short Course ”Statistical
modelling with missing data: challenges and practical solutions” given by James
Carpenter (London School of Hygiene & Tropical Medicine) was of their interest.
Following the latest tradition of IWSM, two proceeding volumes with manuscripts
of presented papers (both oral and poster presentations) are published and dis-
tributed at the conference. Part I of proceedings which will be printed will contain
all papers being orally presented during IWSM. Part II of proceedings will contain
papers corresponding to poster presentations and will be available online.
First of all, thank the Statistical Modelling Society for trusting in our proposal
and for giving us this great opportunity to organize IWSM 2019, the first edition
of the IWSM to be organized in Portugal. We want to take this opportunity
to send out our thanks to all members of my Local Organizing Committee, in
particular, Arminda Manuela Gonçalves for her many contributions.
We express our gratitude to all authors and participants for the excellent scientific
contributions, and we hope that every participant of IWSM 2019 will have a great
and especially research-stimulating week in Guimarães. We are also very grateful
to all our sponsors, for their generous support. Without those sponsorships many
things could not have been realized. A list of the sponsors of IWSM 2019 can
be found on the last pages of this volume. Particular acknowledgement must be
given to Statistics Portugal who has contributed to the publication of this Book
of Proceedings.
We wish the best success to Maria José Rodriguez Álvarez and Dae-Jin Lee as
organizers of the next edition of IWSM, which will be held in Bilbao next summer.

Lúıs Meira Machado and Gustavo Soutinho

Guimarães, June 2019
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Longitudinal modelling of leptospirosis
prevalence using serial dilution assay data

Peter J Diggle1, Katharine A Owers2, Max Eyre1

1 Lancaster University, UK
2 Colorado State University, USA

E-mail for correspondence: p.diggle@lancaster.ac.uk

Abstract: The standard method for identifying sub-clinical leptospirosis, a dis-
ease that is transmitted primarily through environmental contact with infected
rat urine, is a from Pau da Lima cohort study serial dilution assay. The assay
delivers an interval-censored measure of an individual’s antibody response. we
describe a longitudinal case-study of leptospirosis in a Brazilian favela commu-
nity, in which the result of a serial dilution assay is the response variable. We
distinguish between questions that, in the authors’ opinion, can and cannot be
answered using standard methods of longitudinal data analysis

Keywords: leptospirosis; longitudinal data; interval censoring.

1 Problem statement

Leptospirosis is a disease of increasing concern in urban slum environments,
where its principal mode of transmission is through contact with infected
rat urine in the environment. The standard method for identifying sub-
clinical infection with leptopsires is a serial dilution assay, which in essence
gives an interval-censored measure of an individual’s antibody response.
Here, we describe an ongoing longitudinal study of leptospirosis in a Brazil-
ian favela community with a particular focus on the following questions:
does a past infection confer partial immunity to future infection?
This extended conference abstract draws heavily on Diggle (2018).

2 Study-design

The microscopic agglutination test is the gold standard serodiagnostic assay
for leptospirosis. It is conducted by combining serial dilutions of the sample

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).



4 Serial dilution assays

of interest with reference strains of Leptospira bacteria, the causative agent
of leptospirosis. The mixture is examined under darkfield microscopy to
determine if at least 50% of the bacteria are agglutinated by the diluted
sample. The result of the assay is given as the highest dilution at which
this 50% agglutination threshold was reached.
A prospective cohort study was carried out from February 2013 to August
2017 in Pau da Lima, a vulnerable urban community in Salvador, Brazil.
It aimed to detect Leptospira-specific antibodies in individuals living in
the community. Individuals living in randomly sampled households were
eligible for enrolment in the study if they were aged five years or over and
slept for two or more nights in the household each week. A total of 4,441
individuals were enrolled, of which 2,711 were successfully followed up at
least once and 447 were available for the entire study period. Follow-up
consisted of a serosurvey conducted every six months by team members
visiting the households of all study participants. Serological evaluation was
then performed using the microscopic agglutination test (MAT) to deter-
mine titres of agglutinating antibodies against a a panel of five reference
strains and two clinical isolates.

3 Exponential decay of the antibody response absent
re-infection

In a serial dilution assay, a blood-sample is tested against a standardised
challenge. If the result is negative, the antibody response,W say, is recorded
as “below detection limit.” If the result is positive, the blood-sample is
diluted by a known factor and the test is repeated, using repeated dilutions
until a negative result is obtained. This generates an integer response, K =
0, 1, 2, ..., the number of dilutions required to return a negative result. The
value of K corresponds to an interval-censored version of W , i.e. K = k if
and only if ckd ≤ W ≤ c(k + 1)d, where c is the detection limit and d the
dilution factor. Although this interpretation is rarely used explicitly, it is
implicit in the standard practice of declaring the occurrence of an infection
event at some time during the follow-up interval in question if either there
is an increase of at least two in successive values of K, or a below detection
limit result is followed by a positive. This practice converts a series of serial
dilution assays at times tj : j = 0, 1, ..., n to a series of binary responses,
Yj : j = 1, ..., n indicating whether or not the individual concerned has
experienced an infection event in the time-interval (tj−1, tj).
In an unpublished Yale University PhD Thesis, the second author has used
data from a single-source outbreak of leptospirosis reported in Lupidi et
al (1991) to fit a model in which, absent re-infection, antibody concentra-
tions decay exponentially over time, and estimates the exponential decay
rate parameter, φ, by maximum likelihood, giving φ̂ = 0.926 with 95%
confidence interval (0.918, 0.934).
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4 Does a past infection confer partial immunity to
future infection?

A simple, and superficially attractive way to answer this question is to use
a person’s antibody response at time tj−1 as a covariate of their binary
response Yj at time tj . Partial immunity would then be indicated by a
negative regression coefficient. But the reasoning behind this is flawed.
Because a re-infection at some time between consecutive follow-up times
is declared when the serial dilution assay response K increases by two or
more, the re-infection response at time tj cannot be independent of the
serial dilution assay response at time tj−1.

4.1 Process model

Let W (t) denote the latent antibody response of an individual at time t ≥ 0;
for an infection-naive individual, Wi(0) = 0. Assume that W (t) jumps by
random iid amounts Vj at infection times tj and decays exponentially at a
rate φ between infection events. Finally, assume that infection events follow
a Poisson process with intensity

λ(t) = exp{α(t) +W (t)β} (1)

The parameter of interest is β; a negative value indicates that infection
events confer partial immunity to future infections. Figure 1) shows a re-
alisation of W (t) under model (1), with constant α(t) = −1, exponential
decay factor 0.1 per month, β = −3 and iid Vj following exponential dis-
tributions with mean 1.

4.2 Data model

The observed response from an individual is the sequence of values of
Kj at a set of pre-specified follow-times tj : j = 1, ..., n. Each Kj is an
interval-censored version of αW (tj), where α is an unknown constant of
proportionality; an observation Kj = 0 corresponds to αW (tj) < c, where
c is the detection limit of the assay, whilst Kj = k > 0 corresponds to
c× 2k−1 < αW (tj) < c× 2k.

5 Work-in-progress

At the time of writing, we are searching the literature for other examples of
single-point-of-exposure data on the longitudinal progression of leptospiro-
sis antibody response in human blood-samples, to establish the exponential
decay assumption holds robustly, to an acceptable level of approximation.
We also plan to conduct theoretical studies to understand what sample
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FIGURE 1. A simulated realisation of model (1) for the time-evolution of an
individual’s antibody response over 24 months, with follow-up times indicated at
0, 6, 12, 18 and 24 months.

size and frequency of follow-up would be needed in order to obtain usefully
precise parameter estimates for the model described in Section 4. Finally,
and depending on the outcome of these theoretical studies, we will fit the
model to an ongoing cohort study with six-month follow-up of approxi-
mately NNN inhabitants of SOMEWHERE.

Acknowledgments: We thank the National Institutes of Health, USA,
and the Medical Research Council, UK, for funding support.
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Inference based on Laplace approximations in
nonparametric additive location-scale model
for right- or interval-censored data

Philippe Lambert12
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Abstract: In a previous publication on Nonparametric additive location-scale
models for interval censored data (Lambert 2013), we explained how P-splines
could be used in regression models to specify a smooth error density and the joint
(possibly) nonlinear effects of covariates on location and dispersion. That method-
ology extends traditional additive regression models by releasing the parametric
constraint on the error distribution and by acknowledging that covariates can
affect multiple aspects of the conditional distribution in a non trivial way. These
extensions are very attractive and practically useful, but have an important com-
putational cost following from the use of the Metropolis-within-Gibbs algorithm
in a richly parameterized model. By extending the results in Gressani & Lambert
(2018), we show how Laplace based approximations to the marginal posterior dis-
tributions of smoothness parameters can be used to set up a quickly converging
iterative algorithm to select penalty parameters and to estimate the spline pa-
rameters in the pivotal distribution and in the additive components for location
and dispersion. Simulations suggest that the so-obtained estimators have excel-
lent frequentist properties. They can be also be combined in a Bayesian setting
to select starting values and proposal distributions in a Metropolis-within-Gibbs
algorithm (Gressani & Lambert, 2019).
We illustrate the methodology on various datasets involving different forms of
censoring on the response. We also investigate how that strategy can be adapted
to analyze survival data with an unknown cured fraction (Lambert & Bremhorst,
2019).

Keywords: Nonparametric additive model ; Location-scale model ; P-splines ;
Laplace approximation.
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1 Additive location-scale model

Consider a vector (Y, z,x) where Y is a univariate continuous response,
z a p−vector of categorical covariates, and x a J−vector of quantitative
covariates. The response could be right- or interval-censored
Such settings are not only common in survival analysis when studying the
time elapsed between a clearly defined time origin and an event of inter-
est, but also in surveys when the respondent reports a quantitive response
by pointing one interval or semi-interval in the partition of the variable
support. We assume the following location-scale model,

Y = µ(z,x) + σ(z,x)ε

where ε is independent of z and x with E(ε) = 0 and V(ε) = 1. Other
constraints based on quantiles are possible, see Lambert (2013).
Assume that independent copies (yi, zi,xi) (i = 1, . . . , n) are observed on n
units with the possibility of right– or interval-censoring as described above.
We consider additive models for the conditional location and dispersion of
the response:

(
µ(zi,xi)

)n
i=1

= Zβ +

J∑

j=1

fµj ;
(

log σ(zi,xi)
)n
i=1

= Zδ +

J∑

j=1

fσj

where fµj (·) and fσj (·) denote smooth additive terms quantifying the effect
of the jth quantitative covariate (rescaled and recentered to take values
in (0, 1)). Consider now a basis of cubic B-splines associated to equally
spaced knots on (0, 1) and recentered for identification purposes. Then, the
additive terms in the conditional location and dispersion models can be
approximated using linear combinations of these (recentered) B-splines,

(
µi = µ(zi,xi)

)n
i=1

= XΨµ ;
(
σi = σ(zi,xi)

)n
i=1

= exp
(
XΨσ

)

with design matrix X = [Z,S1, . . . ,SJ ] = [Z,S]; matrices of spline pa-
rameters (with one column per additive term) Θµ = [θµ1 , . . . , θ

µ
J ], Θσ =

[θσ1 , . . . , θ
σ
J ]; vectors of (stacked) regression parameters Ψµ =

(
β,Vec(Θµ)

)
,

Ψσ =
(
δ,Vec(Θσ)

)
.

2 Penalized log-likelihood and joint posterior

Estimation of the regression parameters and of the additive terms (for given
penalty parameters) can be made from the penalized log-likelihood. Denote
standardized residuals by ri = (yi − µi)/σi. If fε(·) and Sε(·) denote the
density and survival function of the error term ε, then the contribution
of unit i to the log-likelihood is `i = − log σi + log fε(ri) when uncen-
sored, `i = logSε(ri) when right-censored, and `i = log

(
S(rLi )− S(rRi )

)
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when interval-censored. Smoothness of the additive terms can be tuned by
penalizing changes in differences of neighbour spline parameters (Eilers,
1996), yielding the penalized log-likelihood

`p = `(ψψψµ,ψψψσ;D)− 1

2

J∑

j=1

θθθµj
>

(λµjPµ)θθθµj −
1

2

J∑

j=1

θθθσj
>(λσjPσ)θθθσj .

In a Bayesian framework, similar penalties arise through the specification
of conditional priors for the spline parameters, yielding for the jth additive
terms in the location and dispersion sub-models,

p(θθθµj |λ
µ
j ) ∝ exp

(
−1

2
θθθµj
>(λµjPµ)θθθµj

)
; p(θθθσj |λσj ) ∝ exp

(
−1

2
θθθσj
>(λσjPσ)θθθσj

)
.

Assuming joint Normal priors for the intercepts and the regression pa-
rameters associated to the other covariates z induce conditional Gaussian
Markov random fields (GMRF) (Rue & Held, 2005) for the joint priors for
the regression and spline parameters in ψψψµ and ψψψσ. Then the joint posterior
for the whole set of parameters in the additive location-scale model is

p(ψψψµ,ψψψσ,λλλµ,λλλσ|D) ∝ L(ψψψµ,ψψψσ;D) p(ψψψµ|λλλµ) p(ψψψσ|λλλσ) p(λλλµ) p(λλλσ) . (1)

3 Estimation and selection of (ψµ, λµ) and (ψσ, λσ)

Let ψψψ = (ψψψµ,ψψψσ) and λλλ = (λλλµ,λλλσ). Starting from the joint posterior for
the model parameters, we have the following identity for the marginal pos-
terior of the penalty parameters: p(λλλ|D) = p(ψψψ,λλλ|D)/p(ψψψ|λλλ,D). Given the
conditional GMRF prior for ψψψ, we conclude that the conditional posterior
in the denominator is approximately Gaussian (Rue & Martino, 2009). Us-

ing the Laplace’s method, we have (ψψψ|λλλ,D) ∼̇ N (ψ̂ψψλ,Σλ) where ψ̂ψψλ can
be obtained using a Newton-Raphson algorithm on (1). Substituting that
approximation in the preceding identity, we obtain the following approxi-
mation to p(λλλ|D):

p̃(λλλ|D) ∝ p(ψ̂ψψλ,λλλ|D)
∣∣Σ−1
λ

∣∣−1/2

where an explicit expression for Σ−1
λ is available whatever the censoring

status of the data. The maximization of p̃(λλλ|D) using a Newton-Raphson

type algorithm enables a joint selection of the penalty parameters λ̂λλ
µ

and

λ̂λλ
σ
, with as a by-product, an estimation of the regression parameters ψ̂ψψ

µ

λ

and ψ̂ψψ
σ

λ.
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4 Nonparametric pivotal density

Parametric or nonparametric choices can be made for the error distribution.
Here, we write the underlying hazard hε(·) using a linear combination of B-

splines, log hε(r) =
∑K
k=1 bk(r)φk, associated to an equidistant grid of knots

on the support of the error distribution. Given the constraints E(ε) = 0 and
V(ε) = 1, one can practically assume (using Chebyshev’s theorem) that
(most of) the support is on (rmin, rmax) = (−6, 6), say. Again, a GMRF
prior is assumed for (φφφ|τ) with penalty parameter τ to tune the hazard
smoothness.
Given (possibly right- or interval-censored) conditionally independent stan-
dardized residuals ri =

(
yi−µi(ψψψµ)

)
/σi(ψψψ

σ), we developed a fast algorithm

for the computation of the posterior mode φ̂φφτ of (φφφ|τ,D) with moment con-
straints on the underlying distribution of ε. The selection of the penalty
parameter also relies on the posterior mode of a Laplace based approxima-
tion to p(τ |D).

5 Fitting the NP additive location-scale model

We now have all the necessary ingredients for fitting the nonparametric
additive location-scale model from possibly right- or even interval-censored
data. The algorithm is iterative and alternates the estimation of the error
density (Step 1, see Section 4), of the regression and spline parameters
in the location (Step 2) and dispersion (Step 3) submodels, selection of
the penalty parameters for the additive terms in location (Step 4) and
dispersion (Step 5), see Section 3.
Simulations suggest excellent properties of the so-defined estimators. The
procedure is extremely fast even with pure R code. Extensions of that
model will be presented and discussed during the oral presentation. Several
illustrations will also be provided at that occasion.

6 Application

Here, we propose an example with interval- and right-censored responses.
The data of interest come from the European Social Survey (ESS) 2016.
We focus on the money available per person in Belgian households for
respondents aged 25-55 when the main source of income comes from wages
or salaries (n = 756). Each person reports the net monthly income of the
household in one of 10 decile-based intervals: 1: < 1.120 2: [1.120, 1.400[, 3:
[1.400, 1.720[, 4: [1.720, 2.100[, 5: [2.100, 2.520[, 6: [2.520, 3.060[, 7: [3.060,
3.740[, 8: [3.740, 4.530[, 9: [4.530, 5.580[, 10: ≥ 5.580 euros.
We model the relation between the income per person to the availability of
(at least) 2 salaries (64.2%) in the household, the age (41.0 ± 8.83 years)
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and the number of years of full-time education completed (14.9±3.34 years)
by the respondent.

Fixed effects for Location:

est se low up

Intcp 1.580 0.033 1.515 1.645

twoincomes 0.263 0.041 0.182 0.344

Fixed effects for Dispersion:

est se low up

Intcp -0.508 0.047 -0.599 -0.417

twoincomes -0.025 0.058 -0.139 0.088

----------------------------------------------------------------

Effective dimensions for the 2 additive terms in Location:

Age 3.8 Educ 3.9

Effective dimensions for the 2 additive terms in Dispersion:

Age 2.4 Educ 4.3

10 B-splines per additive component in location and dispersion

20 B-splines for the error log-hazard on (-5,10)

----------------------------------------------------------------

Total sample size: 756 ; Confidence level for CI: 0.95

Uncensored data: 0 (0 percents)

Interval Censored data: 691 (91.4 percents)

Right censored data: 65 (8.6 percents)

Elapsed time: 0.9 seconds (9 iterations)
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FIGURE 1. NP additive location-scale model fitted on interval- or right-censored
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Abstract: We consider random changepoint segmented regression models to an-
alyze data from a study conducted to verify whether treatment with stem cells
may delay the onset of a symptom of amyotrophic lateral sclerosis in geneti-
cally modified mice. The proposed models capture the biological aspects of the
data, accommodating a smooth transition between the periods with and without
symptoms. An additional changepoint is considered to avoid negative predicted
responses. Given the nonlinear nature of the model, we adapt an algorithm pro-
posed by Muggeo et al. (2014) to estimate the fixed parameters and to predict the
random effects by fitting linear mixed models at each step. We compare the fixed
parameters parameters of the mixed model to averages of parameters obtained
by fitting individual models.

Keywords: amyotrophic lateral sclerosis, fitting algorithm, mixed models.

1 Introduction

Amyotrophic Lateral Sclerosis (ALS) is one of the most common adult-
onset motor neuron diseases causing a progressive, rapid and irreversible
degeneration of motor neurons in the cortex, brain stem and spinal cord.
No effective treatment is available and cell therapy clinical trials are cur-
rently being tested in ALS affected patients. Mutations in the SOD1 gene
represent one of the most frequent causes of ALS.

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).



Singer et al. 15

Among the different animal models for ALS, SOD1 mice are the most used
in preclinical studies. After the initial tremor in the limbs, they develop
muscle weakness in early adulthood, become fully paralyzed and die. These
mice overexpress the human SOD1 gene bearing the G93A mutation. Inter-
estingly, in this animal model the disease progression is different between
the genders as observed in ALS patients. Males have a shorter lifespan and
a clinical condition apparently more severe than females and differences in
electrophysiological parameters have also been reported.
Treatment of ALS with stem cells is a current research topic. Mesenchymal
stromal cells (MSC), specially those derived from adipose tissues, and per-
icytes have been used in studies that focus on the reduction of the speed of
the progression of symptoms of neurodegenerative diseases. In this context
we consider a study conducted in the Human Genome and Stem Cell Re-
search Center, at the Biosciences Institute, University of São Paulo, Brazil
with the objective of comparing MSC cells and pericytes injected in SOD1-
G93A mice with respect to their effects on the evolution of some symptoms
of ALS. For details, see Coatti et al. (2017). Our objective is to propose
models for the statistical analysis of the data.

2 The study

A set of 34 female and 21 male 8 week old SOD1-G93A mice was divided
into 3 groups. Animals in the first group (12 females and 7 males) were
submitted to weekly injections of MSC cells, those in second group (11
females and 8 males), to injection with pericytes while animals in the third
group (11 females and 6 males) were submitted to the vehicle (Hank’s
balanced salt solution - HBSS). All animals were followed weekly up to
their death for clinical analysis of the progression of the disease by means
of four variables, the analysis of one of them, rotarod is considered in this
study. The rotarod test was used to evaluate motor coordination and fatigue
resistance. For that purpose, the length of time each animal could remain
in the rotating cylinder of a rotarod apparatus was recorded. The specific
objectives of the analysis are:

i) Identification of the moment when animals become symptomatic in
each of the six groups defined by the combination of treatment (HBSS,
MSC, Pericytes) and sex (male, female).

ii) Estimation of the expected rate of variation in response after symp-
tom onset in each group.

iii) Evaluation of the effects of treatment, sex and their interaction on the
expected moment of symptom onset and post onset rate of variation
in the expected response.
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3 Statistical analysis

Profile plots for the response along with LOESS curves are displayed in
Figure 1. An analysis of the behaviour of the response variable corroborates
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FIGURE 1. Profile plots for the response along with LOESS curves

its expected stable level before the onset of the symptom (a decrease in the
length of time during which the animal remains in the rotating cylinder).
Furthermore, individual differences in the moment where this occurs as
well as differences in the speed with which the intensity of the symptom
progresses are also visible. It also seems reasonable to expect a change in
the acceleration with which the intensity of the symptom progresses after
the disease onset.
Given that such conclusions are in line with the expected biological be-
haviour, a random changepoint polynomial segmented regression model
may be considered for the analysis.
Such models have an attractive practical appeal in many fields and have
been the object of statistical research for a long time as detailed in Muggeo
et al. (2014). These authors consider a frequentist approach as opposed
to the common Bayesian perspective usually employed in the statistical
literature.
Keeping in mind the nonnegative nature of the response, we adopt a similar
approach and consider an analysis of the ALS data based on the model

yijk = αijI(tk < ψ2ij) + γij [tk − ψ1ij(λij)]
2I(ψ1ij ≤ tk < ψ2ij) + eijk (1)
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(i = 1, . . . , 6, j = 1, . . . , ni and k = 1, . . . , nij) where yijk denotes the
response for the j-th animal observed in the i-th group (defined by the
combination of the levels of treatment and sex) at the k-th evaluation
instant, αij is the corresponding stable level of the symptom prior to the
first changepoint, γij is the coefficient of the quadratic term for the curve
that governs the expected response behaviour post changepoint ψ1ij , with

ψ1ij(λij) = [L1 + L2 exp(λij)]/[1 + exp(λij)]

to restrict its value to the interval (L1, L2) in which the observations are
obtained and ψ2ij denotes the instant where the expected response is null.
We assume that αij = αi + aij , γij = γi + cij , λij = λi + `ij with bij =
(aij , cij , `ij)

> ∼ N(0,Gi) and eijk ∼ N(0, σ2
i ) independent of bij .

This is an extension of the models proposed by Muggeo et al. (2014) where
a smooth transition and a second changepoint are incorporated. For sim-
plicity, we drop the subscript i to specify the the fitting algorithm.
Given that ψ2j corresponds to the instant tk where E(yjk) = 0, we have
I(tk < ψ2j) = 1 and I(ψ1j ≤ tk < ψ2j) = 1 and consequently, that
αj + {γj [ψ2j − ψ1j(λj)]

2} = 0, implying that

ψ2j = ψ2j(αj , γj , ψ1j) =
√
−αj/γj + ψ1j(λj)

Following Muggeo et al. (2014) and Fasola et al. (2018), the model, which
is nonlinear, may be approximated by a first order Taylor expansion of

f [tk, γj , ψ1j(λj)] = γj [tk − ψ1j(λj)]
2I(ψ1j ≤ tk < ψ2j).

Explicitly,

f [tk, γj , ψ1j(λj)] ≈ f [tk, γj , ψ1j(λ̂j)]+(λj−λ̂j)
∂f [tk, γj , ψ1j ]

∂ψ1j

∂ψ1j(λj)

λj

∣∣
λj=λ̂j

with

∂f [tk, γj , ψ1j ]

∂ψ1j
= hj(λj) = 2γj [tk − ψ1j(λj)]I[ψ1j(λj) ≤ tk < ψ2j(λj)]

and
∂ψ1j(λj)

∂λj
= gj(λj) =

(L2 − L1) exp(λj)

[1 + exp(λj)]2
.

Consequently we may approximate model (1) by

yjk ≈ αjI[tk < ψ2j(λ̂j)] + f [tk, γj , ψ1j(λ̂j)] (2)

− λ̂jhj(λ̂j)gj(λ̂j) + λjhj(λ̂j)gj(λ̂j) + ejk.

Considering the pseudo observations defined by y∗jk = yjk+λ̂jhj(λ̂j)gj(λ̂j),
the model

y∗jk = αjI[tk < ψ2j(λ̂j)] + f [tk, γj , ψ1j(λ̂j)] + λjhj(λ̂j)gj(λ̂j) + ejk

suggests the following algorithm to fit (1)
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1) Let ψ
(0)
1j = ψ

(0)
1 and ψ

(0)
2j = ψ

(0)
2 .

2) Fit model yjk = αjI(tk < ψ0
2j)+γj(tk−ψ

(0)
2j )2I(ψ

(0)
1j ≤ tk < ψ

(0)
2j )+ejk

to obtain α(0), a
(0)
j , γ(0), c

(0)
j , λ

(0)
j = log[(ψ

(0)
1j −L1)/(L2−ψ(0)

1j )] and

ψ
(1)
2j =

√
−α(0)

j /γ
(0)
j + ψ

(0)
1j .

3) Let r = 1.

4) Compute y
(r)
jk = yjk + λ

(r−1)
j hj(λ

(r−1)
j )gj(λ

(r−1)
j ).

5) Fit model y
(r)
jk = αjI(tk < ψ

(r)
2j ) + γj [tk −ψ(r)

1j ]2I(ψ
(r)
1j ≤ tk < ψ

(r)
2j ) +

λjhj(λ
(r−1)
j )gj(λ

(r−1)
j )+e

(r−1)
jk to obtain α(r), a

(r)
j , γ(r), c

(r)
j , λ(r), `

(r)
j ,

ψ
(r)
1j = [L1+L2 exp(λ

(r)
j )]/[1+exp(λ

(r)
j )] and ψ

(r+1)
2j =

√
−α(r)

j /γ
(r)
j +

ψ
(r)
1j .

6) Stop if some convergence criterion is satisfied, otherwise, let r = r+1
and repeat steps 4-6.

This algorithm essentially considers iterative fitting of standard linear mixed
models by (restricted) maximum likelihood. At convergence, we expect a
neglible difference between the third and fourth terms in the right hand
side of (2) and as a consequence, that the pseudo observations should well
approximate the original ones. Given the linear mixed model nature of the
proposed fitting algorithm, we may employ the diagnostic procedures out-
lined in Singer et al. (2017) to check whether the adopted assumptions
for the distribution of the random effects or of the random error are rea-
sonable. The algorithm also provides the elements for the construction of
approximate confidence intervals and Wald tests.

4 Results

Fitted profiles for the female mice submitted to the HBSS treatment are
depicted in Figure 2.
A significant interaction between treatment and sex with respect to the ψ1

changepoints (χ2 = 12.96, df = 2, p = 0.002) may be analysed via multiple
comparisons and suggest that the onset of symptoms for the “typical” male
in the control group (HBSS) is delayed by 1.9 [CI(95%) = 1.0, 2.9] weeks
with respect to the corresponding “typical” female and that treatment with
Pericytes (both sexes) or MSC (females) delay the onset of symptoms for
the “typical” animals by 1.4 [CI(95%) = 0.6, 2.2] weeks with respect to
the HBSS treated “typical” male. The changepoint for the MSC treated
“typical” male lies between those for HBSS treated “typical” male and
female but the small sample size does not lead to a significant difference in
either case.
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FIGURE 2. Fitted profile plots for HBSS treated females
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Abstract: In an environmental framework, extreme values of certain spatio-
temporal processes, such as wind speeds, are the main cause of severe damage
in property, such as electrical networks, road and agricultural infrastructures.
Therefore availability of accurate data on such processes is highly important in
risk analysis and in particular in producing probability maps showing the spatial
distribution of damage risks. Typically, as is the case of wind speeds, data are
available at few stations with many missing observations and consequently simu-
lated data are often used to augment information, since simulated environmental
data are typically available at high spatial and temporal resolutions. However,
simulated data often mismatch observed data, particulary on tails, therefore cal-
ibrating and bringing it in line with observed data may offer practitioners more
reliable and richer data sources. Since most damages are caused by extreme winds,
it is particulary important to calibrate the right tail of simulated data based on
observations. Response relationships between the extremes of simulated and ob-
served data are by nature highly non-linear and non-Gaussian, therefore data
fusion techniques available for spatial data may not be adequate for this pur-
pose. Although, our ultimate goal is the development of statistical methods for
data fusion and calibration that can extrapolate beyond the range of observed
data—into the tails of a distribution—in this talk we will concentrate on calibra-
tion methods for the whole range of data. We will also explain how these new
data fusion techniques for extremes of simulated and observed data may help in
producing more accurate risk analysis in certain environmental problems.
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1 Introduction and motivation

This paper overviews and highlights open challenges on calibration methods
in a risk analysis context. A version of Berrocal et al. (2012) for non-
Gaussian data is devised, and a regression model that extends Naveau et
al. (2016) is discussed en passant; both methods allow for calibration of
observed and simulated data yet via two distinct paradigms.

Our motivation has its roots in a consulting work several members of the
research team did for one a major electricity producer and distributor. The
electricity grid constantly faces disruptions due to damages in the distribu-
tion system, with heavy economic losses. These damages and consequent
disruptions occur due to a combination of many factors such as topography
and precipitation, however extreme winds and storms are the main cause
of such damages. Risk maps that indicate likely places of costly disruptions
in electric grids are important decision support tools for administering the
power grid and are particularly useful in deciding if costly corrective ac-
tions should be taken to improve structures. It is natural that these risk
maps should be based primarily on observed wind speeds among other fac-
tors. Hence, such risk maps can be interpreted as vulnerability maps of
electricity grid to extreme wind speeds, expressed in terms of probability.

In producing such risk maps for damages, it is decided that daily maxi-
mum wind speeds should be used as proxy information. However generating
such maps depends on reliable wind data at fairly high spatial and temporal
resolutions. In Portugal, wind data exist in only 117 stations but missing
observations reach to 90% in some stations. Naturally, this reduced num-
ber of observation sites does not give sufficient spatial coverage. On the
other hand, simulated wind speeds from a simulator (the WRF—Weather
Research and Forecast—model, version 3.1.1), obtained at a regular grid
of 81ksq grid cell size are available without any missing observations, giv-
ing a high resolution spatial coverage. As often is the case, simulated and
observed daily-maximum wind speed data, particularly at some stations
do not match well. Consequently, corresponding probability maps based
on simulated and observed daily-maximum wind speed data may differ. A
common practice is to use simulated wind speeds after being ‘calibrated’,
that is, after bringing the simulated wind speeds in line with observed wind
speeds. There are many different definitions and consequently methods of
calibration, which we briefly describe in Section 2. Although simulated and
observed data seem to match reasonably well over the range of data, there
are considerable differences on observations coming from the right tail and
therefore the adequate calibration method should be particularly adopted
to such observations and should be in line with the models and methods
suggested by extreme value theory.

The structure of the paper is as follows. In Section 2 we give a brief de-
scription of standard data fusion/calibration methods to update simulated
data based on the observed data. In Section 3 we describe one specific data
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fusion/calibration method and show how our wind speed data can be cali-
brated using this method; some comments are also made on a model that is
developed in a companion paper (Pereira et al. 2019). Finally, in Section 4,
we briefly explain how calibration can be extended specifically to data com-
ing from the tails of simulated and observed data, using asymptotic models,
and methods suggested by extreme value theory.

2 Background on data fusion and calibration

There are many different paradigms for calibration and in this section, we
give a brief description of some of the existing methods. Let Y (s, t) and
X(s, t) be respectively the observed and simulated wind speeds at location
s and time t. Generically we will use Y and X for observed and simulated
wind speeds when data are used without any space-time reference.

Quantile matching-based approaches

If we ignore totally space-time variations and dependence structures, then
we can define calibrations as simple scaling making use of marginal distribu-
tions fitted respectively to X and Y (CDF transform method, Michelangeli
et al, 2009). According to this idea

x∗i = F−1
Y (FX(xi)), i = 1, . . . , n, (1)

can be defined as calibration, without any space-time configuration of the
data. Here, x∗i is the new calibrated (scaled) data, whereas FY and FX are
respectively the distribution functions of Y and X. This scaling is justified
by the fact that P (X∗i ≤ z) = FY (z) so that the calibrated data has the
same distribution as the observed data. This idea can be extended to cover
space-time non-homogeneity by scaling (calibrating) the data from

x(s, t)∗ = F−1
Y (s,t)(FX(s,t)(x(s, t)),

assuming that the marginal distributions of Y (s, t) and X(s, t) are known
for every s and t. These distributions can be estimated by fitting these
marginal distributions parametrically, whose parameters are smooth func-
tion of spatially and temporarily varying covariates as well as space-time
latent processes and then extended over space (and time) through the usual
space-time smoothing.

Yet this calibration method is not particularly ideal as it only depends
on the marginal distributions of Y and Z, consequently does not make
use of the expected strong dependence between the two sets of data and
do not seem to take care of possible bias in simulated data. Therefore this
transformation should be defined as scaling. Ideal calibration should involve
joint distributions of Y and X. Therefore, one can suggest calibration based
on

x∗i = F−1
Y |X(FX(xi)), i = 1, . . . , n,

where FY |X is the conditional distribution function.
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Inverse regression

Calibration is commonly defined as a method of adjusting the scale
of a measurement instrument on the basis of an informative experiment
and therefore can be seen as an inverse regression problem. Aitchison and
Dunsmore (1975) approach the problem from a Bayesian perspective by
defining the calibrative distribution. Under this approach the objective is
to obtain the distribution

y(s0) | x(s0), x(s∗), y(s∗)

for an unknown y(s0) based on the observed and simulated data (x(s∗), y(s∗))
on N stations and the simulated value x(s0), with s0 different from any s∗.

Simulator–emulator-based approaches

Kennedy and O’Hagan (2001) describe calibration as statistical postpro-
cessing of simulator deterministic forecast and assume that detailed infor-
mation of how emulators work is available in terms of a set of parameters.
Sigrist et al. (2015) give detailed description of stochastic versions of space-
time advection-diffusion PDE’s and their solutions as models for emulators
and describe a method of postprocessing simulated data.

Data fusion

Data fusion techniques are often seen as possible calibration methods. See
for example Zidek et al. (2012) and McMillan et al. (2010). Two specific
data fusion methods are particularly well adopted to calibration namely
Fuentes and Raftery, (2005) and Berrocal et al. (2012). In both meth-
ods, the models for simulated and calibrated data share a latent Gaussian
Markov Random Field (GMRF) model, although there are differences in
the way these models are built and in the interpretation of the role of the
GMRF. In Section 3, we showcase the application of an adequate modifi-
cation of the Berrocal et al. (2012) method to our daily maximum wind
speed data. See, e.g, Foley and Fuentes (2008) for an application of Fuentes
and Raftery’s method to hurricane surface wind prediction.

3 Calibration methods for bulk and tails

3.1 Berrocal–Gelfand–Holland et al. (BGH) method

We now devise a version of Berrocal et al. (2012) for non-Gaussian data. Let
B be the grid cells, s are points in the space, X is the simulated data and Y
the observed data. Here, Y (s) is a point referenced process, whereas X(B)
is defined over the grid in the sense that for every s ∈ B, X(s) = X(B)
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is fixed. Also, Y (s) is observed only at fixed and few observation locations
sj , for j = 1, . . . , N . Below, Z ∼ GMRF is used to denote that Z follows
a Gaussian Markov Random Field. A preliminary data analysis suggests a
model based on the following specification:

• Simulated data. Let X(B) | Z(B) ∼ Gamma(αB , βB), with

log

(
αB
βB

)
(B) = β0 + Z(B), Z ∼ GMRF.

• Observed data (given X). Let Y (s) | X(s),W (s) ∼ Gamma(αW , βW ),
with

log

(
αW
βW

)
(s) = β1 +W (s) + β2X(B), W ∼ GMRF. (2)

The specification above is then used to extrapolate Y to grid cell B, given
the simulated value (X) at the grid cell B. We call these the calibrated
values. A smooth version of the model can be obtained by replacing (2)
with

log

(
αW
βW

)
(s) = β1 +W (s) + β3Z(B),

where W (s), Z(B) are independent GMRF defined over an adequate tri-
angulation.

Application to wind speed data

The model is fitted to 51 observation sites using daily maximum wind
speed data during two winter months; only days with wind speeds above
zero, and without missing observations, are considered corresponding to 58
days. From the simulator we use the daily maximum wind speed simulated
data on the same days. We disregard time dependence and hence we assume
that for a specific s ∈ B, (Y (s, t), X(B, t)), for t = 1, . . . , T are independent
replicates of the same random vector, where T is the number of days un-
der study. Although hourly wind speeds show significant dependence, our
daily data do not show such significant dependence. This is a reasonable
assumption which brings significant simplifications in the model.

The grid B has 36 columns and 65 rows, so altogether there are 2340 cells;
INLA (Rue et al., 2009) and SPDE method of Lindgren et al. (2011) are
based on triangulation with 3229 vertices (www.r-inla.org). The output
of interest is the predictive distribution and its expected value at grid cell
for the observed daily max wind speed, and we call these the calibrated
wind speeds. In Figure 1 we depict a plot of the mean of the observed
and simulated values at the 51 sites, together with correspondent 2.5% and
97.5% empirical quantiles, and in Figure 2 we show a map of the observed
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mean of the wind speeds at the 51 station sites (left side), and un-smoothed
and smoothed maps of the mean of the simulated and calibrated wind
speeds for the study period. It is clear from Figure 1 that simulated wind
speeds have, in relation to the observed values, a positive bias. This bias
is reduced for the calibrated values, as it is clear from the smoothed maps
(observe the scales of the simulated and calibrated maps), but the model
does not seem to be able to capture large values.
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FIGURE 1. Observed (•) and simulated (•) wind speeds and the 95% IQR wind
speeds calibrated by station (dashed lines).

3.2 Conditional quantile matching calibration

In a companion paper (Pereira et al. 2019) the group develops a covariate-
adjusted version of quantile matching-based approach as in (1). To achieve
this goal, we have first derived a conditional version of Naveau et al. (2016).
We briefly discuss the key ingredients of the model below; simulations and
further details are available from Pereira et al. (2019). To ease notation,
we only introduce the model for FY (y | x), which is given by

FY (y | x) = Gx

(
Hξ

(
y

σ

))
, (3)

where {Gx} is a family of functions indexed by a covariate, obeying as-
sumptions A, B, and C in Naveau et al. (2016), and

Hξ(y) =

{
1− (1 + ξy)

−1/ξ
+ , ξ 6= 0,

1− exp(−y), ξ = 0.

Note that (3) is a model for the conditional distribution of y, tailored for
both the bulk and tails, and—contrarily to most methods for extremes—it
does not require a threshold to be selected.
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FIGURE 2. Mean wind speeds observed at the 51 sites (top left); mean wind
speeds simulated (top right; un-smoothed on the left and smoothed on the righ);
mean wind speeds calibrated by BGH method (bottom; un-smoothed on the left
and smoothed on the right).

4 Discussion and further extensions

In previous sections we discussed several possible ways of calibrating sim-
ulated data based on observations and implemented the modified BGH
method as described in Section 3. This method, as expected, does not cal-
ibrate well data coming from the right tail.

The fact that damages in electricity grid are basically governed by
extreme winds and that primarily simulated-observed data coming from
the right tail differ, suggest that adequate calibration methods must be
specifically adopted to extreme observations coming the right tails. This in
return suggests that methods and models to be used in calibration should
ideally be compatible with extreme value theory. A range of approaches
for characterising the extremal behaviour of spatial process have been sug-
gested and a brief comparison of these methods can be found in Tawn et
al. (2018). Let Xi(s), i = 1, 2, . . . be iid replicates of a spatial process X(s).
Essentially, there are 3 different ways of characterising extremal properties
of spatial processes and obtaining limiting processes which can be used as
models:
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1. Max-stable process: Limit as n→∞,

Mn(s) = max
1≤i≤n

Xi(s).

2. Pareto process: Limit as u→∞,

X(s) | max
s
X(s) > u.

3. Conditional extremal process: Limit as u→∞,

X(s) | X(fixed site) > u.

Tawn et al. (2018) discuss the strong and the weak points of these alter-
native asymptotic representations. Briefly we mention that max-stable and
Pareto processes cannot represent cases when the extremes over space show
independence over extended distances, which is the case for extreme wind
speeds. Therefore downscaling method described by Towe et al. (2017)—
which is based on the conditional extremes process—is more suitable, with
adequate modifications, to calibrate extreme simulated data based on ob-
served wind speeds. Work on this approach is under progress.

Acknowledgments: The authors acknowledge the financial support re-
ceived by Fundação para a Ciência e Tecnologia, Portugal, through the
projects PTDC/MAT-STA/28649/2017 and UID/MAT/00006/2019
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Abstract: Three-dimensional surface imaging, through laser-scanning or stereo-
photogrammetry, provides high-resolution data defining the surface shape of ob-
jects. Human faces are of particular interest and there are many biological and
anatomical applications, including assessing the success of facial surgery and in-
vestigating the possible developmental origins of some adult conditions. An initial
challenge is to structure the raw images by identifying features of the face. Ridge
and valley curves provide a very good intermediate level at which to approach
this, as these provide a good compromise between informative representations of
shape and simplicity of structure. Some of the issues involved in analysing data
of this type will be discussed and illustrated. Modelling issues include simple
comparison of groups, the measurement of asymmetry and longitudinal patterns
of shape change. This last topic is relevant at short scale in facial animation,
medium scale in individual growth patterns, and very long scale in phylogenetic
studies.

Keywords: Shape; Curvature; Visualisation.

1 Introduction

Images which consist of high resolution data on surface shape are becoming
increasingly common. Figure 1 shows an example of a human face captured
by a stereo-photogrammetric camera system. Laser systems are also avail-
able for this kind of imaging. Data of this type can be captured in the
context of studies which are based on the usual kinds of scientific ques-
tions, involving the comparison of groups, the assessment of the effects of
covariates, or the construction of predictions. Appropriate statistical meth-

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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ods are then required to allow these kinds of analysis to take place with
data in the form of 3D surfaces.

FIGURE 1. An example of a 3D facial image at different orientations.

2 A model for a face

Faces are surfaces of particular interest for a wide variety of medical, biolog-
ical, social or security reasons. The large number of 3D points which form
the raw image need to be replaced by a systematic description of facial
shape that allows analysis based on information that corresponds across
subjects and which will then allow meaningful interpretation. There are
many ways in which that can be approached. Anatomical landmarks have
been the mainstay of shape analysis over many years but with the high
resolution images now available more complex descriptions are required.
Dryden and Mardia (2016) give a comprehensive description of this general
area. A common approach is to ‘warp’ a template shape onto an individual
image using appropriate indicators of local surface characteristics. An al-
ternative approach involves the estimation of well-defined ridge and valley
curves which we expect to see on all faces, such as the ridge of the nose, the
valley between closed lips etc. This is described in Bowman et al. (2015)
and Vittert et al. (2017), while Katina et al. (2015) propose that these
curves should be the basis of anatomical definitions. The method involves
the characterisation and tracking of local surface properties through the
maximal and minimal curvatures present (κ1, κ2 respectively). For exam-
ple, the type of local surface can be helpfully expressed in the ‘shape index’
defined as 2/π tan−1((κ2 + κ1)/(κ2 − κ1)); see Koenderink and van Doorn
(1992). Values of the shape index are colour coded onto the example face
in the left hand image of Figure 2. Once curves have been estimated, the
intervening surface patches can be given a simple representation through
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interpolated transects. The resulting facial model is displayed in the right
hand panel of the Figure.
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FIGURE 2. An example of a 3D facial image coloured by shape index (left) and
with a facial model superimposed (right).

3 The analysis of 3D shape

If a facial model is available for each image then this common shape de-
scription can form the basis of analysis. A registration step is required
to place the shapes in a common co-ordinate system. Procrustes alignment
provides a good solution for this; see Dryden and Mardia (2016) for details.
As a simple example of subsequent analysis, Figure 3 shows the results of
applying principal components analysis to the aligned nose shapes of 61
males and 69 females, all adults of British ethnic origin. One advantage
of the curve-based approach to the construction of a facial model is that
particular features such as the nose can then be extracted easily. As usual,
principal components analysis provides a means of reducing the very high
dimensionality of the space of the model descriptor, providing a much lower
dimensional space in which analysis can take place. In this context it is a
‘regulariser’ of the original space.
Figure 3 plots the scores of the first 10 components, which account for 81%
of the variability in the dataset. Confidence intervals (Bonferroni adjusted)
are also displayed to allow the evidence of differences in shape between
the sexes to be assessed. The nasal images illustrate the nature of each
principal component by plotting the shapes which correspond to ±2 stan-
dard deviations from 0 on the scores scale. The images which correspond
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to components where there is evidence of differences in shape have been
magnified. Component 2 suggests males have narrower and more promi-
nent nose ridges while component 4 indicates a more rounded nasal tip
in females. Component 10, which accounts for a very small proportion of
variability, may indicate slightly flatter edges to the nasal area in females,
particularly close to the eyes.

4 Discussion

This short paper indicates the nature of 3D surface data and describes
some initial approaches to modelling. In the presentation associated with
the paper a wide variety of other types of analysis will be discussed in
the context of several different application areas, including studies of facial
surgery, the neuro-developmental origins of adult conditions and the con-
struction of phylogenies. In particular, longitudinal models are relevant at
short scale in facial animation, medium scale in individual growth patterns,
and very long scale in phylogenetic studies.
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E-mail for correspondence: murray.aitkin@unimelb.edu.au

Abstract: This paper is concerned with the measurement of income inequality
over successive surveys or censuses of a population. In Australia there has been
a recent major argument over the claim by the Australian Bureau of Statistics
that inequality had not worsened in Australia over the period 2014-2016.

1 Introduction

Mr Morrison [the then Australian Treasurer, now Prime Minis-
ter] said:

“What I don’t accept – that this idea, that people and inequality
and incomes have been going in the wrong direction, that’s not
borne out by the facts.

“The last census showed that on the global measure of inequal-
ity, which is the Gini coefficient -– that is the accepted global
measure of income inequality around the world -– and that fig-
ure shows that it hasn’t got worse, inequality, that it’s actually
got better.”

A day earlier Mr Morrison gave a speech to the Australian In-
dustry Group, in which he said:

“Analysis of the more recent census data for the 2016 census
shows the Gini coefficient based on gross household income has
declined from 0.382 to 0.366 since 2011.”

Mr Morrison’s figures were derived using gross income data
taken from the 2016 census, and were based on internal, un-
published calculations.

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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2 Difficulties with the Gini coefficient

There are at least three problems with the Gini index for income inequal-
ity comparisons. The principal problem with the index, or any other single
number, is that it cannot represent variability in the income distribution.
A Gaussian distribution can be summarised by two numbers, but only a
single-parameter distribution, like the Poisson or exponential, can be sum-
marised by one number. Recognition of this allows us to develop a statistical
modelling approach to changes in income inequality over repeated surveys
or censuses, using publicly available data.
The second is that countries (or years within one country) with widely
different income distributions may have the same Gini index. This point
has been made frequently in criticisms of the Gini coefficient.
The third is that the calculation of the Lorenz curve, from which the Gini
index is derived, requires access to individual-level income data, to develop
both the percentiles of the individual income distribution and the propor-
tion of national income received by each income percentile group. These
data are generally confidential to the national statistical office and are not
publicly available. What is publicly available, at least in Australia, is the
numbers of households receiving income in ABS-defined income intervals.
We give an example of total household income reported in the Australian
censuses of 2006, 2011 and 2016.

3 Income distributions by Census year

Table 1 is constructed from the publicly available “Census Table Builder” at
the Australian Bureau of Statistics (ABS). It shows the population counts
of weekly Total Household Income reported in the 2006, 2011 and 2016
Censuses, in different income intervals in each Census. Households not re-
porting or reporting partial, zero or negative incomes were excluded. The
table gives the “income” variable as the upper end-point of each income
interval. The column “median” will be explained below.
The range of incomes reported was extended considerably in the 2016 Cen-
sus. What can be said about the change in the distribution of Total House-
hold Income over these Census periods? In particular, what proportions of
the reporting populations had incomes less than half of the median incomes
(a common definition of poverty)?
To model these distributions takes us beyond sample variation – these are
(or are intended to be) population proportions based on very large num-
bers. However finding a “best-fitting model” representation gives us (by
the model smoothing) the medians and other percentiles in the three dis-
tributions.
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2006 2011 2016
median income count median income count median income count

105 149 56207 140 199 121661 105 149 34737
220 249 53671 270 299 213918 255 299 55126
320 349 131145 370 399 492804 370 399 51581
455 499 363057 460 599 737671 470 499 178043
605 649 505010 660 799 663125 605 649 184281
755 799 272528 860 999 615387 755 799 445780
949 999 339939 1075 1249 616836 860 999 372972

1140 1199 603408 1325 1499 566837 1075 1249 483418
1260 1399 369503 1650 1999 881783 1325 1499 468132
1490 1699 432424 2150 2499 633195 1575 1749 374240
1790 1999 368798 2650 2999 605381 1825 1999 378560
2150 2499 309149 3150 3499 356245 2165 2549 733187
2800 3499 137629 3650 3999 163860 2685 2999 498209
3650 3999 93702 4300 4999 140282 3150 3499 320392
4150 > 4000 90107 5150 > 5000 126493 3800 4499 138630

4650 4999 136917
5300 5999 122422
6600 7999 104507
8300 > 8000 11652

Total 4,126,277 6,935,478 5,092,786

TABLE 1. Reported household weekly income in $A

4 Modelling the income distribution

By differencing the cumulative counts at each interval upper endpoint,
we obtain a set of interval counts which can be modelled as described by
Lindsey (1997). They make up a multinomial distribution of income his-
togram counts, which can be expressed as a set of conditionally independent
Poisson counts, conditional on the total count. The Poisson model for the
counts then fits user-specified functions of the income variable as explana-
tory variables in a log-linear model for the counts. This is widely known
as the “Poisson trick”. This analysis is a particular case of the composite
link function (Thompson and Baker 1981), in which the usual link function
is applied to a transformation – here the successive differences – of the
original cumulative observations. The Poisson distribution has been used
in several such applications (Eilers 1991, 2017).
The difficulty for the modelling is assigning income locations for the interval
counts. The traditional locations are the midpoints of the intervals, used
since the invention of the histogram. However there is clearly some bias in
this procedure, since all actual values in each interval are moved to the right,
and the interval midpoint assumes that these unobserved actual values are
symmetrically distributed around the midpoint within each interval. This
is clearly not so: a more realistic simple model is that the actual values have
a triangular distribution in each interval. The interval mass centre would
then be at the median of the distribution, which would be at 0.7 (

√
2/2),

rather than 0.5, of the distance from the lower mass to the higher mass
endpoint. These relocated masses can then be analysed with the Poisson
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trick. The resulting masspoints (medians) and masses are shown in Table
1.
There is a wide choice of possible continuous distribution models for the
linear predictor (regression model). The Gaussian, lognormal and gamma
distributions are modelled with the linear and quadratic terms in income,
the linear and quadratic terms in log income, and the linear terms in income
and log income respectively. None of these distributions gives an adequate
fit to the income data in any of the census years.
The substantial skew in all the empirical distributions suggests that the
log income scale should be used. We use the four-moment distribution,
sometimes called the log-quartic distribution, with the log density a quartic
function of the argument. This ensures that the first four sample moments
are reproduced by the fitted model. We fit the Poisson four-moment model
in log “median” income to the counts for the three censuses. The fitted
cdfs for the three Census years are shown on the probit/log income scale in
Figure 1. The skew in the distributions is accounted for by the third and
fourth moments.
The fit to the observed data is close for all three censuses. However the in-
come data analysed are expressed in current $A, which need to be adjusted
for cost of living increases by the Consumer Price Index, which increased
by 15% from 2006 to 2011, and by 25% from 2006 to 2016. The adjust-
ment involves a simple left shift of the two later income distributions, by
log 1.15 = 0.14 units for 2011 and log 1.25 = 0.22 units for 2016. Analyses
below are expressed in constant 2006 dollars.

TABLE 2. Income medians and quartiles in $A, and poverty percentiles, CPI-ad-
justed

Year 25% median 75% poverty percentile

2006 635 1031 1451 515 17.6%
2011 462 919 1605 460 24.8%
2016 801 1305 2061 653 18.2%

The definition of (relative) poverty here is family income less than 50% of
the median income.

• The median and first quartile declined over 2006-11, with more than
50% of families worse off in 2011, and almost 25% being in relative
poverty.

• the proportion in poverty decreased in 2016 to slightly above the 2006
level.

• This reflects the effect of the 2008/9 GFC, and the improvement since
then.
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• The 2006 income distribution was changed in 2011 by an increase in
the proportion of low-income families,

• but in 2016 the 2006 pattern was repeated, but with a shift to higher
incomes.

The increase in the poverty proportion from 2006 to 2011 following the
GFC was reversed from 2011 to 2016. The Australian economy improved
substantially over this period, partly because of the Australian Government
action to stimulate the economy following the GFC, and partly because of
the substantial increase in exports to China. The analysis here supports
the ABS statement with the Gini index, but is more informative.

Aitkin 5
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FIGURE 1. Fitted cdfs, income (red 2006, white 2011, blue 2016)
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Synthetic data as Public Use Files: an
application to the Household Budget Survey

Inês Rodrigues1
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Abstract: A methodology for producing Public Use Files (PUF) for the House-
hold Budget Survey by generating synthetic data is presented. Parametric (multi-
nomial logistic and log-linear regressions) and non-parametric methods (classifica-
tion and regression trees) were used for generating the main identifying variables,
as well as income and expenditure totals. The two approaches were compared with
a focus on the risk of disclosing confidential information from the PUF.

Keywords: PUF; HBS; Confidentiality; Synthetic data.

1 Introduction

Public Use Files (PUF) include data on individual statistical units and are
prepared to be of public access. PUF are intended to be used for educa-
tion or test purposes - e.g., by researchers when developing their applica-
tion to access microdata files for research use, the so-called SUF (Scientific
Use Files). The aim of this work is to compare a parametric and a non-
parametric approach for producing PUF for the Household Budget Survey
based on synthetic data, namely regarding the resulting disclosure risk.

2 Producing PUF by generating synthetic data

2.1 A parametric and a non-parametric approach

Let D denote an original microdata set, including a set of k variables rep-
resented by Y , whose relationships are intended to be preserved. Following
Raghunathan et al. (2001), the joint conditional density of Y1, Y2, . . . , Yk

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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given a set of background variables X, can be factored as:

f(Y1, . . . , Yk|X, θ1, . . . , θk) = f1(Y1|X, θ1)

k∏

v=2

fv(Yv|X,Y1, . . . , Yv−1, θv)

where fv, v = 1, . . . , k are the conditional density functions and θv is a
vector of parameters in the conditional distribution (e.g., regression coef-
ficients). Each conditional distribution is modeled by a given appropriate
regression model (e.g., linear, logistic or log-linear regression, if Yv is a
continuous, binary or count variable, respectively).
On the other hand, the CART (classification and regression trees) algo-
rithm provides good results as a non-parametric approach to generate syn-
thetic data (Dreschler and Reiter (2011)). As described by Nowok et al.
(2017), it is based on the recursive partition of the original dataset into
groups with increasingly homogeneous outcome. Splits are defined based
on yes/no questions concerning the predictors. In each final group (leaf),
values approximate the conditional distribution of the predicted variable for
units with predictors meeting the criteria that define that group. Synthetic
values are generated by sampling from the appropriate leaf. CART can
be used to simulate each variable sequentially, by conditioning on already
generated variables, as in the parametric approach.

2.2 Disclosure risk

Following Loong et al. (2013), we assume the user knows which units are
included in D and their values regarding m indirect identifiers. Based on
this m variables, the user attempts to obtain information on a confidential
variable, T , from the synthetic microdata set D

′
. Let nR and nS denote the

number of units inD andD
′
, respectively. We denote by wiq the value of the

indirect identifier q for unit i in D (i = 1, . . . , nR; q = 1, . . . ,m) and by wjq
the value of the same identifier for unit j in D

′
. Let Rij = 1 (i = 1, . . . , nR;

j = 1, . . . , nS) if wiq = wjq ∀ q (q = 1, . . . ,m) and Rij = 0 otherwise. Let
also Ci =

∑nS
j=1Rij and Uic = 1 (i = 1, . . . , nR; c = 1, . . . , Ci) if ti = tc for

categorical T , or tc ∈ [ti(1− p), ti(1 + p)] for continuous T and a precision

of p×100%, and Uic = 0 otherwise. We therefore denote by Zi =
∑Ci
c=1 Uic

the total number of records that are a real match for unit i in D. Let
Ii = 1 if Zi > 0 and Ii = 0 otherwise, and Ki = 1 if Ci = 1 ∧ Ii = 1
and Ki = 0 otherwise. Disclosure risk can therefore be quantified by the
following global measures:

• the expected match risk, given by EMR=
∑nR
i=1

Zi
Ci

• and the true match risk, given by TMR=
∑nR
i=1Ki

EMR reflects the chance of an user randomly establishing a true match for
each unit i in D and TMR that of an user correctly and uniquely identifying
each unit i in D.
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3 Producing PUF for the Household Budget Survey

The Household Budget Survey (HBS) aims at producing data on consump-
tion expenditure; its microdata is composed by records regarding house-
holds and household members. We generated as many household records as
the number of households in the original sample. We began by simulating
region (NUTS II) and household size by sampling from the corresponding
estimated multinomial distribution, based on the relative frequency distri-
butions in the original sample - we first simulated region and then house-
hold size, given region. For each synthetic household, a real household from
the same region and size was randomly selected; the number of members
in the synthetic household, as well as their sex and age, was taken to be
that from the selected real household. Both approaches presented in 2.1 -
Parametric and CART - were then used to generate the main identifying
variables (country of birth, country of citizenship, marital status, level of
studies completed, status in employment and economic sector in employ-
ment), as well as income and expenditure totals. In order to compare both
approaches regarding the resulting disclosure risk, we generated 100 syn-
thetic datasets from each approach, considering a random sample of 500
households from the HBS SUF to be our real data.

4 Results and discussion

Figures 1 and 2 illustrate respectively the distributions of two identify-
ing variables and the total expenditure, obtained by generating a single
synthetic data following each approach, in comparison with the real data
(SUF). Good results were obtained regarding the main statistics computed
from HBS data (e.g. the mean consumption expenditures of households
(euros) - SUF: 20 391, Parametric: 19 942 and CART: 19 661 - and the
at-risk-of-poverty rate (after social transfers) (%) - SUF: 14.8, Paramet-
ric: 19.2 and CART: 15.5). However, the additional flexibility from CART
results in a slight increase in disclosure risk, as illustrated by figure 3.
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FIGURE 1. Weighted frequency distribution of education level by marital status,
in the real (SUF) and synthetic HBS datasets.
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FIGURE 2. Total annual consumption expenditure by household size, in the real
(SUF) and synthetic HBS datasets.

Parametric CART

0
1

2
3

4
5

6
E

M
R

0 1 2 3 4
TMR

F
re

qu
en

cy
0

20
40

60
80

Parametric

CART

FIGURE 3. EMR and TMR distributions for 100 replications. Following the
notation in 2.2, m = 6 (sex, age, HH size, marital status, status in employment
and country of citizenship), T are income and expenditure totals and p = 0.05.
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Abstract: Small Area Estimation (SAE) is a part of statistical science that com-
bines survey sampling and inference of finite populations with statistical mod-
elling. The main objective of this paper is to analyze and test the implementation
of different types of estimators of small domains in order to improve the quality
of the estimates produced within the framework of the Farm Structure Survey
(FSS) at NUTS III level. Under the EUROSTAT Land Use and Cover Area Sta-
tistical Survey (LUCAS) project, this is a fundamental tool for environmental
studies, forestry and agricultural resource planning.
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1 Introduction

Nowadays, public and private institutions are increasingly seeking more de-
tailed information to aid their decision-making process, and the National
Statistical Offices do fall into this new paradigm. The need to produce re-
liable estimates for the total of variables of interest in small domains is
fundamental. However, estimates cannot always be obtained through di-
rect estimators (that use only the observations of the variable of interest
belonging to the domain for the time period under analysis), because often
there are no samples for these domains, or they are too small to obtain
sufficient quality estimates. In order to solve this problem, several types of
estimators for small domains have been proposed: some of them combine
auxiliary information of the variable of interest in the domain and in differ-
ent periods of time, or even consider variable sources of other domains (the
so-called indirect estimators). The main objective of this paper is to de-
velop, analyze and test the implementation of different types of small area

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).



50 Small area estimation

estimators in order to improve the quality of the estimates produced within
the framework of the Farm Structure Survey (FSS) at regional (NUTS III)
level. Currently, Statistics Portugal publishes these estimates at National
(NUTS I) and Regional (NUTS II) levels. Under the EUROSTAT Land Use
and Cover Area Statistical Survey (LUCAS) project, Statistics Portugal in-
tends to use this information to detail the agriculture class, thus providing
information on agricultural land use up to the third level of patent nomen-
clature in the Land Use and Land Cover Mapping (LULC), a fundamental
tool for environmental studies, forestry and agricultural resource planning
(EUROSTAT,2013). In this work, five different estimators (direct, modified
and combined) are used to estimate 44 variables by NUTS III in mainland
Portugal: the direct estimator (1 and 2), the estimator modified by the
Regression, the EBLUP estimator using the Fay-Herriot method and the
EBLUP estimator by the spatial level of the area (SEBLUP). Based on the
results, we may conclude that when auxiliary variables are available, the
estimator modified by the Regression performs better when compared to
other estimators.

2 Small Area Estimators

In this section we introduce Small Area Estimation (SAE) and shortly
describe the main estimators used in this work. In a stratified random
sampling design, let U be a finite population of N distinct elements, U ={

1, ..., N
}

, the subpopulations (in this case, strata), Uh, with Uh ⊂ U, h ={
1..., H

}
, for which certain parameters have to be estimated according to

the domain d. (see Figure 1).

FIGURE 1. Representation of domains, under the SAE perspective

The population dimension of each stratum Uh is denoted by Nh with h ={
1, ...,H

}
, where N =

∑H
h=1Nh, and the subpopulation dimension in Uhd

is denoted by Nhd, where Nd =
∑H
h=1Nhd ; we consider s as a sample
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of size n collected from U that may be decomposed in s =
∑H
h=1 sh and

sd =
∑H
h=1 shd, which are sampling units of size nd and nhd randomly

selected, where n =
∑H
h=1 nh and nd =

∑H
h=1 nhd .

We usually denote population U as being composed by two quantities, Y
(the explained variable, or variable of interest) and X = (X1, ..., Xj) ∈
Rj , the values of the covariates or auxiliary variables. Auxiliary variables
are always assumed to be known, whereas the variable of interest may
be unknown for some areas if individuals in these areas are not sampled.
Assuming that we want to obtain estimates of the total, τd the total of the
variable of interest for the population of the domain of interest d is given
by: τd =

∑
i∈Ud Yi.

In general, SAE models can be categorized in direct and indirect estima-
tors. Direct estimators only consider the observations of the variable of
interest belonging to the study domain for the time period under analysis,
whereas indirect estimators take observations of the variable of interest as
well as auxiliary sources outside the study domain for the considered period
of time. The Model-based approach belongs to the class of indirect estima-
tors and regression models are used here between data from the sample and
auxiliary variables from other data sources, such as census and adminis-
trative records to ”lend” information from similar areas (Rao and Molina,
2015). Indirect estimators can also be divided in synthetic and combined
estimators which can be derived under a design-based approach or taking
into account the fact that an explicit area level or unit level model exists.
Combined estimators are basically weighted averages of a direct estimator
and an indirect estimator (Rao and Molina, 2015, Pfeffermann, 2013).

2.1 Direct Estimators (D1 and D2)

We start with the fundamental Horvitz-Thompson estimator, defined in
Rao and Molina (2015):

D1 = τ̂D1
=

H∑

h=1

Nh
nh

∑

i∈shd
yi

V ar(τ̂D1) =

H∑

h=1

Nhd(Nh − nh)

nh
(s2
hd + (1− Nhd

Nh
)ȳ2
hd)

A second estimator is used, where we assume to know the dimension of
each population defined by the intersection of NUTS III with the strata
defined a priori in the sampling plan: (Nhd e nhd):

D2 = τ̂D2 =

H∑

h=1

Nhd
nhd

∑

i∈shd
yi

V ar(τ̂D2) =

H∑

h=1

Nhd(Nh − nh)

nh
s2
hd
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Where,s2
hd is the sampling variance in the subsample defined by the inter-

section of stratum h with domain d.

2.2 Direct Estimator modified by Regression (Reg)

For the application of this estimator, it is necessary to know the values of
the auxiliary variables for all units of the population at individual level,
the vector of the totals of the auxiliary variables in domain τxd and their
observed values in the sample units of the subpopulation g,xi, i ∈ sg. The
regression estimator for the total estimate is given by:

τ̂d,reg = τ̂d + (τxd − τ̂xd)′β̂g

where β̂g is the estimator of regression parameters βg = (βg1, βg2, ..., βgp)
′.

In this case there is an implicit link model: yi = x′βg + εi, with i ∈ Ug

2.3 EBLUP and SEBLUP

The EBLUP is a combined estimator. Considering a finite population di-
vided into D small domains, the Fay-Herriot base model (Rao and Molina,
2015) linearly relates the value of the d-th domain of the variable of in-
terest θd to a vector of p auxiliary variables aggregated at the xd area
level and includes an associated random vd effect. The model is given by
θ = x′dβ + vd, d = 1, ...D; where β is a vector of regression parameters; vd
are the random effects. Then, the combined estimator SEBLUP, θ̂SEBLUP
of parameter θd may be written as:

θ̂SEBLUP = x′dβ + vd + ed = x′dβ + (ID − ρW )−1u+ ed
The SEBLUP estimator considers a spatial component. The main difference
between the two models (EBLUP and SEBLUP) lies in the fact that SE-
BLUP uses the information of the distances between the domains through
a proximity matrix (Pfeffermann, 2013).

3 Data, Software, and Results

3.1 Data and Software

The Farm Structure Survey (FSS), also known as the Survey on the struc-
ture of agricultural holdings, is carried out by all European Union (EU)
Member States and provides comparable statistics across countries and
time, at regional levels (down to NUTS 3 level). The edition of 2013 con-
siders more than 650 variables. In this study several strata has been consid-
ered, based on size class, area status, legal status of the holding, objective
zone and farm type (INE, 2013). Therefore, the population has been divided
in 765 strata, (h=1,. . . ,765) and 23 domains or small areas, corresponding
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to NUTS III, (d=1,...,23). The overall population size (N) is 236696 agri-
cultural holdings and the sample size (n) is 23108, representing about 9,76
% of the population. Algorithms to calculate the estimates, with the excep-
tion of the EBLUP estimator, were all programmed in R by the authors.
The SEBLUP algorithm was obtained through the eblupSFH function of
the R package sae (Molina and Marhuenda, 2013). In order to measure and
compare the quality of the estimators, the coefficients of variation (CV) are
computed and shown in percentage. To see if the spatial information intro-
duced by the SEBLUP provided some improvement in the CV estimates,
in the analysis of the results we also consider the results of the EBLUP
estimator computed through the Fay-Herriot method (EBLUPFH).

3.2 Results

Results of the coefficient of variation (CV) of the five estimators are pre-
sented in Table 1.

TABLE 1. Results of the coefficient of variation (CV) of the five estimators
Estimator CV range (%) 1st Quartile Median Mean 3rd Quartile Quartile

τ̂D1(Direct1orD1) 1.63-41.21 2.99 3.99 7.14 5.83 9.32

τ̂D2
(Direct2orD2) 1.29-18-82 2.12 2.57 3.72 3.84 3.61

τ̂d,reg(Reg) 0.93-24.00 2.23 3.64 4.87 4.88 4.93

θ̂SEBLUP 1.64-44.09 3.04 3.99 7.33 5.89 9.86

θ̂EBLUPFH 1.63-39.37 2.86 3.93 6.83 5.84 8.66

The wide variation of the CV range is due to the fact that different small
areas (the NUTS III regions) differ much in terms of sample sizes. We can
see (see Figure 2) that lowest values of CV were provided by Reg (the
Direct Estimator modified by Regression) , although Direct 2 (the Direct
Estimator 2) also performed well.

4 Conclusions

With regard to modified and indirect estimators Reg, SEBLUP and EBLUP,
we found out that they present greater gains in precision when the sam-
ple size is larger and when the correlation between the dependent and
independent variables is greater. When analyzing the CV estimates of the
different estimators studied by NUTS III for one of the most important
variables, UAA (Utilized Agricultural Area), the regions of Baixo Alentejo
(184) and Alentejo Central (187) are the ones with the highest CV values
when compared with those of the other NUTS III regions. This result ends
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FIGURE 2. Graphical comparison of the estimates and boxplots of CV for the
five estimators under analysis. (Note: we introduced two extra estimators: M2,
the modified estimator and Quo, the Quotient estimator).

up harming the interpretation of the mean CV values of the estimators,
since in general the CV estimates for the other regions are much lower.
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Abstract: Hidden Markov models are popular tools for modeling time series
that are driven by latent state processes. When multiple such time series, associ-
ated with different individuals, are observed simultaneously, then independence is
commonly assumed. Here we discuss how coupled hidden Markov models, where
potential dependence between individuals is explicitly addressed, can be used to
model interaction between individuals. We provide two case studies to demon-
strate the potential of this class of models. First, we apply the model to animal
movement data of a dolphin mother and its calf. Second, we analyse the perfor-
mance of a football team and how it depends on the performance of the opposing
team.

Keywords: time series; latent variables; Markov chains

1 Introduction

The question of how individuals interact and affect each other is of much
interest in disciplines such as the social sciences, epidemiology, and ecology.
Structural econometric models (Hartmann et al., 2008) or network analysis
(Jacoby and Freeman, 2016) are two example methods used to investigate
these interdependencies. In this paper, however, we focus on situations with
the additional complexity that each individual’s observations are driven by
an underlying latent process, and the dependence between individuals man-
ifests itself in their underlying unobserved processes. For instance, in the
context of animal movement, the observed movement patterns of an ani-
mal depend on its unobserved behavioral modes, like foraging or resting,
which in turn will often depend on the behaviors exhibited by conspecifics.

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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Similarly, in sport competitions, the observed performance of a team de-
pends both on its own but also its opponent’s current form. Coupled hidden
Markov models (CHMMs) are flexible time series models for multiple time
series which assume the observations to depend on underlying interacting
state sequences. Hence, they provide an intuitive and convenient framework
for the situations considered. After introducing the basic model formula-
tion, we illustrate its use by applying it to two different data sets, first to
animal movement data, and second to football data of the German Bun-
desliga. Our preliminary results are presented in the third section.

2 Coupled hidden Markov models

Let {Yi,t}Tt=1 denote the observed time series of length T belonging to
individual i = 1, . . . , I. A CHMM assumes each of the I time series to
depend on an underlying state sequence {Si,t}Tt=1 with a finite number
of states, i.e. Si,t ∈ {1, . . . , N}. At each time point, the current state
Si,t completely determines the distribution of Yi,t. Hence, given the state
sequences, the observations are conditionally independent of each other:
Pr(Yi,t|Yi,t−1, . . . , Yi,1, Si,t, . . . , Si,1) = Pr(Yi,t|Si,t). To account for inter-
actions between the individuals, however, the future state Si,t+1 depends
not only on its current state Si,t — as would be the case if we were to
consider I separate hidden Markov models (HMMs) — but on the current
states of all I state sequences. Thus, summarising the states in the vector
St = (S1,t, . . . , SI,t),

Pr(Si,t+1|S1, . . . ,St) = Pr(Si,t+1|St) 6= Pr(Si,t+1|Si,t).
This dependence structure is displayed in Figure 1.

· · · St−1 St St+1 · · ·

Yt−1 Yt Yt+1

(hidden)

(observed)

Figure 1: Basic structure of a HMM

· · · S1,t-1 S1,t S1,t+1 · · ·

Y1,t-1 Y1,t Y1,t+1

(hidden)

(observed)

· · · S2,t-1 S2,t S2,t+1 · · ·

Y2,t-1 Y2,t Y2,t+1

(hidden)

(observed)

1

FIGURE 1. Dependence structure of a CHMM for I = 2 individuals.

The CHMM can be regarded as an HMM with an extended state space
of dimension N I , in which each state represents an I–tuple corresponding
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to the possible states of St. Hence, the corresponding transition proba-
bility matrix (t.p.m.) is of dimension N I × N I . This model formulation
has the advantage that the standard HMM machinery can be used for pa-
rameter estimation and inference, for instance numerical maximization of
the likelihood based on the forward algorithm or the use of the Viterbi
algorithm for state decoding (see, for example, Zucchini et al., 2016). The
main disadvantage of this model formulation is that the number of param-
eters grows exponentially with the number of states and individuals. The
t.p.m. of a CHMM can also be parameterized more parsimoniously, for in-
stance as a probability product (Brand, 1997) or as a mixture distribution
(Saul and Jordan, 1999). Nevertheless, these approaches are less flexible
and correspond to more restrictive dependence assumptions regarding the
interaction between individuals.

3 Case studies

3.1 Dolphin movement data

In our first case study, we model the tortuosity of a dolphin mother and
its calf, calculated across 10–second intervals, with a total sample size of
T = 6546. The tortuosity values are bounded between 0 and 1 and pro-
vide a measure of how tortuous the track of an animal is, with 1 meaning
that the animal goes straight without any turnings. To model the differ-
ent movement patterns of the interacting dolphins, we fit a CHMM, with
N = 3 (i.e. N I states in the HMM formulation of the CHMM) and beta
state–dependent distributions, using numerical maximization of the likeli-
hood. Figure 2 displays the estimated state–dependent distributions for the
dolphin mother and calf, respectively. For both animals, their 3 different
states correspond to low (1), medium (2) and high (3) tortuosity levels.
From Table 1 it can be seen that while mother and calf show a high level
of synchrony in their behavior, there are also occasional deviations: For
4.6% of the observed time points, the two individuals’ behavioral states
are classified differently. These results could be used as a starting point for
further studies of the dolphin behavior. For instance, it might be interesting
to investigate why the dolphin movement differs at these time points.

TABLE 1. Dolphin CHMM: Number of occasions on which states were active
according to the Viterbi-decoded sequence.

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

2330 85 23 46 2145 108 2 39 1768
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FIGURE 2. Histograms and estimated state—dependent distributions for the
tortuosity of the dolphin mother and calf, respectively.

3.2 Football performance data

In our second case study, we are interested in the dynamics in football
matches and how the performances of the two teams involved evolve over
time within a match. For our case study, we focus on the German football
team Bayer Leverkusen and its matches in the German Bundesliga (sea-
son 2017/2018). We assume that the performance is driven by the current
(latent) form (or momentum) of the team, which can vary throughout the
match and which may also be influenced by the form (momentum) of the
opposing team. As a performance measure we use the number of passes
at one-minute intervals. We fit a 2-state CHMM with Conway-Maxwell-
Poisson state-dependent distributions to account for possible over- and un-
derdispersion. The resulting state-dependent mean number of passes are
3.14 and 9.02 for Bayer Leverkusen, and 3.12 and 8.62 for the opposing
teams, respectively. Under the fitted model, the stationary distribution,
rounded to 2 decimal places, is δ = (0.26, 0.29, 0.45, 0.00) for states (1, 1),
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(1, 2), (2, 1) and (2, 2), respectively. As expected, it hardly ever happens
that both teams are in the state corresponding to frequent passing. The
model indicates that Bayer Leverkusen was the dominant team most of the
time, represented by the third state (2,1).

4 Discussion

Our preliminary results suggest that CHMMs are promising and convenient
tools for modeling interacting individuals, which can be used in various
areas of empirical research. The major caveat of these models is that the
number of parameters increases rapidly, such that long time series may
be needed for stable estimation. The incorporation of covariates in both
the observed and the hidden processes are straightforward and could offer
insights into how the interactions are affected by external variables.
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Abstract: We propose a Bayesian latent Ornstein-Uhlenbeck model to analyze
unbalanced longitudinal data of binary and ordinal variables, which are manifes-
tations of fewer continuous latent variables. Existing approaches are limited to
data collected at regular time intervals. Our proposal makes use of an Ornstein-
Uhlenbeck (OU) process for the latent variables to overcome this limitation. It
also allows for both non-oscillating and oscillating processes. We illustrate our
proposed model with two motivating datasets. The BelRAI dataset was obtained
from a registry on the elderly population in Belgium. We were interested in predic-
tive relationships between oral health and general health status. The ALS dataset
contains patients with amyotrophic lateral sclerosis disease. We were interested
in how bulbar, cervical, and lumbar functions evolve over time.

Keywords: Bayesian analysis; Eigenvalues; Latent variables; Ornstein-Uhlenbeck
processes.

1 Introduction

Frequently in longitudinal data, subjects are measured at irregular time
points, resulting in unbalanced data. In many cases, the outcomes are man-
ifestations of one or more underlying latent characteristics. For example,
in amyotrophic lateral sclerosis (ALS) disease, ten indicators are used to
represent three latent functions: bulbar, cervical, and lumbar. We were
interested in how the latent variables evolve over time.
The research question led to a joint framework consisting of an item re-
sponse theory model linking the responses to the latent variables and a

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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model describing continuous latent variables over time. For balanced data,
a vector autoregressive process can be fitted (e.g. Tran et al., 2019). For
unbalanced data, an Ornstein-Uhlenbeck (OU) process is a better choice
(e.g. Oravecz et al., 2016). However, this model has not been applied to
a latent structure. Moreover, current approaches are not suitable here be-
cause of assuming unrealistic constraints. We show that our approach is
able to fit the data appropriately.

2 Proposed model

2.1 Model specification

Denote Yijk the observed response for the kth item of the ith individual
at time tij where i = 1, ..., N , j = 1, ..., ni, k = 1, ...,K, ni is the number
of occasions for individual i, K is number of observed responses and N
is number of individuals. The observed items are assumed to represent R
latent variables, ξij = (ξij1, ..., ξijr, ..., ξijR)

T
, as specified by:

h(P (Yijk ≤ m)) = θkm + βTk xij + λTk ξij + bik,

where h(.) is a link function (typically a logit or probit function) and m
(0 ≤ m ≤ ck − 2) is some score of item k with ck the number of categories.
The parameters θkm and λk are item-specific location and discrimination
(factor loading) parameters, respectively. Furthermore, βk is a p×1 vector
of regression parameters and xij is a p×1 vector of covariates for individual
i at time tij . Finally, bik ∼ N(0, σ2

bk), the random effect for item k of
individual i, is incorporated to take local dependence into account (Tran
et al., 2019). The model for the latent variables is specified as follows (e.g.
Blackwell, 2003):

ξij ∼ N(µ+ e−Γdij (ξi,j−1 − µ) ,Ω− e−ΓdijΩe−ΓT dij ),
ξi1 ∼ N(µ,Ω),

where dij = tij − ti,j−1, and µ,Ω,Γ satisfy the following conditions:

The real part of each eigenvalue of Γ is positive, (1)

ΓΩ + ΩΓT is a covariance matrix,

Ω is a covariance matrix,

where eM = I+
∑+∞
j=1

Mj

j! for a square matrix M with M j = M× ...×M (j

times). We fixed µ=0 and Ω is a correlation matrix for model identification.

2.2 Eigenvalues of the drift matrix Γ

Although constraint (1) specifies that the real part of each eigenvalue of
Γ is positive, a number of proposals are limited to real eigenvalues (e.g.
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Blackwell, 2003; Oravecz et al., 2016). Assuming real eigenvalues might
facilitate computation but this assumption is unrealistic as seen in the
ALS application. In contrast, our proposal allows for both real and complex
eigenvalues. Specifically, we applied the original constraint (1) and solved
the mathematical conditions so that Γ satisfies this constraint. In short,
when R = 2, constraint (1) is replaced by the following

{
γ11 + γ22 > 0
γ11γ22 − γ12γ21 > 0

,

whereas the following was used to replace constraint (1) in case R = 3:


−γ33 − γ22 − γ11 < 0
−γ31γ13 − γ32γ23 + γ33γ22 + γ33γ11 − γ21γ12 + γ22γ11 > 0
−γ31γ12γ23 − γ32γ21γ13 + γ31γ13γ22 + γ32γ23γ11 + γ33γ21γ12 − γ33γ22γ11 < 0

,

where γij denotes the (i, j) element of Γ.

3 Application to the BelRAI and ALS dataset

3.1 BelRAI

Three binary oral health (OH) indicators: non-intact teeth, chewing dif-
ficulty, and dry mouth, and four ordinal general health (GH) scales: Ac-
tivities of Daily Living, Cognitive Performance Scale, Depression Rating
Scale, and Changes in Health, End-Stage Disease, Signs, and Symptoms
Scale, represent OH and GH status, respectively. It is of interest to de-
scribe the development of OH and GH status over time and to assess the
importance of the cross-lagged effects, i.e. the additional information that
the current OH (resp. GH) status provides on the future GH (resp. OH)
status.
The results in Figure 1 indicate that the current OH (resp. GH) status
provides additional information in predicting the future value of GH (resp.
OH) status given their current status. The cross-lagged effects from OH
to GH in the BelRAI population suggest that the presence of OH problem
can be considered as a symptom of GH problem in the future.

3.2 ALS

Amyotrophic lateral sclerosis is a progressive neurological disease that causes
a gradual degeneration and death of motor nerve cells. ALS Functional
Rating Scale was developed to monitor disease progression by measuring
clinical features. It contains ten items falling into three functions: bulbar



Tran et al. 65

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time distance (one unit = six months)

a11

a12

a21

a22

FIGURE 1. BelRAI: Estimated e−Γ∆t where a11, a22, and a12, a21 are the au-
toregressive and cross-lagged parameters, respectively.

(speech, salivation, swallowing, breathing), fine motor (or cervical) (hand-
writing, cutting, and dressing), and gross motor (or lumbar) (turning, walk-
ing, and climbing) function. Predictive relationships between these func-
tions were of interest. From the PRO-ACT database (Atassi et al., 2014), a
random subset containing 300 subject with 2911 observations were taken.
Figure 2 indicates predictive relationships between the latent functions. In
addition, when time distance changes, the orders and signs of the parame-
ters in the transition matrix e−Γ∆t also change. It is because every line in
Figure 2 oscillates. The reason is that two out of three eigenvalues of the
drift matrix are not real and therefore the process of three latent neuro-
logical functions is oscillating. In this case, assuming only real eigenvalues
is not appropriate because it eliminates the class of oscillating processes
(Kuiper and Ryan, 2018).

4 Discussion

We have introduced the multivariate OU process for analyzing the latent
continuous variables, allowing a continuous time analysis at the latent level.
Our simulation study (not shown here) and the ALS application show that
assuming real eigenvalues for the drift matrix of the OU process can lead
to biased estimates and/or misleading inference when the true process is
oscillating. Our proposal allows real and complex eigenvalues, making it
available for analyzing both non-oscillating and oscillating processes.
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FIGURE 2. Estimated transition matrix e−Γ∆t as functions of time distance (∆t)
where a11, a22, and a33 are the autoregressive parameters, and the others are the
cross-lagged parameters
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Abstract: This paper proposes a method to regularize Cox frailty models that
accommodates time-varying covariates and is based on the full likelihood. A par-
ticular advantage of this framework is the explicit modeling of the baseline hazard
in a non-linear way, e.g. via P-splines. Additionally, adaptive weights are included
to stabilize the estimation. The method is implemented in R in the function
coxlasso and will be compared to other packages for regularized Cox regression.
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1 Introduction

Cox’s well known proportional hazards model (Cox, 1972) assumes the
semi-parametric hazard

λ(t|xi) = λ0(t) exp(xT

i β) (1)

where λ(t|xi) denotes the hazard function for individual i at time t con-
ditional on covariates xi. The shared baseline hazard λ0(t) is usually not
further specified and β is a vector for p fixed effects. Estimation of the
model is typically based on maximizing the partial likelihood which has
the advantage of removing λ0(t) from the estimation of β. For the case of a
large number of predictors, the lasso penalty was incorporated into the Cox
model to enable variable selection and shrinkage (Tibshirani, 1997). Differ-
ent algorithms to fit the penalized model have been proposed by e.g. Gui
and Li (2005) using least-angle regression (LARS), Simon et al. (2011) via a
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coordinate descent algorithm, and Goeman (2010) who combines gradient
ascent optimization with the Newton Raphson algorithm.
These procedures are based on the partial likelihood which can lead to a
loss in efficiency and precision in small and moderate samples (see, e.g.,
Cox and Oakes, 1984). Considering the popularity of regularized Cox mod-
els and given that in many medical applications the sample size is often
rather small, it seems surprising that there is, to the best of our knowledge,
currently no available implementation that uses a lasso penalty within the
Cox full likelihood model. Especially for datasets with a small or moder-
ate number of observations, using the full likelihood does not drastically
increase computing time.
Despite the predominance of the partial likelihood in existing R routines,
there are (at least) two major advantages when using the full likelihood:

1. the baseline hazard can be modeled explicitly, e.g., using a basis func-
tion approach such as P-splines (see, e.g., Eilers and Marx, 1996),

2. the full likelihood model can easily be extended by a wide class of
frailty distributions including random intercepts and random slopes.

Our approach is implemented in an R function called coxlasso that in-
cludes a (adaptive) lasso penalization and can easily accommodate chang-
ing covariates, frailties, and time-varying coefficients. Currently, a working
version is directly available from the authors upon request, which will be
incorporated in the R package PenCoxFrail (Groll, 2016) soon.
Besides a small sample size, the full likelihood might become relevant when
covariates change frequently. In survival analysis we typically deal with data
consisting of a tuple (Ti, di) with di indicating whether an event happened,
i.e di = 1 if the survival time is completely observed, whereas di = 0 if this
observation is right censored. The random variable Ti can be described by
event time T̃i and censoring time Ci via Ti = min(T̃i, Ci). Since f(t) =
λ(t)S(t), we get

f(Ti, di) =
(
f(T̃i)P (T̃i < Ci)

)di
·
(
g(Ci)P (T̃i ≥ Ci)

)1−di
∝ f(Ti)

di · S(Ti)
(1−di)

=
(
λ0(Ti) exp(xT

i β)
)di exp

(
−
∫ Ti

0

λ0(s) exp(xT
i β)ds

)
.

A suitable expansion of the full likelihood over all individuals thus yields

L(λ0(t),β) =
n∏
i=1

(
λ0(ti) exp(x

T
i β)

)di exp

(
−
∫ ti
0

λ0(s)

)
ds︸ ︷︷ ︸

S0(ti)

exp(x
T
i β)

=
k∏
i=1

exp(xT
i β)∑

j∈R(t(i)) exp(xT
j
β)
·

 ∑
j∈R(t(i))

λ0(t(i)) exp(x
T
j β) ·

n∏
i=1

S0(ti) exp(x
T
i β)

 , (2)
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where t(1) < · · · < t(i) < · · · < t(k) are the event times of the uncensored
individuals, and R(t) is the set of individuals under risk at time t. The first
factor of equation (2), which is the ratio of the event probabilities of all
individuals that died at time t and the event probabilities of all individuals
at risk at that time, corresponds to the partial likelihood. Besides removing
the baseline hazard from the inference process of β, the partial likelihood
is attractive since covariate information can be easily included and it is not
affected by the censoring pattern (Efron, 1977). However, it actually is not
a real likelihood as it ignores the integral part of the full likelihood and,
hence, certain covariate information from non-failure intervals. It is thus
not based on all observations. Since the partial likelihood nearly contains all
of the information about β, the estimate β̂ is still asymptotically efficient.
Ignoring the second factor of equation (2), might not give satisfying esti-
mates if there is a lot of of information in non-failure intervals that influence
the survival outcome. In particular, time-varying covariates result in splits
of the data and could create several new, censored observations. The more
often covariates change, the more splits get neglected since the partial like-
lihood only considers the status of the covariates at the event times but
not in between.
The literature on the full likelihood for the regularized Cox model is rather
scarce and only a few approaches exist for the standard n > p case. How-
ever, none of these analyze the case of changing covariates nor provide
a readily implemented R packages. For this reason, alongside with the
coxlasso function we also provide the function coxFL, which implements
the Cox full likelihood approach and allows for changing covariates, frail-
ties, and time-varying coefficients.

2 Methodology

A Cox frailty model accounts for heterogeneity in the population and is
given by

λij(t|xij , bj) = bjλ0(t) exp(xT

ijβ), i = 1, . . . , n; j = 1, . . . , N, (3)

where individual i belongs to cluster j resulting in frailty component bj for
that particular cluster. Due to its mathematical convenience, these frailties
are often assumed to follow a gamma distribution but to allow for a more
flexible predictor structure, assuming log-normally distributed frailties is
more appropriate. Hence, we specify bj ∼ N(0,Q(θ)) with mean vector 0
and covariance matrix Q(θ), where θ is a vector of unknown parameters.
Replacing bj in the conditional hazard function in (3) with multiplicative
frailties following a multivariate log-normal distribution possibly also con-
taining random slopes, yields:

λ(t|xij ,uij ,bj) = λ0(t) exp(xT

ijβ + uT

i,jbj) ,
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where uij is a vector of covariates associated with frailties bj . An extension
to the simple predictor ηij = xT

ijβ+uT
ijbj are time-varying covariate effects

γk(t). These effects can be estimated using a B-spline representation, i.e.

γk(t) =

M∑

m=1

αk,mBm(t, d) , (4)

with αk,m = 1, . . . ,M denoting unknown spline coefficients associated with
the m-th B-spline basis function Bm(t, d) of degree d. Equivalently, the
baseline hazard can also be modeled using B-splines. In this way, it is shifted
into the predictor ηij(t) using a log(·) transformation, γ0(t) := log(λ0(t)),

where γ0(t) is again expanded in B-splines, i.e. γ0(t) =
∑M
m=1 α0,mBm(t, d).

The conditional hazard function can thus be written as

λ(t|xij , zij ,uij ,bj) = exp(ηij(t)) , (5)

with corresponding predictor

ηij(t) = xT

ijβ +

r∑

k=0

νT

ijkαk + uT

ijbj , (6)

where νijk = zijk · B(t) and zT
ij = (1, zij1, . . . , zijr) is a covariate vector

belonging to baseline hazard and time-varying coefficients γk(t). Further-
more, αT

k = (ak,1, . . . , αk,M ) are corresponding spline coefficients, where
k = 0, . . . , r indexes the baseline hazard or the k-th time varying effect.
The matrix B(t)T = (B1(t, d), . . . , BM (t, d)) captures the M basis func-
tions evaluated at time points t.
Let now αT = (αT

0 ,α
T
1 , . . . ,α

T
r ) collect all spline coefficients corresponding

to the baseline hazard and time-varying effects in case they are included.
Analogously to equation (2), estimation of (5) can be based on the full
likelihood which is given for a single cluster j by

Lj = (β,α,bj) =

Ni∏

j=1

exp(ηij(tij))
dij exp

(
−
∫ tij

0

exp(ηij(s))ds

)
. (7)

The corresponding log-likelihood can be maximized using a penalized quasi-
likelihood approach proposed by Breslow and Clayton (1993), that involves
the marginal log-likelihood given by

`mar(δ,θ) =

N∑

j=1

log

(∫
Lj(β,α,bj)p(bj |θ)dbj

)
, (8)

depending on parameter vector δT = (βT,αT,bT) and on θ, the parameters
of the covariance structure of random effects bj as specified before. The
density of the random effects is given by p(bj |θ). Following Breslow and
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Clayton (1993) and applying Laplace approximation, leads to a penalty
term bTQ−1(θ)b that is deducted from the likelihood contribution of each
cluster, i.e. the approximated log-likelihood is given by

`app(δ,θ) =

n∑

i=1

logLj(β,α,bj)−
1

2
bTQ−1(θ)b . (9)

In order to perform variable selection and shrinkage, a lasso-type penalty
is applied to linear effects while a second penalty controls the wiggliness of
the smooth baseline hazard (and of additional time-varying coefficients, if
present). Including the penalties, the log-likelihood can be written as

`pen(δ,θ) = `app(δ,θ)− Jβ(β)− Jζ(α), (10)

where Jβ(β) = ξ
∑p
l=1 wl |βl| is a lasso penalty that shrinks less important

(time-constant) fixed effects βl, l = 1, . . . , p, towards zero and is able to
exclude them from the predictor. Furthermore, ξ ≥ 0 is a tuning parameter
controlling the strength of the penalization that needs to be chosen by
an appropriate technique, e.g., K-fold cross-validation. Additionally, we

incorporate adaptive weights wl := 1/ |β̂l
(ML)| given by the inverse of the

corresponding (unpenalized) maximum likelihood (ML) estimator.
If categorical variables are present, the lasso penalty can be combined with
a group lasso penalty (see Meier et al., 2008). In this case, the categorical
variable is dummy encoded forming a group of dummies and βl collects the
corresponding coefficients of the particular group. The L2 norm of vector
βl is penalized yielding penalty

Jβ(β) = ξ

p∑

l=1

wl
√
dfl ||βl||2 ,

where dfl is the number of dummies in group l and is used to rescale the
penalty according to the dimensionality of βl. In this case the corresponding

weights have the general form wl := 1/||β̂l
(ML)||2.

Since both baseline hazard and time-varying coefficients are expanded in
B-spline basis functions, second order differences of adjacent spline coeffi-
cients αk,m are penalized in Jζ(α) to control the roughness of the smooth
functions. To determine the optimal amount of smoothing, we suggest a
mixed-model representation of the penalized spline approach allowing data
driven, fast selection. In this view, the regression spline coefficients αk that
are subject to penalization are taken to be random with corresponding ran-
dom effect distributions N ∼ (0, σ2

αk
I). The reciprocal of σ2

αk
can then be

used as an optimal smoothing parameter (see, e.g., Ruppert et al., 2003).
The estimation of the penalized likelihood in (10) is based on a Newton-
Raphson algorithm and makes use of local quadratic approximations of the
penalty terms following Oelker and Tutz (2017). Its performance will be
investigated both in simulations and a real world data application
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Abstract: The main goal of this paper is to introduce the class of simultane-
ous autoregressive models within the GAMLSS framework. This implementation
allows any or all the parameters of the distribution to be modelled as function
of the explanatory variables, while the distribution do not have to belong to the
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1 Introduction

In spatial data analysis, the data is indexed to a set of locations in space.
According to the form that this set of locations is defined, there are three
major fields of spatial statistics: geostatistical data, areal data, and point
pattern data (Banerjee et al. 2014). This paper focus on the second ap-
proach.We assume that the data is a realization of a stochastic process
where the space of variation is discrete. Each element is associated to a
geographic region (unit area). A well-known model in the field is the si-
multaneous autoregressive model (SAR), which has applications in many
fields sucha as ecological data, texture analysis and spatial econometrics.

1.1 GAMLSS

The generalized additive models for location, scale and shape (GAMLSS)
were proposed by Rigby and Stasinopolous (2005). The observations of the
response variable yi are conditional independent with probability (density)
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function f(yi|θi), conditioned on the vector θi> = (θi1, θi2, ..., θip) of p
unknown parameters. Each parameter can be modeled through different
explanatory variables or/and random effects. For k = 1, 2, 3, 4, let gk(.)
be a known monotone link function that associates θk with independent
variables. The random effect formulation of the model is given by

gk(θk) = ηk = Xkβk +

Jk∑

j=1

Zjkγjk, (1)

where the vector ηk is the linear predictor and has length n. Similarly,
θ>k =(θ1k, θ2k, ..., θnk) has the same length. The vector of the parameters
β>k = (β1k, β2k, . . . , βJ′kk) has dimension J ′k, and the matrices of covariates
Xk and Zjk are of orders n×J ′k and n× qjk. The vector γjk has length J ′k
and follows a normal distribution with γjk ∼ Nqjk(0,G−

jk). The variance-

covariance matrix G−jk and the precision matrix qjk×qjk, Gjk, is a function
of a vector of hyperparameters λjk.

2 Gaussian Markov random fields

As shown by Rue and Held (2005), consider γ = (γ1, . . . , γn)> a random
vector normally distributed with mean µ and variance Σ. Let G=(V,E)
be an non-directed graph, with V = {1, . . . , q}, the set of vertices or nodes
representing the q-area units and E is the set of edges that connect these
areas. Hence, define that γ ∈ Rn will be a Gaussian Markov random field
(GMRF) with respect to the graph G if its density function is given by

π(γ) = (2π)−
n
2 |Σ|−1/2 exp(−1

2
(γ − µ)>(Σ−1)(γ − µ)), (2)

and Σ−1
ij 6= 0 if and only if {i, j} ∈ E for all i 6= j. Hence, the symmetric

precision matrix Σ−1 informs which areas are neighbors, given a crite-
rion. For Σ−1

ij = 0, we state that i and j are conditional independent, by
the Markov property. The SAR Models, introduced by Whittle (1954), are
GMRF models with a density function given by equation 2. They defined a
spatial process simultaneously in R2 on a countable grid. This model with
zero mean is given as follows:

γi =

q∑

j=1

bijγj + εi, i = 1, . . . , q,

which we can written in matrix form by

(I−B)γ = ε,

where I is a q × q identity matrix, ε ∼ N(0,Λ), B is a spatial depen-
dence matrix with elements bij , denoting the dependence between the area
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units, and γ ∼ N(0, (I − B)−1Λ(I − B>)−1). This can be implemented
within GAMLSS through random effects form given in (1). The equiva-
lence between inverse penalty matrix of the GAMLSS and the precision
matrix of SAR models is: G−1 = (I − B)−1Λ(I − B>)−1 = K−1. Thus,
γ ∼ N(0, λK−1).
This is possible by writing the covariance matrix of the SAR model as co-
variance matrix of conditional autoregressive models (CAR) (Besag, 1974),
as described in Hoef et al. (2018). The equivalence relation between these
two occurs when the matrices of variances of these models are equal, and a
first order SAR model is equivalent to a third order CAR model. For details
about the implementation of CAR models in GAMLSS, see De Bastiani et
al. (2018). Thus, γ is a intrinsic GMRF, and the penalty matrix K has
dimension q × q and has elements:

Ku,v =





0, if u and v if they are not neighbors,

−1, if i and j are neighbors ,

nu, the number of neighbors of u,∀u = v.

The penalty matrix represents the pseudo-inverse of the covariance matrix
of the CAR model. The structure of the penalty matrix for the two models is
the same. The difference is in the neighborhood order for these two models.
In the SAR model, the penalty matrix will be less sparse than in the CAR
model.

3 Modeling Gini index with spatial dependence

The income inequality as measured by the Gini index in 2010 in the State
of Pernambuco in Brazil is analysed. The variables considered are:

Gini: the index of gini each city of Pernambuco;

Pibcap: the gross domestic product per capita municipality;

TX DESEMP: the proportion of unemployed people;

IDoJOV: the ratio between the elderly population and young people;

TX ANALF: the proportion of illiterate people;

PBF: a benefit received by poor families;

BPC: a retirement benefit for poor people.

We use the gamlss package in R to select variables and the response distri-
bution based on the Generalized Akaike Information Criterion (GAIC). The
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distribution chosen was the zero-inflated beta (BEZI) distribution (available
in package gamlss.dist) and the final chosen model is given by

Y ∼ BEZI(µ̂, σ̂, ν̂),

log(
µ̂

1− µ̂ ) = 0.088− h11(Pibcap) + h21(PBF) + s(city)

log(σ̂) = 1.241 + 0.2433Pibcap + 7.93IDoJOV + h12BPC

log(
ν̂

1− ν̂ ) = −28.53.

In the above equations h denotes penalized splines and s is a spatial SAR
smoothing function. The variables TX ANALF and TX DESEMP were not statis-
tically significant in the fitting. In relation to the modeling of the dispersion
parameter, the increase of Pibcap in 1 unit, with everything more constant,
increases the dispersion in 1.275 [= e0.2433]. If the number of older people
in relation to that of young people more dispersed is the distribution of the
coefficient of Gini. The variable PBC has a positive impact on log(σ̂). The
above model was selected with GAIC equal to −738.1156.
Figure 1 shows the city effect on log( µ̂

1−µ̂ ), highlighting higher values for
the economically richest cities in the state. Figure 2 shows the worm plot,

0.45
0.50

0.55
0.60

0.65
0.70

FIGURE 1. The fitted spatial effect for µ for the chosen model

introduced by Buuren and Fredriks (2001), of the residuals of the estimated
model. We verified in the figure that the ordered residuals are close to their
expected values due to their proximity to the horizontal line.

4 Conclusion

We show in this work an innovative approach to modeling areal data that is
configured with SAR covariance structure within the GAMLSS framework.
Also, we show an important way of employing this approach in the field of
spatial econometrics and in the Gini coefficient modelling.
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FIGURE 2. Worm plot from the of the fitted BEZI model.
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Abstract: Model based small area estimation relies on mixed effects regression
models that link the small areas and borrow strength from similar domains. The
variability of the random effects, while accounting for lack of fit, affects uncer-
tainty of both point and interval estimators of small area means. Random effects
models play an important role in model-based small area estimation. Indeed,
random effects account for any lack of fit of a regression model for the popu-
lation of small areas on a set of explanatory variables. In the presence of good
covariates, small variation of the random small area effects is expected, but when
measurement error is present it has been proved that parameter estimates may be
dramatically biased and the variability of the random effects and, consequently,
of the small area means significantly increases. While the random effect may im-
prove the adaptivity and flexibility of the Fay-Herriot model, it also increases the
uncertainty of both point and interval estimators of small area means. Because of
that, several tests and variable selection procedures have been developed in order
to verify the presence or not of the random effects in such models. Adopting a
fully Bayesian approach, we model the measurement error through a mixture that
allows us, using spike and slab priors, to infer the presence or not of measurement
error in the covariates. We empirically evaluate the accuracy of the estimates in
different simulation scenario. We also apply the proposed procedure to the well
known Battese data and to data from the 2010 Italian household budget survey
(Banca d’Italia, Indagine sui bilanci delle famiglie italiane).
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1 Small area estimation and measurement error
models

In the analysis of survey data, growing interest in specific subpopulations,
obtained by breakdown of the population according to socio-demographic
or geographic variables introduces unplanned domains (small areas), char-
acterized by small -or even zero- sample sizes. Design-based estimators may
have unacceptably large variances for such domains; small area estimation
(Rao and Molina, 2015) defines estimation procedures that increase the
effective sample size using sample information observed in other areas or
previous periods. Mixed effects regression models are often introduced to
this aim; random effects allow to capture the variation of the small area
means not accounted for by the covariates. Area level small area mod-
els relate direct estimates to suitable auxiliary variables that are available
from other surveys and administrative records; unit-level models relate the
unit values of the study variable to suitable auxiliary variables with known
area means. To obtain reliable model-based small area estimates, the avail-
ability of good covariates, implying small variation of the random small
area effects, is crucial. However one may define a good model with poor
covariates because they are affected by measurement error, an ubiquitous
problem (Carroll et al., 2006) also studied within the small area literature
(see Ghosh et al., 2006, Arima et al., 2015 and references therein).
Denoting by uppercase letters the variables observed with error, and by
lowercase letters the corresponding latent values, the measurement error
model assumes that the covariate xi (i = 1, ..., n) is not available and
that we observe r ≥ 1 replicates Xij = xi + ηij j = 1, ..., r, with ηij ’s
independent and identically distributed errors with zero mean.
Suppose there are m areas and let Ni be the known population size of
area i. We define Yij (i = 1, ...,m and j = 1, ..., ni) the response variable
collected for the j−th individual in the i−th area and Xij an auxiliary
variable measured with error. Goal is to predict the small area means Γi =
1
Ni

∑Ni
j=1 Yij given the available information.

Ghosh et al. (2006) consider the following model

Yij = θi + εij , εij ∼ N(0, σ2
e) (1)

θi = β0 + β1xi + vi, vi ∼ N(0, σ2
v) (2)

Xij ∼ N(xi, σ
2
η), xi ∼ N(µx, σ

2
x) (3)

Under (1)–(3) the expected value of the variable of interest given (β, ui, xi)
is θi; assuming no selection bias and that the auxiliary information is avail-
able for each area, prediction of Γi can be based on prediction of θi.
Ghosh et al. (2006) derived a predictor for Γi based on the expected re-
sponse on the Ni−ni unsampled units, conditional on the unknown param-
eters and the observed sample, denoted as Y (1); the shrinkage factors are
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Bi = σ2
e/[σ

2
e + ni(σ

2
u + β2σ2

x)]. The empirical Bayes predictor is obtained
by replacing the unknown model parameters with their estimators.
In the presence of poor covariates, the variability of the random effects in-
crease, with shrinkage to the sampling component of the small area estima-
tor. Correcting for measurement error reduces the random effects variability
and improves the resulting estimates, provided the induced uncertainty is
small compared to the sampling variation.
Datta and Mandal (2015) propose an area-level mixture model where the
inclusion of the random component depends on the area-specific lack of
fit of the model; this is obtained through a ‘spike and slab” distribution
assigned to the random small area effects, that are given probability p to
be present in the model for the i-th area.

2 Proposed model and application

Working on the the Ghosh et al. (2006) model just described, we propose a
unit-level small area model with measurement error in auxiliary variables
that, borrowing from Datta and Mandal (2015), includes a “spike and slab”
distribution for modelling the inclusion of the covariate measured with
error. For greater generality, we also include a set of area-level covariates
Wi measured without error. The hierarchical Bayes representation of our
model is given as follows:

Yij = β0 + β1zi + β2Wi + vi + εij vi ∼ N(0, σ2
v), εij ∼ N(0, σ2

e)

zi = (1− δ)X̄i + δxi

where xi ∼ N(µx, σ
2
x), Xij ∼ N(xi, σ

2
η) and P (δ = 1) = p = 1− P (δ = 0).

In other words, conditional on δ, the auxiliary variable X is modelled with
or without error. Indeed, if δ = 0, then zi equals the area-level mean of
the observed covariate X̄i; on the other hand, when δ = 1, the observed
covariate is measured with error as Xij ∼ N(xi, σ

2
η), where σ2

η defines the
variability of the measurement error and xi ∼ N(µx, σ

2
x) is the true latent

value. Indeed, the prior distribution on zi assigns a positive mass (1−p) at
X̄i and spreads the remaining mass p according to a normal distribution
centred at true unknown value of the covariate X, xi.
Prior distributions for all unknown parameters are specified as in Ghosh et
al. (2006): independent flat normal distributions have been specified (µβk =
0 and σβk = 105, k = 0, 1, 2) for regression parameters, and independent flat
inverse gamma distributions have been specified for all variance parameters
with shape and scale parameters both equal to 0.001. With respect to p, we
propose to specify a Beta prior. In many small area problems, it is likely
to have some information about the measurement error mechanism that
can be easily elicited in the specification of the parameters of the Beta
distribution.
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According to the model specification in (1), (2) and (3), after integrating
out v1, ..., vm and δ from the joint density of (Yij , vi, δ,Xij), we get, con-
ditional on the unknown parameters, that Yi1, ..., Yini are independently
distributed as a two-component mixture of normal distributions, where a
positive mass (1− p) is assigned to the model with no measurement error
and the remaining mass p is spread to the model involving the measurement
error.
While small area means will be estimated via Gibbs sampling, we study
the conditional small area mean θ̃i, given the model parameters and the
observed data Y (1). By direct calculation,

θ̃i(β, σ
2
v, σ

2
e , Y

(1)) = (1−π)(B(β0+β1X̄i)+(1−B)ȳi)+π(B̃(β0+β1µx)+(1−B̃)ȳi)

where B =
σ2
e

σ2
e+niσ2

u
, B̃ =

σ2
e

σ2
e+ni(σ2

u+β2
1σ

2
x)

and π is the conditional proba-

bility that δ = 1 (that is, measurement error is present), π = p
p+(1−p)A ,

A = γ−
n
2 e
− 1

2

(∑m
i=1

∑ni
j=1

(yij−β0−β1X̄i−β2Wi)
2

σ2
e+σ2

u
−
∑m
i=1

∑ni
j=1

(yij−β0−β1µx−β2Wi)
2

σ2
e+ni(σ

2
u+β2

1σ
2
x)

)

with γ =
σ2
e+ni(σ

2
u+β2

1σ
2
x)

σ2
e+σ2

u
.

From the expression above, it can be easily grasped that, if the residual
sum of squares (SSE) of the measurement error model increases, then the
probability of belonging to the model with no measurement error increases.
Moreover, the weight of the SSE of the measurement error model depends
on the variances σ2

e and σ2
v but also on β2

1σ
2
x, that is on the size of the effect

of the covariate measured with error penalized by its variability.
We perform an extensive simulation study where we compare the perfor-
mance of the proposed model with the model ignoring the measurement
error and the model accounting for the measurement error, computing the
mean squared error of the estimated small area means. The proposed model
performs very similarly to the model ignoring the measurement error when
the measurement error is very small and the probability p is coherently
estimated very close to 0. When the measurement error is present, the pro-
posed model performs very similarly in terms of parameter estimates to the
model accounting for measurement error: however, small area predictions
obtained with the proposed model show smaller variability.
A real data application has also been performed using data from the 2010
Italian household budget survey (Banca d’Italia, Indagine sui bilanci delle
famiglie italiane). Also in this case, we conclude that small area predictions
obtained with the proposed model gain is smaller variability with respect
to the model accounting for measurement error.
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Abstract: Inference for continuous time multi-state models presents considerable
computational difficulties when the process is only observed at discrete time
points with no additional information about the state transitions. In particular,
when transitions between states may depend on the time since entry into the
current state, and semi-Markov models should be fitted to the data, the likelihood
function is neither available in closed form. In this paper we propose a Markov
Chain Monte Carlo algorithm to simulate the posterior distribution of the model
parameters.

Keywords: Markov models; Metropolis-Hastings; Weibull distribution.

1 Introduction

Let {X(t), t ≥ 0} be a continuous time multi-state process with state space
S = {1, 2, . . . , S}. Models for continuous time multi-state process X(t) can
be defined via the transition intensity functions

qrs(t,Ft) = lim
δt→0

P{X(t+ δt) = s|X(t) = r,Ft}
δt

representing the instantaneous probability of a transition from state r to
state s at time t when Ft is the past history up to time t. Considering

P{X(t+ δt) = s|X(t) = r,Ft} =

{
γrsδt+ o(δt) s 6= r
1 + γrrδt+ o(δt) s = r

(1)

where γrs ≥ 0 and γrr = −∑s6=r γrs = −γr, we have Markov continuous
time model. In the semi-Markov models, the transition intensity functions

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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also depend on the time spent in the current state, that is

qrs(t,Ft) = lim
δt→0

P{X(t+ δt) = s|X(t) = r, T ∗ = t− u}
δt

where T ∗ denotes the entry time in the last state assumed before time t.
Setting

P{X(t+δt) = s|X(t) = r, T ∗ = t−u} =

{
qrs(u)δt+ o(δt) s 6= r
1−∑l 6=r qrl(u)δt+ o(δt) s = r

where the expressions qrs(u) represent the cause-specific hazard functions,
we describe the whole process X(t). In fact, let Fr(u) be the distribution
with hazard function F ′r(u)/(1 − Fr(u)) =

∑
l 6=r qrl(u). Consider prs =∫∞

0
qrs(u)(1−Fr(u))du and Frs(u) = 1

prs

∫ u
0
qrs(v)(1−Fr(v))dv, for s 6= r.

Then, X(t) is the result of the state sequence generated by the Markov
chain with transition probabilities prs and sojourn times depending on the
departure and arrival states generated independently with distributions
Frs. To specify the functions qrs(u) we can also proceed directly by fixing
the transition probabilities prs and the conditional sojourn distributions
Frs.
In this paper we assume that the sojourn time is Weibull distributed with
density f(u; γr, αr) = γrαr(γru)αr−1e−(γru)αr and does not depend on
the exit stage. The model parameters are then θ = (p, γ, α) with p =
(p1, . . . , pS) comprising the transition probabilities pr = (pr1, . . . , pr r−1,
pr r+1, . . . , prS) with

∑
s6=r prs = 1, γ = (γ1, . . . , γS) representing the rate

parameters and α = (α1, . . . , αS) representing the shape parameters.

2 Inference for semi-Markov models

Inference for the model parameters is straightforward when the whole pro-
cess trajectory x(t) is observed on the interval [0, T ]. Let s = (s0, s1, . . . , s`)
be the state sequence and let w = (w0, w1, . . . , w`) be the times in which

the state transitions occur. Moreover let nrs =
∑`−1
j=0 I(sj = r, sj+1 = s)

be the transition counts, nr =
∑
s nrs be the total number of visits of the

state r and let dr = (dr1, . . . , drnr ) be the set of sojourn times wj+1 − wj
into the state r with ds`ns` = T − w`. Then the density of (s, w) is

p(s, w|θ) =
∏

rs

pnrsrs

∏

r

αnrr γαrnrr




nr∏

j=1

drj



αr

e−γ
αr
r

∑nr
j=1 d

αr
rj × 1

αs`γ
αs`
s`

d
αs`
s`ns`

where the last factor is due to the truncation of the sojourn time for the
last visited state.
Now suppose to observe the trajectory x(t) only at fixed points so that
the state sequence s and the transition times w are not available. Let
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y = (y0, y1, . . . , ym) be the observed states at times 0 = t0 < t1 < . . . < tm.
Note that the observation times can be irregularly spaced. Suppose also
that they are non-informative for the underlying process. In this case,
apart from the specific case of the phase-type distributions, e.g. Titman
and Sharples (2010), the likelihood function for the semi-Markov processes
is not analytically available and to make inference only numerical or ap-
proximate solutions have been proposed (Titman, 2014, Tancredi 2019).
For discretely observed data, Hobolth and Stone (2009) showed how to sim-
ulate the whole trajectory x(t) conditional on the observed states y from
a Markov process, that is when αr = 1 ∀r. This way they were able to re-
cover the vectors s and w. Their approach was based on the uniformization
technique. To perform Bayesian inference, here we propose to embed their
approach in a Metropolis-Hastings step to simulate the posterior distribu-
tion π(s, w|y) under the semi-Markov assumption.
In fact suppose to draw (s, w) from the conditional distribution of (s, w|y)
assuming that x(t) is a realization from a Markov process with rates γ̃. The
corresponding proposal density is

qM (s, w|y) =
πM (s, w)

πM (y)
∝
∏

rs

p̃nrsrs

∏

r

e−γ̃r
∑nr
j=1 drj × 1

γ̃s`

where p̃rs = γ̃rs/γ̃r. Employing an independent Metropolis-Hastings algo-
rithm, the proposal (s′, w′) is accepted with probability

min

{
1,
π(s′, w′|y)qM (s, w|y)

π(s, w|y)qM (s′, w′|y)

}

as a new value of the chain, where

π(s′, w′|y)

π(s, w|y)
=

∏
rs p

n′rs
rs

∏
r α

n′r
r γ

αrn
′
r

r

(∏n′r
j=1

d′rj

)αr−1

e
−γαrr

∑n′r
j=1

d′αr
rj αs`

γα
s`

s`
d
αs`
s`ns`∏

rs p
nrs
rs

∏
r α

nr
r γ

αrnr
r

(∏nr
j=1

drj

)αr−1
e
−γαrr

∑nr
j=1

d
αr
rj α

s′
`′
γα
s′
`′

s′
`′

d′
α
s′`
s′
`′n
′
s′
`′

and

qM (s, w)

qM (s′, w′)
=

∏
rs p̃

nrs
rs

∏
r e
−γ̃r

∑nr
j=1 drjγs′

`′

∏
rs p̃

n′rs
rs
∏
r e
−γ̃r

∑n′r
j=1 d

′
rj γ̃s`

.

When the parameters θ are unknown we can simulate the posterior dis-
tribution π(θ, s, w|y) by alternating the simulation of (s, w|y, θ) via the
Metropolis-Hastings step described above and the simulation of (θ|s, w, y).
The latter can be obtained by Gibbs and Metropolis steps accordingly to
the prior distribution for the model parameters and their parameteriza-
tion. Note also that the proposed algorithm can be easily generalized to
handle models with absorbing states and panel data configurations where
a set of observed states yi = (yi0, yi1, . . . , yimi) at the follow-up times
(ti0, ti1, . . . , timi) is available for i = 1, . . . , n, i.e. for each sample unit.
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FIGURE 1. Breast cancer data: traces and posterior distributions for the param-
eters α1 and α2.

3 Application

We consider a panel data set comprising 37 women with breast cancer
treated for spinal metastases; see De Stavola (1988), Davison (2003) where
these data have been used to fit Markov models. The ambulatory status of
the women, defined as ability to walk unaided or not, was recorded when
the treatment began and then 3, 6, 12, 24, and 60 months after treatment.
The three states are: able to walk unaided (1) unable to walk unaided (2)
and dead (3).
We fitted the semi-Markov Weibull model with death as an absorbing state.
The model parameters are θ = (p12, p13, p21, p23, γ1, γ2, α1, α2). Figure 1
shows the traces of the Metropolis-Hastings algorithm and posterior distri-
butions for the shape parameters α1 and α2 under a vague prior distribution
for θ. Posterior mean and standard deviations for all the model parame-
ters are reported in Table 1. The results are similar to those reported in
Tancredi (2019) where an approximate Bayesian computation (ABC) al-
gorithm have been proposed to perform Bayesian inference. In particular
note that both the posterior means of the shape parameters are less than
1 suggesting that the hazard of a transition is decreasing with time for
both the states. Anyway the corresponding 95% credible intervals equal
to [0.51, 1.17] and [0.38, 1.07] do not provide substantial evidence for this
pattern. An extended version of this paper will provide more details about
the MCMC algorithm and the real data application where the results of
the MCMC algorithm will be compared with those of the ABC approach.
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TABLE 1. Breast cancer data: posterior mean and standard deviation for the
model parameters.

p12 p13 p21 p23 γ1 γ2 α1 α2

E(·|y) 0.87 0.13 0.20 0.80 0.14 0.36 0.80 0.68
SD(·|y) 0.11 0.11 0.10 0.10 0.05 0.21 0.17 0.18
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Abstract: In population and actuarial sciences, time-trends of summary mea-
sures (such as life expectancy or the average number of children per woman) are
easy to interpret and predict. Most summary measures are nonlinear functions of
the vital rates, the key variable we usually want to estimate and forecast. Further-
more smooth outcomes of future age-specific vital rates are desirable. Therefore,
optimization with nonlinear constraints in a smoothing setting is necessary. We
propose a methodology that combines Sequential Quadratic Programming and a
P -spline approach, allowing to forecast age-specific vital rates when future values
of demographic summary measures are provided. We provide an application of
the model on Italian mortality and Spanish fertility data.

Keywords: Vital rates forecast; Smoothing; Constrained nonlinear optimization;
Summary measures.

1 Introduction

Future mortality and fertility levels can be predicted either by modelling
and extrapolating rates over age and time, or by forecasting summary mea-
sures, later converted into age-specific rates. The latter approach takes ad-
vantage of the prior knowledge that demographers and actuaries have on
possible future values of measures such as life expectancy at birth and to-
tal fertility rate. Among others, this methodology has been lately adopted
by the United Nations (Ševč́ıková et al., 2016). In this paper, we propose
a model to derive future mortality and fertility age-patterns complying
with projected summary measures. Unlike comparable approaches, we as-
sume only smoothness of future vital rates, which is achieved by a two-
dimensional P -spline approach as in Currie et al. (2004), and we allow con-
straints to multiple series of summary measures. Since these measures are

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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commonly nonlinear functions of the estimated penalized coefficients, La-
grangian multipliers cannot be directly implemented. We hence opted for
a Sequential Quadratic Programming (SQP) procedure (Nocedal & and
Wright, 2006) to perform the associated constrained nonlinear optimiza-
tion. We illustrate our approach with two data sets. We forecast mortality
of Italian females, based on future life expectancy predicted by UN World
Population Prospects (2017) and a future trend of a lifespan disparity mea-
sure obtained by time-series analysis. We also forecast Spanish fertility con-
strained to future values of total fertility rates, mean and variance of age
at childbearing, derived by time-series analysis.

2 Model on Italian mortality data

For ease of presentation, we formulate the model on mortality data. We
suppose that we have deaths, and exposures to risk, arranged in two ma-
trices, Y = (yij) and E = (eij), each m × n1, whose rows and columns
are classified by age at death, a, m × 1, and year of death, t1, n1 × 1,
respectively. We assume that the number of deaths yij at age i in year j
is Poisson distributed with mean µij eij . Forecasting aims to reconstruct
trends in µij for n2 future years, y2, n2 × 1.
It is common practice to summarize mortality age-patterns by comput-
ing measures such as life expectancy at birth (e0) and lifespan disparity
measures. Time-trends of these summary measures are often regular and
well-understood. Forecasting these time-series is therefore an easier task.
Figure 1 (top-left panel) presents observed e0 for Italian females from 1960
to 2016 along with the medium variant up to 2050 as computed by the UN.
A second constraint is given by future values of e†, a lifespan disparity mea-
sure defined as the average years of life lost in a population attributable to
death (Vaupel & Canudas Romo, 2003). Future values of this measure are
obtained by conventional time-series models and portrayed in the top-right
panel of Figure 1. Future mortality patterns, both by age and over time,
must adhere to these predicted trends.
We arrange data as a column vector, that is, y = vec(Y ) and e = vec(E)
and we model our Poisson death counts as follows: ln(E(y)) = ln(e) +η =
ln(e) + Bα , where B is the regression matrix over the two dimensions:
B = In1⊗Ba, with Ba ∈ Rm×ka . Over time, we employ an identity matrix
of dimension n1 because we will incorporate a constraint for each year. Over
age, Ba includes a specialized coefficient for dealing with mortality at age
0. In order to forecast, data and bases are augmented as follows:

Ĕ = [E : E2] , Y̆ = [Y : Y2] , B̆ = In1+n2
⊗Ba , (1)

where E2 and Y2 are filled with arbitrary future values. If we define a
weight matrix V = diag(vec(1m×n1

: 0m×n2
)) , the coefficients vector α
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FIGURE 1. Top panels: Actual, estimated and forecast life expectancy at birth
and lifespan disparity measure by United Nations and time-series, 2D P -splines
and the SQP+2D P -splines. Bottom panels: Mortality in 2050 described by log–
hazards and associated densities (ages 50+) by 2D P -splines and the SQP+2D
P -splines. Italian females, ages 0-105, years 1960-2014, forecast up to 2050.

can be estimated by a penalised version of the iteratively reweighted least
squares algorithm:

(B̆TV W̃ B̆ + P )α̃ = B̆TV W̃ z̃ , (2)

where a difference penalty P enforces smoothness behaviour of mortality
both over age and time. Outcomes from this approach in terms of life
expectancy and e† are depicted with a dashed line in Figure 1 (top panels),
and departures from the UN and time-series projected values are evident.
Both life expectancy and average years of life lost are nonlinear function of
the coefficients vector α. For a year j and associated ka coefficients αj , we
denote mortality by µj = exp(Baαj). We can write our summary measures
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as follows

e0(αj) = 1T

m exp[C µj ] + 0.5 (3)

e†(αj) = − exp[C µj ]
T Cµj

where C is a (m×m) lower triangular matrix filled only with -1.
Constrained nonlinear optimization is therefore necessary and a SQP ap-
proach is implemented. Let denote with N0 and N † the (kan2×n2) matri-
ces with block-diagonal structures containing derivatives of (3) with respect
to αj for j = n1 + 1, . . . n1 + n2:

∂e0(αj)

∂αj
= 1T

mdiag[exp(Cµj)]C diag(µj)Ba (4)

∂e†(αj)
∂αj

= −BT

a {CT[Cµj ◦ exp(Cµj)] ◦ µj}+

−BT

a {[CT exp(Cµj)] ◦ µj} ,
where ◦ represents element-wise multiplication. Target life expectancy and
lifespan disparity for future years are given by n2-vectors e0

T and e†T.
Solution of the associated system of equations at the step ν + 1 is given by

[
αν+1

ων+1

]
=



Lν : H0

ν : H†ν
H0T
ν : 0n2×n2

: 0n2×n2

H†Tν : 0n2×n2
: 0n2×n2



−1 

rν −Lναν
e0

T − e0(αν)

e†T − e†(αν)


 ,

(5)
where L and r are left- and right-hand-side of the system in (2), and

matrices H0 =
[
0kan1×n2

: N0
]T

and H† =
[
0kan1×n2

: N †
]T

. Vector of
ω denotes the current solution of the associated Lagrangian multipliers for
both set of constraints.
Future values for e0 and e† forecast by the proposed method are exactly
equal to the UN and time-series values (Figure 1, top panels). The bottom
panels show the forecast mortality age-pattern in 2050: the shape obtained
by the suggested approach is not a simple linear function of the plain P -
splines outcome, and differences are evident by looking at the associated
age-at-death distributions.

3 Spanish Fertility Data

We forecast Spanish fertility using three commonly-used summary mea-
sures: Total Fertility Rate describing average number of children per women
in a given year, and mean and variance of childbearing age which measure
fertility shape over age. In formulas:

TFR(αj) = 1T

m µj (6)

MAB(αj) = µTj (a+ 0.5) / TFR(αj)

V AB(αj) = µTj (a+ 0.5)2 / TFR(αj)−MAB(αj)
2 .
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We forecast trends of these measures by time-series analysis. We then
smooth and constrain future fertility age-patterns to comply forecast val-
ues of (6) as in (5). Summary measures as well as fertility rates in 2050 are
presented in Figure 2. Differences between proposed approach and plain 2D
P -splines are clear. Whereas P -splines blindly extrapolate previous trends
mainly accounting for the last observed years, the proposed approach en-
forces future age-patterns to adhere combinations of summary measures,
guiding future fertility toward demographic meaningful trends.

Total Fertility Rate over time
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FIGURE 2. Top and left-bottom panels: Actual, estimated and forecast Total
Fertility Rate, Mean and Variance in childbearing age by time-series analysis, 2D
P -splines and the SQP+2D P -splines. Right-bottom panel: Age-specific fertility
rate in 2050 by 2D P -splines and the SQP+2D P -splines. Spain, ages 12-55, years
1960-2016, forecast up to 2050.
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4 Concluding remarks

In this paper, we combine smoothing models (P -splines) and optimization
with nonlinear constraints (Sequential Quadratic Programming) to fore-
cast vital rates when future values of demographic summary measures are
provided.
We envisage further applications. Forecast of vital rates for partially com-
pleted cohorts is often relevant in population studies. For instance, final
fertility history of a given cohort may be hypothesized though age-pattern
is not yet observed and its estimation will be necessary. We also plan to
adopt our approach to reconstruct demographic scenarios which are con-
ventionally based on summary measures.
From a methodological perspective, future work will be realized to incor-
porate uncertainty and to objectively select the amount of smoothness in
future mortality and fertility age-patterns.
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Iain Currie1

1 Heriot-Watt University, UK

E-mail for correspondence: I.D.Currie@hw.ac.uk

Abstract: The forecasting of human mortality is an import topic for providers
of pensions and care of the elderly. Many models of mortality are not identifiable
so parameter constraints are used to obtain parameter estimates that can be
used for forecasting. We show that when an ARIMA model is used to forecast
parameter estimates the resulting forecasts of mortality are invariant with respect
to the choice of constraints. These results remain true when some model terms
are smoothed. We illustrate our results with Portuguese data.

Keywords: Forecasting; Identifiability; Invariance; Mortality.

1 Introduction

The mortality of an individual depends on their current age, the current
year and their year of birth (among other risk factors). These determinants
are generally known as the age effect, the period effect and the cohort ef-
fect. A problem of major interest to the providers of pensions and care of
the elderly is the forecasting of mortality. In the financial world the usual
approach is to construct a model in terms of the age, period and cohort ef-
fects. The model is fitted to appropriate data, the period and cohort effects
are forecast, and a forecast of mortality is obtained.
However, most such models are not identifiable and it is not clear what
exactly is being forecast. For example, Clayton and Schifflers (1987) in a
carefully argued paper “doubt the wisdom” of such forecasting. Neverthe-
less the method does give plausible answers that are consistent across a
range of models. Our purpose here is to try to explain why this is so.
We use Portuguese mortality data downloaded from the Human Mortality
Database on December 18, 2018. We have the number of deaths dx,y and
the corresponding central exposed to risk ex,y for ages 50 to 90 and years
1970 to 2015. For simplicity we will index the ages by xa = (1, . . . , na)T, the

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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years by xy = (1, . . . , ny)T and the years of birth by xc = (1, . . . , nc)
T where

nc = na + ny − 1 is the number of distinct cohorts. With this convention
age x has index i = x−min(x)+1 and year y has index j = y−min(y)+1.
The oldest cohort in the first year is indexed one; thus, the cohort index
for age x in year y is na − i+ j. We suppose that the number of deaths at
age x in year y follows a Poisson distribution P(ex,yλx,y) where λx,y is the
force of mortality or hazard of death at age x in year y. With our data we
have na = 41, ny = 46 and nc = 86.
The plan of the paper is: section 2 describes our method, section 3 gives
an example and section 4 contains some concluding remarks.

2 Method

We consider a generalized linear model or GLM with model matrix X, n×
p, n > p and rank p− q where q ≥ 1. We denote the vector of parameters
by θ. Since X is not of full rank θ is not identifiable. However, there exists
a matrix H, q × p, with rank q such that Hθ = 0. Now, subject to the
condition that Hθ = 0, we do have a unique estimate of θ. We refer to H
as a constraints matrix and we note that H is not unique.
We will use the P -spline system of smoothing when we wish to smooth
certain parameters in our models; see Eilers and Marx (1996) for a general
introduction and Currie et al. (2004) for details in our present application.
We denote the penalty matrix of the P -spline system by P .
Currie (2013) generalized the Nelder and Wedderburn (1972) algorithm
for estimation of θ in a GLM. The following is a scoring algorithm for
estimation of θ subject to (a) the constraint Hθ = 0 and (b) smoothing
via the penalty matrix P

(
XTW̃X + P : HT

H : 0

)(
θ̂
ω̂

)
=

(
XTW̃ z̃

0

)
; (1)

here W̃ is the diagonal matrix of weights, z̃ is the so-called working variable
and ω̂ is an auxiliary variable. If a canonical link is used then (1) is a
Newton-Raphson scheme.
Let θ̂i be the maximum likelihood estimate of θ under the constraintHiθ =
0, i = 1, 2. The fitted values are invariant with respect to the choice of
constraints so Xθ̂1 = Xθ̂2. We are interested in the relationship between
θ̂1 and θ̂2. This is characterized by the null space of X which we define as

N (X) = {v : Xv = 0}. (2)

With this notation, θ̂1 − θ̂2 ∈ N (X).
The idea is to use two constraint systems: the first will be a system used in
the literature, a standard system, and the second will be a random system.
We will then use the null space of X to show that forecasts of mortality
under these two systems are also invariant when an ARIMA model is used
to forecast.
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3 Example

One popular model for forecasting mortality in the financial world is the
age-period-cohort model. We have

log λi,j = αi + κj + γna−i+j , i = 1, . . . , na, j = 1, . . . , ny, (3)

where i is the age of death, j is the year of death and na−i+j is the year of
birth. Let α = (α1, . . . , αna)T, κ = (κ1, . . . , κny )T and γ = (γ1, . . . , γnc)

T;
let θ = (αT,κT,γT)T. Model (3) has na +ny +nc parameters but the rank
of its model matrix is na + ny + nc − 3 so three constraints are required to
give a unique estimate of θ. One common or standard set of constraints is

ny∑

1

κj =

nc∑

1

γc =

nc∑

1

cγc = 0; (4)

see Cairns et al. (2009) for example. We also consider a set of random
constraints

∑
ui,jθj , i = 1, 2, 3, j = 1, . . . , na + ny + nc (5)

where the ui,j are independent uniform variables, U(0, 1). We denote the

estimates under the two constraint systems by θ̂s and θ̂r respectively. Fig-
ure 1 shows the estimates of α,κ and γ under the two systems for our
Portuguese data and one set of random constraints. The estimates are
strikingly different in both shape and scale, yet the invariance of the fitted
values guarantees that the fitted values log λ̂ are equal, as in the bottom
right panel.
A basis for the null space, N (X), of the model matrix, X, is








1na
−1ny

0nc


 ,




1na
0ny
−1nc


 ,




xa
−xy

xc − na1nc





 (6)

where 1 and 0 are vectors of 1s and 0s respectively of the indicated lengths.
The estimates θ̂s and θ̂r are intimately related; their difference θ̂s− θ̂r lies
in N (X). We define ∆α̂ = α̂s − α̂r, ∆κ̂ = κ̂s − κ̂r and ∆γ̂ = γ̂s − γ̂r.
Then, equating coefficients in (6), we find

∆α̂ = (A+B)1na + Cxa (7)

∆κ̂ = −A1ny − Cxy (8)

∆γ̂ = −(B + naC)1nc + Cxc (9)

for some constants A, B and C; in our example, we found A = −4.07, B =
3.90 and C = −0.0818. Clayton and Schifflers (1987) among others have
observed that the age, period and cohort parameters are only estimable up
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FIGURE 1. Parameter estimates in the age-period-cohort model under standard
and random constraints; observed and the invariant fitted and forecast log(λ̂).

to a linear function. Equations (7), (8) and (9) make this precise; the left
panel of Figure 2 illustrates these relations.
We turn now to forecasting. We forecast the period and cohort terms with
an ARIMA model and then, with α fixed at its estimated value, use (3) to
forecast the log λ. Despite the difference between κ̂s and κ̂r, and between γ̂s
and γ̂r, the forecast values of log λ are invariant with respect to the choice
of constraints, just like the fitted values. This invariance is illustrated in
the bottom right panel of Figure 1; it can also be proved with (7), (8) and
(9).
We turn briefly to the effect of smoothing. Regular forecasts of log λ are
desirable for the pricing and reserving of many financial products. In the
age-period-cohort model this regularity can be achieved by smoothing the
age term α. We use the P -spline system with cubic B-splines, a second
order penalty and a knot spacing of δa = 5. Let Ba, na × ca, be the
resulting regression matrix along age and set α = Baa. We refer to this
model as the smooth age-period-cohort model. The regression coefficients
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FIGURE 2. ∆α̂ ( ), ∆κ̂ ( ) and ∆γ̂ ( ). Left: age-period-cohort model
and right: age-period-cohort model with smooth α.

are θ = (aT,κT,γT)T with length ca + ny + nc. We use the same approach
as in the unsmoothed model. We use the constraints (4) and the random
constraints (5) but with j = 1, . . . , ca + ny + nc. A basis for the null space
of the model is








1ca
−1ny

0nc


 ,




1ca
0ny
−1nc


 ,




δaxca
−xy

xc − ωc1nc





 ; (10)

here xca = (1, 2, . . . , ca)T and ωc = na+2δa−1. The right panel of Figure 2
illustrates the relations; we note that 0.4876 = δa0.09751, in agreement
with the basis in (10). Again we see that the age, period and cohort effects
are estimable only up to a linear function. It follows in a similar fashion to
the unsmoothed case that not only are fitted values invariant with respect
to the choice of constraints but so also are their forecast values.

4 Conclusions

The rates of mortality in models of mortality are uniquely estimable, despite
the fact that the component terms, ie, the age, period and cohort terms, are
not uniquely estimable. This follows from the invariance of fitted values in a
GLM. This gives rise to the following paradox: the period and cohort terms
are not estimable and so neither are their forecast values. Why is it then
that in practice the forecast rates of mortality seem plausible across a range
of mortality models? In this short paper we provide a partial resolution of
this paradox, namely that the forecast values of log λ are also invariant with
respect to the choice of constraints used to estimate the age, period and



100 Forecasting mortality

cohort effects. For a fuller discussion of these ideas and further examples
see Currie (in preparation).
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Abstract: We propose an extension of the COM-Poisson model to jointly model
the mean and the dispersion as functions of covariates taking into account, pos-
sibly, under- and overdispersion in the same count data set. Estimation and
inference are based on the likelihood paradigm. Results from a simulation study
show that the maximum likelihood estimators are consistent and unbiased for
both mean and dispersion parameters. The methodology is illustrated with the
analysis of a data set. The R codes and data set are available online.
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1 Introduction

Standard Gaussian linear models are based on the assumption of variance
homogeneity. Generalized linear models relax this assumption by assuming
the observations come from some distribution in the exponential family. A
key feature of exponential family distribution is the so-called mean-variance
relationship, Var(Y ) = φV (µ). The main examples are V (µ) = µ(1 − µ)
for the binomial, V (µ) = µ for the Poisson, V (µ) = µ2 for the gamma, and
V (µ) = µ3 for the inverse-Gaussian distributions (McCullagh & Nelder,
1989). However, once the mean-variance relationship is specified, the vari-
ance is assumed to be known up to a constant of proportionality, the dis-
persion parameter φ. To provide more flexibility in the analysis of het-
erogeneous count data, we explore methods for modelling dispersion as a
function of covariates.
Modelling dispersion with covariates in the analysis of count data has re-
ceived little attention in the literature. The class of double generalized

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).



102 COM-Poisson models with varying dispersion

linear models (Smyth 1988, McCullagh & Nelder 1989, Smyth & Verbyla
1999) provide a possible approach. This class has been widely explored for
continuous data. Another approach that has gained momentum in the last
decade is the generalized additive models for location, shape, and scale
(GAMLSS) (Rigby & Stasinopoulos,2005).
In this paper, we propose to jointly model the mean and dispersion based
on the COM-Poisson distribution. This approach is very similar to that
of GAMLSS, however, we develop and explore our own estimation meth-
ods. This approach allows modelling of data that exhibit both under- and
overdispersion.

2 Toxicity of nitrofen in aquatic systems

Nitrofen is a herbicide that was used extensively for the control of broad-
leaved and grass weeds in cereals and rice. Although it is relatively non-toxic
to adult mammals, nitrofen is a significant tetragen and mutagen. This data
set comes from an experiment to measure the reproductive toxicity of the
herbicide nitrofen on a species of zooplankton (Ceriodaphnia dubia). Fifty
animals were randomized into batches of ten and each batch was placed in
a solution with a measured concentration of nitrofen (0, 0.8, 1.6, 2.35 and
3.10 µg/102litre) (dose). Subsequently, the number of live offspring was
recorded.
Figure 1 shows the data and summary statistics for each batch. It is clear
that the number of live offspring decreases as the nitrofen dose increases.
However, it seems that the dispersion is also influenced by the nitrofen
concentration level, with underdispersion for low doses and overdispersion
for high doses.
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FIGURE 1. (a) Number of live offspring observed for each nitrofen concentration
level (solid lines represent loess curve) and (b) sample variance against sample
mean for each concentration level (dotted line is the identity line).
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3 COM-Poisson models with varying dispersion

The COM-Poisson distribution is a two-parameter generalization of the
Poisson distribution that can handle under-, over- and equidispersion
(Shmueli et al. 2005). The probability mass function of the COM-Poisson
distribution is

Pr(Y = y) =
λy

(y!)νZ(λ, ν)
, y = 0, 1, 2, . . . ; Z(λ, ν) =

∞∑

j=0

λj

(j!)ν
, (1)

where λ > 0 and ν ≥ 0. The Z(λ, ν) is a normalizing constant that cannot
be expressed in closed form, except for special cases.
The moments for the COM-Poisson distribution also cannot be obtained
in closed forms. Shmueli et al. (2005) showed that the expectation of the
COM-Poisson distribution can be approximated by

E(Y ) =
d{log[Z(λ, ν)]}

dλ
≈ λ1/ν − ν − 1

2ν
.

The parameter ν is the dispersion parameter and has a clear interpretation.
When ν = 1, the Poisson distribution results as a special (equidispersion)
case, while for 0 < ν < 1 we have overdispersion and for ν > 1 underdis-
persion. On the other hand, the parameter λ has no clear interpretation,
except for ν = 1 when it is a rate parameter and the Poisson mean, and in
general it is strongly related to ν. To circumvent this dependency, Ribeiro
Jr et al. (2018) proposed a reparameterization of the COM-Poisson dis-
tribution to provide an approximate mean parameter. Replacing λ by the
new parameter µ > 0,

µ = λ1/ν − ν − 1

2ν
⇒ λ =

(
µ+

(ν − 1)

2ν

)ν
,

the authors showed that the new parameterization has good properties for
estimation and inference, with approximate orthogonality of µ and ν. They
proposed the use of a regression model for this approximate mean, rather
than for λ as in Sellers & Shmueli (2010), and here we extend this to allow
both µ and ν to depend on covariates.
Let yi, i = 1, 2, . . . , n, be independent realizations of Yi from COM-Poisson
distributions with parameters µi and νi. The proposed COM-Poisson vary-
ing dispersion model assumes

ηi = g(µi) = xT

i β and ξi = h(νi) = zT

i γ,

where β = (β1, β2, . . . , βp)
T and γ = (γ1, γ2, . . . , γq)

T are the parameters
to be estimated, xi = (xi1, xi2, . . . , xnp)

T and zi = (zi1, zi2, . . . , znq)
T are

vectors of known covariates, and g(.) and h(.) are suitable link functions,
such as the log.
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4 Estimation and inference

To fit COM-Poisson models with varying dispersion, we use maximum like-
lihood and inferences are based on the standard asymptotic likelihood the-
ory. The log-likelihood function for θ = (βT,γT)T is

` = `(θ;y) =

n∑

i=1

{
νi log

(
µi +

νi − 1

2νi

)
− νi log(yi)− log[Z(µi, νi)]

}
,

(2)
where µi = exp(xT

i β), νi = exp(zT
i γ), and Z(µi, νi) is the normalizing

constant computed for the parameters µi and νi.
Parameter estimation requires the numerical maximization of (2). Since the
derivatives of ` cannot be obtained in closed forms, we compute them by
central finite differences using the Richardson method from the R package
numDeriv (Gilbert & Varadhan, 2016).
Standard errors are obtained from the observed information matrix and
hence the variance-covariance matrix of the maximum likelihood estimators
is

Vθ =

(
−∂`2/∂β∂βT −∂`2/∂β∂γT

−∂`2/∂γ∂βT −∂`2/∂γ∂γT

)−1

=

(
Vβ Vβγ
Vγβ Vγ

)
.

Variances for η̂i and ξ̂i can be obtained using the delta method, Var(η̂i) =

xT
i Vβ|γxi and Var(ξ̂i) = zT

i Vγ|βzi, where Vβ|γ = Vβ − VβγV
−1
γ Vγβ and

Vγ|β = Vγ − VγβV
−1
β Vβγ . Since β and γ are nearly orthogonal, Vβγ =

V T

γβ ≈ 0, hence Vβ|γ ≈ Vβ and Vγ|β ≈ Vγ , which implies that inferences
based on the conditional log-likelihood and the marginal log-likelihood
are the same. Confidence intervals for µi and νi are obtained by back-
transforming the confidence intervals for ηi and ξi. Maximum likelihood
estimation for fitting COM-Poisson models and methods for computing the
associated confidence intervals are implemented in the R package cmpreg

(https://github.com/jreduardo/cmpreg).

5 Data analysis of nitrofen experiment

To analyse the number of live offspring (Yij) for ith nitrofen dose and jth
repetition we use a cubic polynomial in dose for both mean and dispersion

log(µij) = β0+β1di+β2d
2
i +β3d

3
i and log(νij) = γ0+γ1x1i+γ2x2i+γ3x3i,

where xqi is the orthogonal polynomial of degree q evaluated at dose di.
For the dispersion we also consider nested submodels.
Table 1 shows clear evidence that the linear predictor for the dispersion is
at least linearly dependent on the nitrofen concentration level. However,
there is no strong evidence to favour the quadratic, or cubic, models over
the linear model for the dispersion.
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TABLE 1. Nitrofen data: goodness-of-fit measures (deviance and AIC) and model
comparisons (based on deviance differences, ∆-Dev) of the dispersion models.

df Deviance AIC ∆-Dev Pr(> χ2)

Constant 45 288.13 298.13
Linear 44 274.11 286.11 14.02 0.0002
Quadratic 43 270.49 284.49 3.62 0.0572
Cubic 42 269.50 285.50 0.99 0.3198

TABLE 2. Nitrofen data: Parameter estimates and standard errors for the fitted
COM-Poisson models.

Par Const Linear Quad Cubic

Mean
β0 3.48 (0.05)∗ 3.48 (0.03)∗ 3.48 (0.04)∗ 3.48 (0.04)∗

β1 −0.09 (0.20) −0.11 (0.14) −0.12 (0.13) −0.12 (0.13)
β2 0.16 (0.17) 0.17 (0.15) 0.19 (0.14) 0.19 (0.13)
β3 −0.10 (0.04)∗ −0.10 (0.04)∗ −0.11 (0.04)∗ −0.11 (0.04)∗

Dispersion
γ0 0.05 (0.20) 0.29 (0.21) 0.24 (0.26) 0.35 (0.23)
γ1 – −5.24 (1.36)∗ −7.00 (2.30)∗ −5.73 (1.84)∗

γ2 – – −3.98 (2.44) −2.92 (1.90)
γ3 – – – 1.52 (1.41)

Est (SE)∗ indicates |Est/SE| > 1.96.

Parameter estimates, standard errors and significance (based on Wald tests)
are given in Table 2. For the dispersion structure, there is no evidence to
keep the quadratic term, (p-value = 0.10), but the mean model standard
errors do decrease once the linear term is included in the dispersion.
Figure 2 shows the fitted values with confidence bands for the mean model
and linear and quadratic dispersion models. For constant dispersion, the
fitted model corresponds to equidispersion (ν = 1), with exp (γ̂0) = 1.05.
However, there is some evidence that the dispersion changes across nitro-
fen levels. In particular, all models show that at around 2µg/102 litre, the
numbers of live offspring change from under- to over-dispersed. The vari-
ances for nitrofen doses obtained from the fitted models with linear and
quadratic models for the dispersion are also shown.

Acknowledgments: This work was partially supported by CNPq and by
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Abstract: Decadal predictions of temperature and precipitation over Europe are
largely affected by variability in the North Atlantic Ocean. Within this region,
the Labrador Sea is of particular importance due to its link between surface-
driven density variability and the Atlantic Meridional Overturning Circulation
(AMOC). Using physical justifications, we propose a statistical model to describe
the temporal variability in ocean density, in terms of salinity and temperature.
This is a hidden semi-Markov model that allows for alternating temperature-
and salinity-driven ocean density. The model is Bayesian, and a reversible jump
MCMC algorithm is proposed to deal with a single-regime scenario. The model
is applied to an observations-based data set as well as to data from 43 climate
models. Estimates of the mean holding time for each regime are used to establish
a link between regime behaviour and the AMOC.

Keywords: Reversible jump MCMC; Bayesian; HMM; Forward algorithm; Adap-
tive Metropolis.

1 Introduction

Skillful decadal predictions of changes in temperature and precipitation
over Europe are extremely important. Low frequency variability, e.g. the
Atlantic Meridional Overturning Circulation (AMOC), in the North At-
lantic ocean is a key component of any skilful prediction (Collins, 2002).
This variability has been linked to the Labrador Sea region, and variability
in seawater density therein. Understanding the nature of seawater density
changes in this region is therefore valuable in improving the skill of predic-
tions.

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
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The question here is whether density changes in the Labrador Sea are
driven by sea temperature T or salinity S changes and whether the driver
is stationary, or whether there are regime shifts between salinity-driven and
temperature-driven density over time. The relatively short time span of in-
strumental observations makes it necessary to also rely on coupled general
circulation climate models (CGCMs). The goal is to develop a statistical
model for quantifying variability in the Labrador Sea density in terms of
salinity and temperature regime shifts, and apply it to available observa-
tions as well as to data from 43 free-running climate models. We use the
results to investigate whether CGCMs are able to simulate regime shifts
and thus obtain a better understanding the temporal structure of these
shifts.

2 Model formulation

Seawater density ρ, can be described as a function of T and S such that:

ρ = fT (T ) + fS(S) + fS,T (S, T ).

This equation is non-linear in temperature and salinity over the full, ob-
served temperature/salinity space, however using approximations as de-
scribed in Menary et al. (2015), we can describe the density anomaly (i.e.
mean-centred) ρ using two possible equations:

ρ = βSρS + εS (salinity driven density) (1)

ρ = βT ρT + εT (temperature driven density) (2)

where ρS and ρT are components of ρ that are driven solely due to S and T
respectively, where the ε terms capture residual variation. As such, a model
MS or MT for density being solely driven by salinity or temperature across
all time is:

MS : ρ(t) ∼ N(βSρS(t), σ2
S) (3)

MT : ρ(t) ∼ N(βT ρT (t), σ2
T ) (4)

Previous analyses (Menary et al., 2016) provide evidence that in any given
point in time, ocean density is described by either an S-driven regime (1)
or a T -driven regime (2). A natural modelling framework for describing un-
derlying regime changes in a random variable, is the hidden Markov model
or HMM. These, model latent regimes or states over time as a Markov
chain, where the holding time for each state is implicitly Geometric. A
generalisation of HMMs, are hidden semi-Markov models (HSMMs), that
allow for explicit modelling of the holding times. Both (3) and (4) above
assume no regime shifts, therefore we consider a third model, MST where
a regime switching mechanism is described by a latent semi-Markov chain
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C(t) with two states: C(t) ∈ {S, T}. The model, depicted in Figure 1, is
given by:

ρ(t)|C(t) = βC(t)ρC(t)(t) + εC(t)(t) (5)

εC(t)(t) ∼ N(0, σ2
C(t)). (6)

This is a model that jumps between MS and MT . The semi-Markov chain
is defined by two Poisson holding time distributions with means φS and
φT respectively. Self-transitions are not allowed implying that neither MS

nor MT are special cases of MST , so in fitting the models in the Bayesian
framework (Economou et al., 2014), we use reversible jump MCMC to
decide which of the three models best describes ocean variability.

3 Model application

Fitting the model to t = 1, . . . , 115 years of reanalysis data (which is as
close as we can get to observations), indicates that model MST is chosen
with probability 0.999. Figure 2 plots the estimated probability of being in
the S regime. This indicates that regime S is much more persistent (mean
holding time of 11 years) than the regime T , which does occur albeit in
short bursts of 1-2 years.
The model was also applied to 43 pre-industrial control simulations from
CGCMs. These simulations aim to recreate an equilibrium climate (prior
to the secular trend that is now evident) using interannualy invariant ex-
ternal forcings (e.g. greenhouse gas) appropriate for pre-industrial times.
Each control simulation was at least 200 years in length. They represent
different approaches to simulating this pre-industrial climate and by com-
paring them it is possible to investigate the strength of internal variability
in the climate system. Most (but not all) CGCMs are able to simulate a
regime changing ocean density in line with the reanalysis data, albeit with
varying degrees of temporal persistence of the regimes. Overall, regime S
has larger mean holding times across CGCMs, much like the reanalysis.
Some CGCMs however have regime T that lasts longer on average.
Estimates of parameters φS and φT provide a way of quantifying the tempo-
ral regime behaviour of each CGCM. An important question is whether the
strength of the AMOC in CGCMs is systematically related to the preference
for one density regime or the other. We consider the measure log(φT /φS),
where larger (smaller) values suggest a more temperature (salinity) dom-
inated density regime. Figure 3, shows that AMOC strength in complex
CGCMs is indeed linked to their preference for one density regime over an-
other. For robustness, we use two different definitions of the AMOC hence
the two plots, that show a strong linear relationship. CGCMs that have
increasingly T -driven density tend to have a stronger AMOC in the mean,
with correlations of 0.79 and 0.66 for each plot.
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FIGURE 1. Schematic showing a particular realisation of the hidden semi-Markov
model for ocean density given by (5)–(6).
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Abstract:
Meta-analysis is a well established statistical methodology, strongly recommended
for synthesizing scientific knowledge. Frequently, however, only a very small num-
ber of studies is available for meta-analysis, and thus the results can be mis-
leading due to unobserved heterogeneity. The Bayesian methodology mitigates
this problem by incorporating priors on heterogeneity standard deviation in a
normal-normal hierarchical model (NNHM). Nonetheless, in NNHM two relevant
concerns remain: parameter identification and sensitivity of the posterior infer-
ence with respect to the heterogeneity prior. We still lack a systematic account
of how these two concerns affect the posterior inference. Here, we develop a novel
two-dimensional sensitivity-identification measure based on numerical derivatives
of the Bhattacharyya coefficient with respect to relative latent model complex-
ity perturbations. Our results show that the proposed two-dimensional approach
accurately assesses sensitivity and identification. It also explicitly reveals the in-
herent amount of smoothing in Bayesian meta-analysis applications.

Keywords: Bayesian Meta-Analysis; Normal-Normal Hierarchical Model; For-
mal Sensitivity And Identification Diagnostics.

1 Introduction

In light of the recent widespread crisis of replicability, decision making un-
der uncertainty has become a very challenging task. The Cochrane, which
promotes evidence-based medicine, strongly recommends meta-analysis to
aggregate scientific knowledge. Meta-analysis is a formal methodology which
allows for a combined evaluation of evidence. It shifts the focus away from

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
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evidence in a single study and towards a combined view of evidence pro-
vided by several studies. Meta-analysis takes also into account between-
study heterogeneity. When the between-study heterogeneity is ignored, the
standard errors of estimates are over-optimistically small and the signif-
icance of the effect may actually be invalid. Frequently, however, only a
very small number of studies is available for meta-analysis, and thus the
results can be misleading due to unobserved heterogeneity. The Bayesian
methodology mitigates this problem by incorporating priors on heterogene-
ity standard deviation in a NNHM.
Formally, a Bayesian NNHM consists of three parts: the sampling model
(likelihood), the random-effects model (latent field) and priors. The sam-
pling model for a number of I studies assumes (iid) normally distributed
outcome Yi with a fixed within-study standard deviation σi, which arise
around the latent random-effect parameter θi

Yi|θi, σi ∼ N(θi, σ
2
i ). (1)

In addition, the exchangeability of latent parameters θi is imposed by as-
suming that the parameters follow a normal distribution with mean µ and
a heterogeneity (between-study) standard deviation τ

θi|µ, τ ∼ N(µ, τ2), (2)

for i = 1, . . . , I. Finally, the priors for µ ∼ π(µ) and τ ∼ π(τ) are
assumed. In particular, π(µ) is set to N(0, 42) and π(τ) to a Half-Normal
(HN) prior as discussed by Röver (2018) and Friede et al. (2017).
The Bayesian meta-analysis gives rise to two concerns: sensitivity (Roos et
al. (2015)) and identification (Gelfand and Sahu (1999)). Whereas sensi-
tivity quantifies the heterogeneity prior impact, identification is concerned
with the data impact on the marginal posterior inference. Both concerns
are rarely addressed, if at all, and they have not yet been addressed simul-
taneously. Therefore, there is a need to unify the approach and to develop
a combined two-dimensional sensitivity-identification (S-I) measure.

2 Data

One typical data set for a medical Bayesian meta-analysis considered by
Friede et al. (2017) is shown in Table 1.
These data originated in a systematic review of two randomized controlled
trials providing evidence of the efficacy and safety of immunosuppresive
therapy with interleukin-2 receptor antibodies following liver transplanta-
tion in children. Based on observations from both studies yi = log(ORi)
and σi = SE(log(ORi)) were computed and supplied for a Bayesian meta-
analysis.
Note that all meta-analyses presented by Friede et al. (2017) have the fol-
lowing three properties in common: first, they incorporate a small number
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TABLE 1. Data for the Acute Graft Rejection discussed by Friede et al. (2017).

experimental control y σ

study events total events total log(OR) SE(log(OR))

1 14 61 15 20 -2.31 0.60
2 4 36 11 36 -1.26 0.64

of studies. Second, the individual studies have small sample sizes, which
renders the within-study standard deviation σi estimates uncertain. Third,
they assume approximate normality by imposing a NNHM.

3 Methods

We quantify the impact of a formal perturbation from a base (b) to an
altered (a) model on marginal posterior distributions by a symmetric mea-
sure of affinity: the Bhattacharyya coefficient (BC) (Roos et al. (2015))

BC(πb(ψ|y), πa(ψ|y)) =

∫ ∞

−∞

√
πb(ψ|y)πa(ψ|y)dψ, (3)

with ψ ∈ {µ, log(τ), θ1, . . . , θI}. We utilize the model complexity pD (Spiegel-
halter et al. (2002)) and the reference standard deviation σref (Sørbye and
Rue (2014)) to define the relative latent model complexity (RLMC) in a
NNHM

RLMC = pD/I =
τ2

τ2 + σ2
ref

. (4)

RLMC can be thought of as the amount of smoothing inherent to the
NNHM with a value 0 indicating perfect and 1 no smoothing. Lower values
of RLMC can be obtained by either perturbing the heterogeneity prior
(P ), to put more weight on values close to 0 with fixed data, or perturbing
data to get a less pronounced likelihood with a fixed heterogeneity prior. A
derivative of BC (dBC) with respect to RLMC perturbations quantifies how
quickly the marginal posterior changes with changing RLMC. The unified
two-dimensional S-I measure is defined as a ratio of two derivatives

Sφ(ψ) =
dBCP (ψ)

dBCP (φ)
and Iφ(ψ) =

dBCL(ψ)

dBCL(φ)
(5)

with ψ ∈ {µ, log(τ), θ1, . . . , θI} and φ ∈ {µ, log(τ)}. Note that the S-I
measure is invariant to the size and direction of RLMC perturbations.

4 Results

Table 2 shows the two-dimensional S-I measure for a NNHM applied to
the Acute Graft Rejection data in Table 1 with a HN heterogeneity prior
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TABLE 2. Sensitivity and identification estimates for the NNHM applied to the
Acute Graft Rejection data with RLMC = 0.25 and a HN heterogeneity prior.

parameter dBCP Sµ Sτ dBCL Iµ Iτ

µ 0.078 1 0.386 0.196 1 13.067
log(τ) 0.202 2.589 1 0.015 0.077 1
θ1 0.031 0.397 0.153 0.459 2.342 30.600
θ2 0.039 0.500 0.193 0.385 1.964 25.667

and RLMC fixed at 0.25. Whereas a high Sµ(log(τ)) value indicates that τ
is 2.6 times more sensitive to the heterogeneity prior than µ, a high Iτ (µ)
value shows that µ is 13 times more informed by the data than τ .

5 Discussion

The novel, unified methodology for a combined, two-dimensional S-I anal-
ysis accurately assesses sensitivity and identification. It also involves an
explicit specification of the inherent amount of smoothing in the Bayesian
meta-analysis applications. Developments in Sørbye and Rue (2014) in-
dicate that our approach has the potential to be extended to complex
Bayesian hierarchical models in the context of Latent Gaussian Models.

Acknowledgments: This research was funded by the Swiss National Sci-
ence Foundation (Project Number 175933).
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1 Introduction

Regression analysis is commonly used to explain the behavior of doubly
limited continuous dependent variables (DBCDVs) that assume values in
(a, b), where a and b are known and −∞ < a < b < ∞. The beta re-
gression model (Ferrari and Cribari-Neto, 2004) is the most well known
and the most widely used model with DBCDVs. Alternative models have,
nonetheless, been introduced in the literature since it is useful for practi-
tioners to have more than a single model at disposal. Alternative models
have, nonetheless, been introduced in the literature. For example, Mousa
et al. (2016) proposed the unit gamma regression model.
The likelihood ratio (LR) test is the most commonly used test in regression
analysis in general and also in regression models for DBCDVs. A shortcom-
ing of such as test is that it relies on an asymptotic approximation and can
be considerably size-distorted in small samples. In this paper we shall focus
on the the unit gamma regression model. We shall consider mean effects
modeling and also joint mean and precision effects modeling. Our interest
is on hypothesis testing inferences performed with samples of small sizes.
In particular, our chief goal is to derive two modified LR test statistics that
can be used to perform reliable testing inferences in unit gamma regressions

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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when the sample size is small. The Monte Carlo evidence that we present
shows that testing inferences based on the two modified test statistics can
be considerably more accurate than that based on the standard likelihood
test statistic in small samples. The latter can be considerably oversized.
Tests with improved finite sample behavior are obtained for use with beta
regressions; e.g., Ferrari and Pinheiro (2011). To the best our knowledge,
however, no similar results have been obtained for the unit gamma regres-
sion model.

2 The unit gamma regression model

Let y1, . . . , yn be independent random variables, where each yi ∼ ug(µi, φi),
i = 1, . . . , n. That is, each yi is unit gamma-distributed with mean µi and
precision φi. In the unit gamma regression model proposed by Mousa et
al. (2016), the ith mean response and the ith precision can be written as

g1(µi) = ηi =

p∑

j=1

βjxij and g2(φi) = ζi =

q∑

j=1

δjhij , (1)

respectively. Since var(yi) = µi{[1/(2−µ1/φi
i )φi ]−µi}, where µi = g−1

1 (ηi),
the regression model is heteroskedastic. The fixed dispersion unit gamma
regression model is obtained by setting g2(φi) = g2(φ) = δ0.

3 Two improved likelihood ratio tests

Consider the model in (1) and also the corresponding log-likelihood function
(`), where θ = (βT , δT )T is the model k-dimensional parameter vector, β
being a p-vector and δ being a q-vector (p + q = k). In what follows,
κ = (κ1, . . . , κl)

T is the parameter of interest and ψ = (ψ1, . . . , ψs)
T is the

nuisance parameter. (Note that l+ s = p+ q). We wish to test H0 : κ = κ0

vs. H0 : κ 6= κ0, where κ0 is a fixed l-vector. The LR test statistic is
w = 2[`(κ̂, ψ̂) − `(κ0, ψ̃)], where (κ0T , ψ̃T ) and (κ̂T , ψ̂T ) are, respectively,
the restricted and unrestricted maximum likelihood estimators of (κT , ψT ).
Under H0, w is asymptotically distributed as χ2

l . The null hypothesis is
rejected at the α significance level (0 < α < 1) if w > χ2

1−α,l, where χ2
1−α,l

is the 1−α upper χ2
l quantile. When n is small, the approximation used in

the LR test may not be accurate, and as a result size distortions may take
place.
We follow an approach developed by Skovgaard (2001), who proposed the
following modified LR test statistic: w∗ = w − 2 log ξ. Here,

ξ =
{|Ĩ||Î||J̃ψψ|}1/2

|Ῡ||{ĨῩ−1Ĵ Î−1Ῡ}ψψ|1/2
{ŨT Ῡ−1Î Ĵ−1ῩĨ−1Ũ}l/2

wl/2−1ŨT Ῡ−1q̄
,



Guedes et al. 119

where U is the score vector and Jψψ is the Hessian matrix. When the rel-
evant regularity conditions are satisfied, −Jψψ is the observed information
matrix relative to ψ. Note that q̄ is a vector of dimension l+s and Ῡ is a ma-
trix of dimension (l+s)× (l+s). UnderH0, w∗ is asymptotically distributed
as χ2

l . The quantities q̄ and Ῡ come from q = IE[U(θ1)(`(θ1) − `(θ))] and

Υ = IE[U(θ1)UT (θ)] by replacing θ1 with θ̂ and θ with θ̃ after the expected

values are computed. Here, θ̂ and θ̃ denote, respectively, the unrestricted
and restricted maximum likelihood estimators of θ.
An asymptotically equivalent test statistic is w∗∗ = w

(
1− w−1 log ξ

)2
. A

clear advantage of w∗∗ is that it is always non-negative.
We derived closed form expressions for q̄ and Ῡ in the class of unit gamma
regression models. After some algebra, we arrived at

q̄ =

[
XT T̂1Φ̂−1M̂−1D̂(I + D̂){V̂ ∗(D̂ − D̃) + Ĉ(Φ̂− Φ̃)}ι
HT T̂2{(P̂ V̂ ∗ + Ĉ)(D̂ − D̃) + (P̂ Ĉ + V̂ †)(Φ̂− Φ̃)}ι

]

and

Ῡ =

 XT T̂1Φ̂−1M̂−1D̂(I + D̂)V̂ ∗ XT T̂1Φ̂−1M̂−1D̂(I + D̂)

×(I + D̃)D̃M̃−1Φ̃−1T̃1X ×{V̂ ∗P̃ + Ĉ}T̃2H

HT T̂2{P̂ V̂ ∗ + Ĉ}(I + D̃)D̃M̃−1Φ̃−1T̃1X HT T̂2{P̂ V̂ ∗P̃ + (P̂ + P̃ )C̃ + Ṽ †}T̃2H

 ,
where V ∗, V † and C are diagonal matrices properly defined. The other
quantities are also defined in terms elements of the unit gamma regression
model.

4 Numerical evidence

We shall report the results of Monte Carlo simulations. The number of
Monte Carlo replications is 10, 000. All simulations were performed using
the Ox matrix programming language.
We consider the varying precision unit gamma regression model given by
log (µi/(1− µi)) = β1 + β2xi2 + β3xi3 + β4xi4 and log(φi) = δ1 + δ2hi2 +
δ3hi3 + δ4hi4, i = 1, . . . , n. The covariates valyes are obtained as random
standard uniform draws. We test H0 : β3 = β4 = 0, δ2 = δ3 = δ4 = 0 (l =
5). Data generation was carried out using β1 = 1.5, β2 = 1.5, β3 = 0, β4 =
0, δ1 = (log(30), log(10), log(5)), δ2 = δ3 = δ4 = 0. The sample sizes are n =
20, 40, 60. Figure 1 contains QQ plots constructed using the test statistics
values. The null distribution of w is poorly approximated by the limiting
χ2 distribution. Such an approximation is much more precise when used
with the two corrected test statistics derived in this paper, especially when
n ≥ 40. Notice that the case in which there are only twenty observations in
the sample is quite challenging since there are five restrictions under test.
Even with n = 20, however, the χ2 approximation is somewhat precise
when used with w∗ and w∗∗, except in the distribution upper tail.
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FIGURE 1. Quantile-quantile plots.

5 Concluding remarks

We obtained two modified likelihood ratio test statistics that can be reliably
used to perform testing inferences on the parameters that index the unit
gamma regression model when the number of observations is small.
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1 Marginals and diagonals

1.1 Diagonals

We start by laying the groundwork. The dependence within a random vec-
tor can be fully characterized by means of a copula, that provides the formal
link between the joint distribution F and the marginal distributions F1, F2.
Formally, the copula is the distribution function C : [0, 1]2 → [0, 1], with
uniform marginals, obeying

C(F1(y1), F2(y2)) = F (y), y = (y1, y2).

Let (U, V ) ∼ C(u, v) with U = F1(Y1) and V = F2(Y2). Given the definition
of copula, if we project (U, V ) onto the u or v axis the resulting projections
[namely (U, 0) and (0, V )] are tantamount to a Unif(0, 1) distribution, and

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Projected pseudo-observations from a Gumbel copula on the u and
v axes.

thus only contain information about marginal distributions; see Figure 1.
Yet, as we observe below, if we project the random vector (U, V ) over any
straight line that passes through the origin, the corresponding projection
will preserve key features of the dependence structure; of particular interest
here will be the distribution of (U, V ) over the line u = v.

1.2 Main diagonals

It can be shown that the orthogonal projection of r = (U, V ) over the line
u = v is p(r) = (Z,Z), where Z ≡ (U +V )/2. As we discuss below, the law
of Z provides information on the dependence between X and Y . Indeed,
for z ∈ [0, 1],

FZ(z) = P (Z ≤ z) = P{(U + V )/2 ≤ z} =

∫ ∫

{u+v≤2z}
c(u, v) dudv,

where c is the copula density. We refer to FZ(z) as the (main) diagonal
distribution function, and if FZ is absolutely continuous we refer to fZ =
dFZ/dz as the (main) diagonal density. If U = V , then Z ∼ Unif(0, 1).
In the case of independence the diagonal density can is the symmetric
triangular distribution on [0, 1]. The case of perfect positive dependence
leads to Z is degenerated at 1/2. Note further that

E(Z) =
1

2
, var(Z) =

1

24
+

1

2
cov(U, V ) =

1

24
(1 + S), (1)

where S = 12 cov(U, V ) denotes the Spearman’s rho. Figure 2 depicts the
Normal diagonal density f(z; ρ) with shape parameter ρ ∈ [−1, 1]. If ρ = 0,
the main diagonal distribution of Z is distributed according to the sym-
metric triangular distribution, whereas as we increase correlation it gets
closer to the uniform distribution.
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FIGURE 2. Top: Simulated data from a Gaussian copula. Bottom: True normal
diagonal density along with a fitted mean-constrained histogram based on the
simulated data.

Some comments on D-dimensional extensions and on inference are in
order. In the latter setting it follows that Z = D−1

∑D
d=1 Ud, and thus

similarly to the bivariate setting it follows that E(Z) = 1/2. And how can
we learn about FZ(z) = P (Z ≤ z) from data? By keeping in mind that the
diagonal distribution needs to obey a moment constraint (E(Z) = 1/2),
we recommend using the mean-constrained density estimator on the unit
interval from de Carvalho et al. (2013).

In the case of perfect dependence, the diagonal distribution is uni-
form, and in the case of independence it is a D-dimensional Bates distribu-
tion (Johnson et al., 1995, Section 26.9). Since the main diagonal density
summarizes key features of the dependence within a random vector, as
a byproduct, this paper also contributes to the literature on multivariate
measures of association. Most published articles on measures of association
focus on pairwise association of components of a random vector, including
Spearman’s rho, Kendall’s tau, Blomqvist’s beta, Gini’s gamma, among
other. Multivariate extensions can be found in Joe (1990) and Schmid and
Schmidt (2007).

2 Illustration: FAANG against Crypto-Currencies

We now showcase our methods in practice. Two investment possibilities
that have been receiving a substantial coverage in the financial media over
the last few years are FAANG stocks and cypto-currencies. FAANG is an
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FIGURE 3. Smooth estimate for diagonal density (black), histogram estimate for
diagonal density, and the diagonal density corresponding to independence (gray).

acronym for Facebook, Apple, Amazon, Netflix and Alphabet’s Google. To
have an idea on how FAANG compares with other portfolios of the same
size and that also trade on the NASDAQ stock market, we will also be
covering the following stocks: Marriott International (MAR), 21st Century
Fox Class A (FOXA), Texas Instruments (TXN), Qualcomm (QCOM),
and Microchip Technology (MCHP); we will refer to the latter stocks as
MCTQM. The period under analysis consists of Aug 2015 to Oct 2017—
thus leading to a total 544 observations; we focus on daily negative log-
returns which can be regarded as a proxy for losses.

The fitted diagonal densities are presented in Figure 3; an important
take-home-message from the fitted diagonal densities is that the FAANG
portfolio can be less diversified than the selected portfolio of
crypto-currencies (though the latter is subject to a much higher volatil-
ity).
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Abstract: We investigate the potential occurrence of change points – commonly
referred to as “momentum shifts” – in the dynamics of football matches. For that
purpose, we model minute-by-minute in-game statistics of Bundesliga matches us-
ing hidden Markov models (HMMs). To further allow for within-state correlation
of the variables considered, we formulate multivariate state-dependent distribu-
tions using a copula. The fitted HMMs comprise interpretable states which can
be tied to different styles of play, and provide a potentially useful modelling
framework allowing insights into causes of momentum shifts.

Keywords: Hidden Markov model; Copula; Football; Momentum; Sports ana-
lytics.

1 Introduction

Sports commentators and fans frequently use vocabulary such as “momen-
tum”, “momentum shift” or related terms to refer to change points in the
dynamics of a match. Usage of such terms is typically associated with situa-
tions during a match where an event – such as a shot hitting the woodwork
in a football match – changes the dynamics of the match, e.g. in a sense
that a team which prior to the event had been pinned back in its own half
suddenly seems to dominate the match.
Driven by the rapidly growing amount of freely available football data, sev-
eral recent studies focused on modelling in-game statistics, e.g. to identify
drivers of ball possession (see, e.g., Lago-Penas and Dellal, 2010), or to de-
tect the main playing styles and tactics (Diquigiovanni and Scarpa, 2019).
However, existing studies do not focus on the temporal dynamics of in-
game statistics during a match, which is of special interest when analysing
momentum.

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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2 Data

In the present contribution, we analyse minute-by-minute in-game statis-
tics of Bundesliga matches, taken from www.whoscored.com, to investigate
whether momentum shifts actually do exist in a football match, and what
kind of events lead to a shift. For that purpose, multivariate time series
{ymt}t=1,2,...,Tm are considered, where ymt = (ymt1, . . . , ymtK) is the vector
of variables observed at time t (in minutes) during match m, m = 1, . . . , 34,
with Tm denoting the total number of minutes played in match m. In our
analysis, K = 2 variables are considered, namely the number of shots on
goal and the number of ball touches. Figure 1 shows one example bivariate
time series from the data set, which corresponds to the in-game statistics
observed for Borussia Dortmund (in a match against SC Freiburg).
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FIGURE 1. Bivariate time series of the number of shots on goal (top) and the
ball touches (bottom) of Borussia Dortmund for one example match from the
data set (Borussia Dortmund vs. SC Freiburg).

3 Model formulation

Figure 1 underlines that there are periods in the match where the team’s
number of ball touches and the number of shots on goal are fairly low
(e.g. around minutes 20-30), as well as periods with relatively many ball
touches and shots on goal (e.g. around minutes 30-45). Hidden Markov
models (HMMs) hence constitute a natural modelling approach for the
minute-by-minute bivariate time series data, as they accommodate the idea
of a match progressing through different phases, with potentially changing
momentum. HMMs involve two components: an unobserved Markov chain
with N possible states, denoted by {smt}t=1,2,...,Tm , and an observed state-
dependent process, whose observations are assumed to be generated by one
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of N distributions as selected by the Markov chain. Furthermore, within
these (multivariate) HMMs, we allow for within-state correlation of the
observed variables ymt by formulating a bivariate state-dependent distri-
bution using a copula, i.e.:

F (ymt | smt) = C
(
F1(ymt1 | smt), F2(ymt2 | smt)

)
,

where F1 and F2 are marginal distributions and C is a copula. The cor-
responding joint p.m.f. is denoted by f(ymt | smt). Since the shots on goal
and the ball touches are count variables, and to further account for possible
over- and underdispersion, the Conway-Maxwell-Poisson distribution, with
p.m.f.

Pr(X = x) =
1

Z(λ, ν)

λx

(x!)ν
,

is considered as marginal distribution for both variables considered, where
Z(λ, ν) =

∑∞
k=0 λ

k/(k!)ν , λ > 0 and ν ≥ 0. Since we deal with discrete
marginal distributions for the copula, differences are needed rather than
derivatives when formulating the joint p.m.f of ymt given state smt (see,
e.g., Nikoloulopoulos 2013):

f(ymt | smt) = C
(
F1(ymt1 | smt), F2(ymt2 | smt)

)

− C
(
F1(ymt1 − 1 | smt), F2(ymt2 | smt)

)

− C
(
F1(ymt1 | smt), F2(ymt2 − 1 | smt)

)

+ C
(
F1(ymt1 − 1 | smt), F2(ymt2 − 1 | smt)

)
,

with F1 and F2 denoting the cumulative distribution functions of the two
marginals. To also account for possible negative within-state correlation in
ymt, the Frank copula with dependence parameter θ is chosen here, which
is given by

C(u1, u2) = −1

θ
log
(

1 +
(exp(−θu1)− 1)(exp(−θu2)− 1)

exp(−θ)− 1

)
.

Defining an N × N diagonal matrix P(ymt) with the i-th diagonal el-
ement given by f(ymt|smt = i), transition probability matrix (t.p.m.)
Γ = (γij) with γij = Pr(smt = j|sm,t−1 = i) and δ =

(
Pr(sm1 =

1), . . . ,Pr(sm1 = N)
)
, the likelihood of our HMM for one match given by:

L = δP(ym1)ΓP(ym2) . . .ΓP(ymTm)1

with column vector 1 = (1, . . . , 1)′ ∈ RN (see Zucchini et al., 2016). Cal-
culation of this matrix product expression amounts to running the forward
algorithm, which is a powerful recursive technique for efficiently calculating
the likelihood of an HMM, at computational cost O(TN2). We can thus fit
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the copula-based bivariate HMM to data using numerical maximum likeli-
hood estimation. To obtain the likelihood for the full data set, we assume
independence between the individual matches such that the likelihood is
given by the product of likelihoods for the individual matches.

4 Preliminary results

As a case study for assessing the potential of the copula-based bivariate
HMM to investigate momentum in football, we analyse Bundesliga data
from Borussia Dortmund (season 2017/18) with N = 3 states. Maximising
the likelihood leads to the estimated state-dependent distributions shown
in Figure 2. In addition, Table 1 displays the estimated parameters of the
marginal distributions as well as the dependence parameter. According to
the fitted model, in state 1 the mean number of shots on goal is ≈ 0,
and the mean number of ball touches is 0.269. The corresponding means
are 0.136 (shots) and 4.492 (ball touches) for state 2, and 0.185 (shots)
and 8.640 (ball touches) for state 3. Thus, state 1 can be interpreted as a
defensive only state, which can also be seen from Figure 2. State 2 refers to
a state where the match is balanced, whereas state 3 refers to a state with
a dominant style of play. In state 3, the estimated negative dependence
between shots and ball touches may result from two different styles of
dominant play: either Borussia Dortmund is controlling and passing the
ball without much pressure on goal, or they go effectively straight for goal,
without much controlled passing. The first possible style of play is a more
defensive style of dominance, whereas the latter refers to a more offensive
dominance. In addition, the estimated t.p.m. is given by

Γ̂ =




0.253 0.079 0.667
0.011 0.985 0.004
0.079 0.013 0.907


 .

Here, with γ̂22 = 0.985 and γ̂33 = 0.907, there is a high persistence of
staying in state 3 (dominance state). Persistence is also high in state 2
(balanced state), whereas with γ̂11 = 0.253, state 1 (defensive only state)
is a transient state, where switching to state 3 (dominance state) is most
likely.

5 Outlook

Current research focuses on including covariates in the state process, such
that the probabilities γij of switching between the underlying states depend
on (e.g.) the intermediate score of the match and the strength of the op-
ponent. Corresponding analyses may shed some light on what causes shifts
in momentum, which would be of great interest to managers, bookmakers
and sports fans.
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Variable State 1 State 2 State 3

Shots on goal λ̂ ≈ 0, ν̂ = 0.730 λ̂ = 0.120, ν̂ ≈ 0 λ̂ = 0.167, ν̂ = 0.329

Ball touches λ̂ = 0.212, ν̂ ≈ 0 λ̂ = 1.069, ν̂ = 0.140 λ̂ = 1.636, ν̂ = 0.253

Dependence θ̂ = 4.845 θ̂ = 1.090 θ̂ = −1.004

TABLE 1. Parameter estimates for the state-dependent distributions.
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FIGURE 2. State-dependent distributions of the 3-state HMM.
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mixed-modes experiment
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Abstract: The large-scale household panel study Understanding Society has,
until recently, used interviewers to administer its questionnaires, but is now in
the process of allowing individuals to participate using the web. Survey data
are known to be affected by survey mode so a sequential-design experiment was
carried out to evaluate the impact of web mode on the panel. We present a
suite of approaches based on structural mean models for quantifying the impact
of mode across a range of statistical analyses involving variables with different
measurement scales. Adaptations of these methods to adjust for non-response
bias and for data from complex sampling designs will also be presented.

Keywords: Instrumental variable; Selection effects; Structural mean model.

1 Introduction

The survey mode of the British Household Panel Survey and its successor,
Understanding Society: The U.K. Household Longitudinal Study (UKHLS),
has traditionally been (face-to-face) interview, but UKHLS is following
other large-scale surveys by phasing in web mode as an option for the study
participants. Unfortunately, survey mode is not neutral as far as the collec-
tion of survey data is concerned. The use of web mode could be positive in
that respondents may answer sensitive questions more truthfully without
an interviewer present, but could also be negative for complicated questions
in which interviewer explanations and prompts could have helped to obtain
more accurate answers (d’Ardenne et al. 2017). Whether a large mode ef-
fect represents a decline in data quality thus depends on the question, but
the central issue here is that such changes could affect the resulting time
series.

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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To this end, a sequential mixed-modes experiment was carried out as part of
UKHLS Wave 8. Households were initially randomised either to interview
or web mode, but individual household members were then allowed to non-
comply by choosing the other mode. This design, akin to the encouragement
designs used for clinical trials, allows us to estimate mode effects by using
randomisation as an instrumental variable to adjust for potentially non-
random non-compliance. However, it is not straightforward to talk about
the mode effect for a survey like UKHLS, where the questionnaire involves
hundreds of questions and the data can be analysed in many different ways.

2 Mode Effects

Denote the observed values of the survey variables by Yi = (Y1i, . . . , Yki)
T

for i = 1, . . . , n. Using potential outcomes notation, let Yi(0) denote the
values recorded using interviewer mode and Yi(1) those recorded using
web mode. The first complicating issue is that we cannot observe both
responses. If Mi ∈ {0, 1} indicates the survey mode used by individual
i, then Yi(0) is counter-factual if Mi = 1 and Yi(1) is counter-factual
if Mi = 0 or, succinctly, Yi = (1 −Mi)Yi(0) + MiYi(1). We use causal
estimation techniques to addres this problem (see below).
The second complicating issue is to determine the relevant mode effect. If
your analysis involves only the mean of one continuous/binary variable then
Y = Y and the relevant mode effect for individual i is Yi(1) − Yi(0), that
is, the difference between the survey variable under the two modes for the
same individual, and the average mode effect is E

{
Yi(1)−Yi(0)

}
. However,

mode can also affect the spread of the survey variable distribution, which
could be measured by, e.g., var

{
Yi(1)

}
/var

{
Yi(0)

}
.

There are many more ways to estimate mode effects for multivariate anal-
yses. For example, if the aim were to estimate the coefficients of the mul-
tiple linear regression of Yk on Y1, . . . , Yk−1, the mode effects could be
βj(1) − βj(0) for j = 1, . . . , k − 1, where βj(m) is the hypothetical esti-
mand of the least-squares estimator of the coefficient of predictor j using
{Yi(m) : i = 1, . . . , n} as data. More generally, the multivariate mode ef-
fect Yi(1) − Yi(0) leads to an analysis-specific mode effect θ(1) − θ(0),
where θ is the parameter of analysis model g(y; θ) for a family or class of
models. We thus focus on mode effects for covariances because these are di-
rectly related to the parameters of the family of structural equation models
(Vannieuwenhuyze 2015).

3 Estimating Mode Effects and Data

For an observational survey in which participants were free to choose, non-
random mode selection would potentially confound the estimation of mode
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effects if the factors driving selection were associated with the characteris-
tics measured by the survey variables. A number of relatively simple meth-
ods for mode-effect adjustment would be available if it were possible to
control for these factors using mode-invariant Z (Kolenikov and Kennedy
2014). The most powerful approach developed to date is based on multi-
ple imputation of the counterfactual Yi(0) among those who choose web
(Park et al. 2016), but this is computationally intensive and requires many
modelling assumptions about the survey variables and the mode effect.
One way to eliminate non-random selection is to conduct an experiment in
which mode is randomly allocated. Sequential designs are more practica-
ble: participants are randomly allocated to survey mode but, should they
decline, are offered another mode in a pre-determined sequence until it is
clear they do not wish to respond. The advantage of this design is that,
while non-compliance can also be non-random, the initial randomisation
can be used as an instrumental variable to adjust for selection effects even
in the likely situation that no plausible Z is available. A sequential design
was implemented during the first phase of fieldwork for UKHLS Wave 8.
Our data are from a 60:40 randomisation of 5542 households (3298:2144)
to give 5866 interview-first and 3917 web-first individual participants. The
non-compliance among the interview-first and web-first individuals was,
respectively, 6.6% and 33.9%.

4 Structural Mean Models

Vannieuwenhuyze (2015) reviews the use of instrumental variables (IVs) for
the estimation of mode effects. Valid IVs for mode Mi affect Yi but only
through Mi and not any other pathway. We draw from the literature on
encouragement designs which use randomisation, where Goetghebeur and
Vansteelandt (2005) describe estimation of causal effects using structural
mean models.
If Ri indicates the randomised allocation and Mi the mode chosen by in-
dividual i, with Ri 6= Mi indicating non-compliance, a structural mean
model (SMM) for the average mode effect is

E {Yi − Yi(0) |Mi, Ri} = Miµ,

where the estimator for µ = E {Yi(1)− Yi(0) |Mi = 1} is derived from
the restriction E {Yi(0) | Ri} = E {Yi(0)}. The estimator µ̂ is identical
to the standard two-stage least squares estimator used by other authors to
estimate mode effects on the mean; however, unlike classical ‘IV regression’,
the definition of the target parameter is unambiguous. While µ is the mode
effect among those who choose web, not for the entire population, this is
the relevant parameter if the aim is to gauge the impact of introducing web
mode to what was a face-to-face survey. We also introduce the extension of
this model to assess the impact on binary and nominal categorical variables.
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The first novel estimator we introduce is for the effect of mode on the
variance of a continuous variable. The log-linear structural variance model
(SVM) is

log

[
var
(
Yi |Mi, Ri

)

var
{
Yi(0) |Mi, Ri

}
]

= Miϑ,

where the estimator for ϑ = var
{
Yi(1) | Mi = 1

}
/var

{
Yi(0) | Mi = 1

}

follows from E {Yi(0) | Ri} = E {Yi(0)} and E
{
Y 2
i (0) | Ri

}
= E

{
Y 2
i (0)

}
.

Moving on to the effect of mode on associations, we go on to consider
linear, log-linear and logistic SMMs for the effect of mode on the association
between two variables Yi = Yi1 and Xi = Yi2, where Xi is either mode-
invariant or only face-to-face. For cases where both Yi and Xi are mixed-
mode, we introduce the following linear structural covariance model (SCM)
for the effect of mode on the covariance:

cov (Xi, Yi |Mi, Ri)− cov {Xi(0), Yi(0) |Mi, Ri} = Mi%.

A linear SCM is appropriate if X and Y are not highly correlated (that
is, do not take values close to ±1). We derive an estimator for % and
its standard error based on E {Yi(0) | Ri} = E {Yi(0)}, E {Xi(0) | Ri} =
E {Xi(0)} and E {Xi(0)Yi(0) | Ri} = E {Xi(0)Yi(0)}. We note that Van-
nieuwenhuyze (2015) derived an alternative estimator for the effect on the
covariance. However, we use semiparametric theory (Tsiatis 2006) to derive
efficient estimating equations for all the models described above, and robust
sandwich estimators for the standard errors of these models’ parameters,
which we extend to allow for stratified multi-stage cluster designs.

5 Results

We will summarise the results of a simulation study into the properties of
the SMMs on UKHLS-like data; this study will also investigate the per-
formance of confidence intervals based on asymptotic approximations and
the bootstrap. However, the focus of our presentation will be on the 361 by
361 mode-effect array for 361 key UKHLS variables. The array’s diagonal
cells contain the mean and variance mode effects of the indexed variable,
and the off-diagonal cells the covariance mode effects. We will show how
this array can be used to investigate the impact of mode effects on analyses
involving those variables most at risk.
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Abstract: Hidden Markov models are popular tools for modeling time series
where, at each point in time, a hidden state process selects among a finite set of
possible distributions for the observations. Specifically for time series of counts,
the Poisson family often provides a natural choice for the state-dependent distri-
butions, though more flexible distributions such as the negative binomial or dis-
tributions with a bounded range can also be used. Choosing an adequate class of
(parametric) distributions, however, is a complex task, and an inadequate choice
can have severe negative consequences on the model’s performance. To address
this issue, we propose a nonparametric approach to fitting hidden Markov models
to time series of counts, where the state-dependent distributions are estimated in
a completely data-driven way without the need to specify a (parametric) family
of distributions. To avoid overfitting, a roughness penalty is added to the likeli-
hood. The suggested approach is illustrated in a real-data application, where the
distribution of major earthquake counts is modeled over time.

Keywords: Count data; Nonparametric statistics; Penalized likelihood; State-
space model; Time series modeling.

1 Introduction

Hidden Markov models (HMMs) constitute a versatile framework for mod-
eling diverse types of time series data, including, inter alia, binary data,
positive real-valued data, circular data, categorical data, compositional
data, and count data. Depending on the application at hand, potential
aims which can be addressed using HMMs include the prediction of future
values of a time series, decoding of the hidden states underlying the ob-
servations, and inference on the drivers for example on the state-switching
dynamics (Zucchini et al., 2016).

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
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Figure 1: Dependence structure of a basic hidden Markov model.

a first-order Markov chain, i.e. we assume the state process to satisfy the Markov property,

Pr(St|S1, . . . , St−1) = Pr(St|St−1), t = 2, . . . , T . This simplifying dependence assumption

is exploited in the likelihood calculations provided in Section 2.2 and can be relaxed to

higher-order Markov chains or semi-Markov chains if deemed necessary (Zucchini et al.,

2016). Assuming the first-order Markov chain to be time-homogeneous, the state transition

probabilities are summarized in the N ×N transition probability matrix (t.p.m.) Γ, with

elements

γij = Pr (St = j|St−1 = i) ,

i, j = 1, . . . , N . The initial state probabilities, i.e. the probabilities of the state process

being in the different states at time t = 1, are summarized in the N -dimensional row

vector δ, with elements

δi = Pr (S1 = i) ,

i = 1, . . . , N . If the Markov chain is assumed to be stationary, which is reasonable in many

applications, then the initial distribution is the stationary distribution, i.e. the solution to

the equation system δΓ = δ subject to
∑N

i=1 δi = 1 (Zucchini et al., 2016). Otherwise, the

initial state probabilities are parameters which need to be estimated. The state process is

completely specified by the initial state probabilities and the state transition probabilities.

The basic dependence structure is such that the observations are assumed to be con-

ditionally independent of each other, given the states. The states then directly select

which of N possible distributions generates the observation at any time point. This de-

pendence structure is illustrated in Figure 1. For time series of counts, the observed

(state-dependent) process {Yt}t=1,...,T is determined by its state-dependent p.m.f.s, Pr(Yt =

5

FIGURE 1. Dependence structure of a basic hidden Markov model.

A challenging task in HMMs is the specification of the state-dependent
distributions, especially in cases where parametric distributions are not
sufficiently flexible to capture complex distributional shapes. While a non-
parametric solution based on penalized B-splines (Eilers and Marx, 1996)
has been presented for continuous-valued time series (Langrock et al., 2015,
2018), a solution for time series of counts is currently lacking. In this paper,
we present such a nonparametric alternative for time series of counts, where
the state-dependent distributions are estimated in a completely data-driven
way without the need to specify a (parametric) class of distributions.

2 Methodology

2.1 Model formulation

Basic HMMs comprise two stochastic processes,

• a (hidden) state process, {St}t=1,...,T , which is usually modeled as a
discrete-time, N -state Markov chain;

• the (observed) time series of interest, {Yt}t=1,...,T , which in our spe-
cific case is a time series of counts.

Assuming the Markov chain to be time-homogeneous and of first order, the
state process is specified by the transition probability matrix Γ = (γij),

γij = Pr (St = j|St−1 = i) ,

i, j = 1, . . . , N , and the initial distribution vector δ = (δi),

δi = Pr (S1 = i) ,

i = 1, . . . , N .
The states determine which of N possible distributions generates the ob-
served count at any time point. The dependence structure of such a basic
HMM is illustrated in Figure 1.
While it is common to consider some parametric distributional family such
as the class of Poisson or negative binomial distributions, we drop this
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assumption and instead assign a state-specific probability to each possible
count on the bounded support {0, . . . ,K},

πi,k = Pr(Yt = k|St = i),

i = 1, . . . , N and k = 0, . . . ,K, where the upper bound, K, should at least
cover all observed counts.

2.2 Model fitting

Defining the forward probabilities αt(i) = Pr(y1, . . . , yt, St = i), which are
summarized in the row vectors αt = (αt(1), . . . , αt(N)), the recursion

α1 = δP (y1) ; αt = αt−1ΓP (yt) ,

where P(k) = diag(π1,k, . . . , πN,k) and 1 ∈ RN is a column vector of ones,
can be applied to compute αT , from which the likelihood

L(θ) = Pr(y1, . . . , yT |θ) =

N∑

i=1

αT (i) = αT1 (1)

is obtained by the law of total probability. Here θ is the parameter vector
comprising the initial state probabilities, the state transition probabilities,
and the state-dependent probabilities of counts.
To avoid overfitting, a roughness penalty is added to the logarithm of the
likelihood given in (1), which leads to the penalized log-likelihood

log (Lpen.(θ)) = log (L(θ))−
N∑

i=1

λi

K∑

k=m

(∆mπi,k)
2
,

where λi, i = 1, . . . , N , is a smoothing parameter associated with the i-th
state-dependent distribution, and where ∆mπi,k = ∆m−1(∆πi,k), ∆πi,k =
πi,k − πi,k−1, denotes the m-th order differences between adjacent prob-
abilities of counts (typically, m = 3). The smoothing parameters can be
selected by cross validation over some grid of possible values, where the
values corresponding to the highest average out-of-sample log-likelihood
are chosen.

3 Illustrating example

To illustrate the suggested approach, we re-consider the running example
from Zucchini et al. (2016) and model the count variable

yt = # of earthquakes worldwide with magnitude ≥ 7 in year t

over time. The data cover the period from 1900 to 2006. For comparison,
we fitted three different models,
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FIGURE 2. Fitted state-dependent probability mass functions (dots and crosses)
under the different estimation approaches and decoded time series, with the de-
coding performed under the model fitted using the penalized nonparametric ap-
proach.

• a 2-state Poisson HMM (as a benchmark model);

• a nonparametric 2-state HMM without roughness penalization;

• a nonparametric 2-state HMM with roughness penalization.

Under the model fitted using the penalized nonparametric approach, the
transition probability matrix was estimated as

Γ̂ =

(
0.934 0.066
0.128 0.872

)
.

The associated stationary distribution, δ = (0.660, 0.340), indicates that
about 2/3 and 1/3 of the observations were generated in state 1 and 2,
respectively.
The fitted state-dependent probability mass functions obtained by penal-
ized maximum likelihood estimation and the decoded time series, with the
decoding performed under the model fitted using the penalized nonpara-
metric approach, are displayed in Figure 2. While the parametric model
clearly lacks the flexibility to account for the overdispersion present in the
data, the nonparametric model without penalization substantially overfits
the data. The nonparametric model with penalization, in contrast, is able
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FIGURE 3. Quantile-quantile plot (left) and autocorrelation function (right) of
the ordinary normal pseudo-residuals.

to capture the overdispersion specifically in state 2 and yields smooth func-
tional shapes of the estimated state-dependent probability mass functions.
Within each of the three different models considered, state 1 may be inter-
preted as a rather calm regime relating to periods of relatively low seismic
activity, whereas state 2 corresponds to periods of relatively higher seismic
activity.
Residual checks of the model fitted using the penalized nonparametric ap-
proach based on ordinary normal pseudo-residuals are displayed in Fig-
ure 3. Pseudo-residuals, which are commonly used for model checking in
HMMs, indicate whether an observation is extreme relative to the con-
ditional distribution under the fitted model, given all other observations,
and approximately follow a standard normal distribution if the model fits
the data well (Zucchini et al., 2016). Overall, the plots do not reveal any
substantial lack of fit.

4 Discussion

The proposed methodology constitutes a promising alternative to paramet-
ric HMMs for time series of counts (MacDonald and Zucchini, 1997). The
increased flexibility to capture complex distributional shapes can improve
the model’s performance, but can also be regarded as an exploratory tool
in applications where it is unclear which distributional family provides an
appropriate choice.
On a final note, we wish to highlight that the presented approach is not
restricted to modeling time series of counts; in fact, any discrete-valued
time series where the observations are at least of ordinal scale (e.g. data
on Likert-type scales) can, in principle, be modeled (in a similar spirit as
presented in Simonoff, 1983).
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Abstract: Estimation of latent network flow is a common problem in statistical
network analysis. Often, we know at least the margins, i.e. in- and outdegrees.
In this paper, we develop a generalized mixed regression model to estimate in-
teger temporal network flows if only the differences of in- and outdegrees are
known. Estimation can be performed via an iterative penalized maximum likeli-
hood approach. We apply our model to the Vienna Bike-Sharing network. The
results show that station- and time-specific effects can be estimated well while it
is harder to perform estimation for route-specific effets.

Keywords: Approximate EM-Algorithm; Bike-Sharing Networks; Generalized
Additive Mixed Models; Network Flow; Skellam Distribution

1 Model and Notation

Consider a temporal network having N nodes (stations) and therefore N2

possible edges (routes between stations), where we also allow for self-loops.
For the discrete sequence of points in time t = 0, 1, . . . , T we observe a
realization of the N0-valued random variable Ci(t) (station feeds) on every
node i = 1, . . . , N . We denote with Yij(t) the count of trips from station i
to station j departing in the interval [t−1, t) and choose each time interval
to be one hour. Our aim is to estimate the network flows Yij(t) based on the
hourly station feeds Ci(t). Since a bike trip departing in [t − 1, t) doesn’t
need to reach its destination within the same time interval, we account
for these trips by installing a latent station “on the way”, denoted by w.
Hence, at every time point t, each bike in the network is either parked in
one of the N physical stations or it is located at the latent station w. For
the latter, we don’t allow for self-loops such that a trip can span at most
two time intervals in our model.

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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We model the counts separately for each hour of the day and assume the
log-linear Poisson model Yij(t) ∼ Poi(λij(t)) where

λij(t) = exp(ηij(t)) = exp
(
η(zij(t)) + uout

i + uin
j

)
. (1)

To account for unobserved station specific heterogeneity we specify random
effects in (1) which are modeled as independently multivariate normally

distributed, i.e. ui =
(
uout
i , uin

i

)> ∼ N (0,Σ) .

The linear predictor η(zij(t)) = zij,lin(t)β +
∑M
m=1 sm(zij,m(t)) is con-

structed from the row vector zij(t) = (zij,lin(t), zij,1(t), . . . , zij,M (t)) which
consists of an intercept as well as station-, route- and time-specific covari-
ate values. The vector zij,lin(t) contains linear effects, the scalars zij,m(t)
contain effects that are modeled semiparametrically. Furthermore, sm(·) is
some smooth function in zij,m(t) represented by a B-spline basis and a vec-
tor of basis coefficients γ(m). A sum-to-zero constraint is enforced to ensure
the identifiability of the M spline functions. According to Wood (2006), we
specify a normal prior on the parameters γ(m) such that the estimation of
Σ and the smoothing parameters ρm can be performed simultaneously. We
penalize the second-order differences of γ(m) such that the variance of γ(m)

is given by ρ−1
m K

(m)
2

−
where K

(m)
2 is the second-order difference matrix.

We propose both a model to estimate the whole network flow and a model
to estimate only the count of incoming and outgoing bikes at each station.
First, the network flows are assumed to be independent given the covariates
and random effects. Therefore, the counts of incoming bikes Y·i(t) to station
i in [t−1, t) and the number of outgoing bikes Yi·(t) from station i in [t−1, t),
respectively, are again Poission-distributed, so that

Y·i(t) =

N∑

j=1

Yji(t) + Ywi(t) ∼ Poi




N∑

j=1

λji(t) + λwi(t)


 = Poi(λ·i(t)) (2)

where Yi·(t) is defined in a similar way. We obtain for the difference in the
i’th station count

Di(t) = Ci(t)− Ci(t− 1) = Y·i(t)− Yi·(t)
a Skellam distribution with parameters λ·i(t) and λi·(t), see Alzaid and
Omair (2010). Furthermore, the differences of the physical station feeds
imply the differences of the latent station’s feeds by

Dw(t) =

N∑

j=1

Yjw(t)−
N∑

j=1

Ywj(t) = Y·w(t)− Yw·(t) = −
N∑

i=1

Di(t).

Thus, our regression model results to Di(t) ∼ Skellam(λ·i(t), λi·(t)) with

P(Di(t) = di(t)) = e−(λ·i(t)+λi·(t))

(
λ·i(t)
λi·(t)

) di(t)

2

I|di(t)|
(

2
√
λ·i(t)λi·(t)

)
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for i ∈ {1, . . . , N,w}, t ∈ {1, . . . , T} and where Id(·) denotes the modified
Bessel function of the first kind. This modeling approach is further denoted
as model 1.
In the second approach (model 2), we estimate the in- and outdegrees of
the temporal network similar to model 1, i.e. Di(t) ∼ Skellam(λ·i(t), λi·(t)).
However, now the parameters are modeled as λ·i(t) = exp

(
η(zin

i (t)) + uin
i (t)

)

and λi·(t) = exp (η(zout
i (t)) + uout

i (t)). The linear predictors η(zout
i (t)) and

η(zin
i (t)) are built from η(zij(t)) where any route-specific effects are re-

moved. Making use of the estimated in- and outgoing bikes at each station,
one can also estimate the network flow. For example, Chen et al. (2017)
estimate the network flow in bike-sharing systems using a type of lasso-and
ridge-penalization technique if in- and outdegrees are actually observed.

2 Estimation

Following Fahrmeir and Tutz (2001), estimation of both models is per-
formed by an approximate EM-algorithm. To do so, we first assign a flat
prior to the parameters β and maximize the log-posterior l(δ) = f(δ|d; Σ, ρ)
with repect to δ = (β, γ(1), . . . , γ(M),u1, . . . ,uN ) given the observed dif-
ferences d as well as current estimates of Σ and the smoothing parameters
ρ = (ρ1, . . . , ρM ). It can be shown that

l(δ) =

N∑

i=1

∑

t∈T
lD(di(t) | δ)−

1

2

M∑

m=1

ρmγ
(m)>K

(m)
2 γ(m) − 1

2

N∑

i=1

u>i Σ−1ui.

Here, T denotes the set of time points which belong to the evaluated hour of
the day. The posterior which is not normal can be interpreted as a penalized
log-likelihood where the penalties refer to the spline-parameters γ(m) and
to the random effects ui, respectively. Second, we update estimates of Σ
and ρ involving δ̂ and the estimated covariance matrix of δ̂. More precisely,
in the p’th iteration we compute

Σ̂(p) =
1

N + 1

∑

i∈{1,...,N,w}

(
V̂uiui + ûiûi

)

where V̂ = (F̂obs)
−1(δ̂) denotes the inverse of the observed Fisher matrix of

δ and V̂ui denotes the diagonal elements of V̂ related to ui. The update of
ρ is calculated accordingly. This iterative procedure stops if a convergence
criterion based on a matrix and a vector norm of Σ and ρ, respectively, is
fullfilled. For model 1, we obtain an estimate of the latent network flow by
inserting the estimate δ̂ into (1). For model 2, we first estimate the margins

by inserting δ̂ into λ·i(t) and λ·i(t). Subsequently, one can estimate the flows
Yij(t) based on the estimated margins, e.g. by applying the method of Chen
et al. (2017).
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3 Application to the Vienna Bike-Sharing System

We apply our models to the Vienna Bike-Sharing network in the year 2014
consisting of N = 120 stations. The complete trip data is used for evalua-
tion purposes. The network is very sparse: 99,1% of the observed yij(t) are
equal to zero which complicates the estimation. Furthermore, the provider
redistributes bikes to keep the station feeds balanced. Therefore, we exem-
plarily evaluate our model for the hour from 5-6 pm on weekdays where the
network is least sparse and service rides of the provider only account for
3% of the traffic. Figure 1 shows an extract of the considered bike network
indicating the 30 most frequently traveled routes to that time. The larger
the dots, the more the station is frequented. The linear predictor η also
includes weather specific variables as temperature since they considerably
affect the utlization of the system, see the right panel of Figure 1.
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FIGURE 1. Left Panel: The Vienna Bike-Sharing System (5-6 pm on weekdays);
Right Panel: Trips per Hour depending on the outside Temperature

4 Results

The total count of trips per hour can be estimated well with both methods
whereas model 2 performs slightly better (top panel of Figure 2). From
the middle panels of Figure 2 we can infer that estimating the in- and
outdegrees directly (model 2) leads to better predictions of the cumulated
margins as if we estimate the whole network flow. On average, Model 1
overestimates in- and outdegrees. Using model i, the Pearson correlation
coefficients rp(i) of the observed and estimated time series in Figure 2 are
rp(1) = 0.934 and rp(2) = 0.938, respectively. Calculating these coefficients
for each station individually, the correlations are clearly lower with a mean
of rp(1) (rp(2)) equal to 0.50 (0.51) and a standard deviation equal to 0.13
(0.13). Anyhow, the more frequented a station is, the better is the predic-
tion accuracy. The mean of rp(1) (rp(2)) restricted to the 32 most frequented
stations that determine half of the network flow is equal to 0.63 (0.62) with
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a standard deviation of 0.08 (0.09). Although the correlations are simi-
lar, the average L1 error when using model 2 for estimating the in- and
outdegrees is 9% lower.
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FIGURE 2. Top Panel: Time Series of Observed vs. Estimated Trips per Hour;
Middle Panels: Observed vs. Estimated Cumulated In- and Outdegrees over the
Estimation Period: Model 1 (left), Model 2 (right); Bottom Panels: Multiplicative
Density Estimates of Smooth Effets with 95% Confidence Bands

In the bottom panels of Figure 2 we display the densities including 95% con-
fidence bands of both smooth effects that we estimated with model 2. The
smooth temperature effect fits to the corresponding empirical distribution
(Figure 1) and the uncertainty grows with the temperature. Furthermore,
the bottom right panel of Figure 2 shows that the system is mostly used
in spring and fall disregarding all other effects included in the model.
Finally, we assess the performance of the model by the ability of detect-
ing the most frequented routes in the network and estimating the distance
effect. The intersection of the 100 most frequented routes that were es-
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timated with Model 2 and the actually 100 most frequented routes is 33
routes. Table 1 shows that the count of trips less than 2 km and loops are
underestimated. The weight of trips between 2 km and 5 km is slightly
overestimated. Trips with a distance of more than 5 km (1/3 of all possible
routes) are clearly overstimated.

TABLE 1. Percentage of Cumulated Trips by Distance in km

Distance 0 (0, 1] (1, 2] (2, 3] (3, 4] (4, 5] > 5

Observed 7.5% 10.0% 27.1% 23.0% 16.2% 8.5% 7.6%
Estimated 4.5% 5.03% 22.5% 25.8% 18.7% 10.7% 12.7%

5 Discussion

Model 2 produces more accurate estimates of the in- and outdegrees which
can be explained by the more stringent independence assumption we pos-
tulate for model 1. Here, we assume that all counts of trips Yij(t) are
independent and not only the counts of in- and outgoing trips. Moreover,
the estimation routine of Model 2 needs considerably less computation time
than Model 1. For both methods, the EM-algorithm algorithm needs less
than 10 iterations until convergence. Our results show that estimating the
most frequent routes traveled in the bike-sharing system is hard making use
of station feeds only. However, even though we do not input any informa-
tion on routes traveled, the estimated coefficient for distance is significantly
negative, i.e. routes covering longer distances get lower weights.

Acknowledgments: Special Thanks to ZAMG (Vienna) for providing
the weather data and to Michael Sedlmair (University of Stuttgart) and
Michael Oppermann (UBC Vancouver) for providing the station feed data.
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Abstract: In a variety of situations of applied interest there is a need for com-
bining real data with simulated data (say, obtained from a climate model); yet
the marginal features of both data may differ—either in the bulk or in the tail.
This article devises a covariate-adjusted equipercentile calibration method that
gets both data on the same scale, and that can be used for learning about how the
differences between the distributions—of simulated and real data—may change
along with a covariate. Another byproduct of this article is a regression method
that simultaneously models the bulk and the (right) tail of the response—of either
the simulated data or the real data. The methods are illustrated on numerical
experiments and on a case study with rainfall data.
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1 Equipercentile calibration

We start by laying the groundwork. Let Y be the observed data and Z
be the simulated data. We start by noting that a simple way to calibrate
the simulated data is via an equipercentile transformation (González et al.,
2015) as follows

Z∗i = F−1
Y (FZ(Zi)), i = 1, . . . , n. (1)

Below, we will refer to the Z∗i obtained via this approach as the calibrated
simulated data. Note that the Z∗i have the same distribution as the observed
data, Y , as indeed

P (Z∗i ≤ z) = P{F−1
Y (FZ(Zi)) ≤ z} = P{Ui ≤ FY (z)} = FY (z), z > 0,

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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by noting that Ui = FZ(Zi) follows a standard uniform distribution, for
i = 1, . . . , n. For this setup, we could resort to Naveau et al. (2016) so to
calibrate the data as in (1), which would have the nice feature of being able
to ‘fairly’ calibrate at all quantiles—including the extremes.

2 Covariate-adjusted calibration

Suppose now we would like to calibrate the simulated data conditionally on
covariates x = (x1, . . . , xp)

T. We proceed in a similar way as in (1), which
yields the following covariate-adjusted calibrated data

Z∗i = F−1
Y (FZ(Zi | xi) | xi), i = 1, . . . , n. (2)

To model the conditional distributions in (2) we would extend the approach
in Naveau et al. (2016) to the conditional setting. To ease notation, we will
only introduce the model for FY (y | x), which is given by

FY (y | x) = Gx

(
Hξ

(
y

σ

))
, (3)

where {Gx} is a family of functions indexed by a covariate, obeying as-
sumptions A, B, and C in Naveau et al. (2016), and

Hξ(y) =

{
1− (1 + ξy)

−1/ξ
+ , ξ 6= 0,

1− exp(−y), ξ = 0.

One of the main advantages of Naveau et al. (2016) is that one bypasses
the step of threshold selection. Since threshold selection is an even more
challenging issue in the conditional setting—as it entails looking for {ux}—
that advantage becomes even more notorious in our setting.
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(right), for Scenarios 1 and 2; the gray points (•) represent the simulated data
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Pereira et al. 149

An obvious consequence of Naveau et al. (2016, Eq. (7)), is that for 0 <
p < 1:

F−1
Y (p | x) =

{
σ
ξ [{1−G−1

x (p)}−ξ − 1], ξ > 0,

−σ log{1−G−1
x (p)}, ξ = 0.

(4)

From (4) we could then conduct the covariate-adjusted calibration as de-
fined (2). In the implementations in Section 3 we focus the specification

Gx(u) = uβ0+β1x, (5)

and resort to maximum likelihood estimation. In future implementations
we aim to resort to a GAM (Generalized Additive Model) (Wood, 2006),

based on the specification Gx(u) = uκx = uβ0+
∑p
j=1 fj(xj) , with fj de-

noting a smooth function corresponding the the jth covariate, for all j.
An interesting aspect of (4) is that it is a simple model bridging quantile
regression with extremal quantile regression. Quantile regression,

F−1
Y (p | x) = xTβ(p), 0 < p < 1,

is by now well understood (Koenker, 2005), but a limitation with its stan-
dard version is its inability to extrapolate into the tails of the conditional
distribution. Extremal quantile regression are a class of models whose con-
cern is precisely on modeling high quantiles, and which possess the ability
to extrapolate into the tails of the conditional distribution (see e.g. Cher-
nozhukov, 2005).

3 Experiments and case study

3.1 Numerical experiments

Key to our approach is the regression model in (3). Thus, to illustrate (3),
under the specification in (5), we consider the following scenarios:

• Scenario 1: Simulation from a well-specificed setting, i.e., with data
simulated according to (4). Specifically, we set σ = 1, ξ = 0.1, β0 = 1
and β1 = 20.

• Scenario 2: Simulation from a misspecificed setting, i.e., with data
simulated according to (4) but allowing for σ = exp(α0+α1x). Specif-
ically, we set β0 = 1,β1 = 0, ξ = 0.1, α0 = 0.1, and α1 = 0.1.

For comparing the estimated and the true conditional densities obtained
in each scenario, 100 observations were simulated; the covariates were sim-
ulated from a standard uniform distribution. Figure 1 shows the true and
the estimated conditional densities for Scenarios 1 and 2. As it can be seen
from Figure 1 the method recovers satisfactorily well the true conditional
density—especially keeping in mind that only 100 observations are simu-
lated.
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3.2 Illustration on real data

We now showcase how the method can be used in practice in a real data
example. We consider real (y) and simulated (z) rainfall data from the
county of Vizela (North of Portugal) from the year 2007; we focus only on
y > 0. The data were gathered from Instituto Dom Luiz. The target is on
assessing how real and simulated data compare over time (x).
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FIGURE 2. Observed (•), simulated (•), and calibrated (+) data.

Figure 2 depicts real and simulated data, along with calibrated data ob-
tained according to (2).
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Abstract: The family of Mixtures of Generalized Nonlinear Models seems to
be appropriate to provide predictions of the maximum gas consumption for ex-
tremely cold temperatures as they simultaneously face the problem of occurring
heterogeneity arising from effects like sector-specific features (e.g. industrial or
private consumer groups) or weekday-specific dependencies. The objective is to
outline the statistical methods to enable the fitting of these models as well as to
present a class of suitable applications.
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1 Introduction and Problem Specification

Finite mixture models (FMMs) represent a highly accommodative class of
statistical models which gained strong interest in recent years. Due to their
flexibility FMMs cover a large area of application. The particular group
of mixtures of regression models has largely contributed to the gain in
popularity of FMMs. This model class has been widely studied by Bettina
Grün and Friedrich Leisch who developed the package flexmix in R for
model-based clustering and mixtures of Generalized linear models (GLMs).
As certain practical applications buttress the use of nonlinear regression
functions the present work introduces the new model class of mixtures of
Generalized nonlinear models (GNMs). It furthermore provides an efficient
implementation of GNMs in R as an extension of the powerful package
flexmix.
A suitable application of mixtures of GNMs is given by gas consumption
data where gas suppliers agreed to model the load profile based on a sig-
moid regression function. Figure 1 shows two examples of typical gas flow
patterns (daily maximum gas flows displayed in dependence of the mean
outside temperatures). The gas flow pattern exhibits in general a decreas-
ing shape for increasing temperatures (sigmoidal structure) converging to
a minimum consumption level. The present data samples outline specific

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Two typical daily maximum gas consumption patterns depending on
the average outside temperature

properties which can be addressed to heterogeneity due to latent classes.
While the data set on the left shows two evident subgroups with different
consumption levels, the second data set on the right side exhibits an in-
creasing variability for low outside temperatures and shows two different
minimum consumption levels. The aim of what follows is to present mix-
ture models of GNMs as an appropriate statistical model to face such an
occurring heterogeneity. The variability structure and the aim to model
daily maxima will be taken into account by the use of gamma densities
within mixtures of GNMs.

2 Mixtures of Generalized Nonlinear Models

Any K component mixture model can be marginally defined by the prob-
ability density function (pdf)

f(yi|θ,π) =

K∑

k=1

πkf(yi|θk), i = 1, . . . , n, (1)

where y = (y1, . . . , yn) represents the observed values of the responses.
Since we will model daily maxima we focus on mixtures of gamma pdf’s.
The component specific parameters are then θ = (θ1, . . . ,θK) with θk =
(µ(βk), φk) comprising the mean and dispersion in the k-th gamma com-
ponent, with mixing weights π = (π1, . . . , πK). The present work takes up
on the sigmoid function in Friedl et al. (2012) as nonlinear mean function
in the k-th component, i.e.

E(yi|k) = µi(βk) = βk4 +
βk1 − βk4

1 +
(

βk2

ti−40o

)βk3
, i = 1, . . . , n, (2)
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where ti denotes the mean outside temperature. In order to model the
variability structure, the conditional variance in the k-th component is
assumed to be V ar(yi|k) = φkV (µi(βk)) with dispersion parameter φk and
variance function V (µi(βk)) = µ2

i (βk).
Alternatively, define the indicator vector zi = (zi1, . . . , ziK) as

zik =

{
1, if yi is from component k,

0, otherwise.

Then the joint sample pdf can be written as

f(y, z|θ,π) =

n∏

i=1

K∏

k=1

f(yi|θk)zikπzikk .

In order to find the maximum likelihood estimates we apply the EM algo-
rithm (Dempster et al., 1977) where the objective function to be iteratively
maximised is given by

Q(θ,π|θ(t),π(t)) =

n∑

i=1

K∑

k=1

w
(t)
ik log(f(yi|θk)πk). (3)

In a subsequent maximization step (M-step) the parameter vectors θ and
π are updated. In the t-th M-step the posterior probabilities

w
(t)
ik =

f(yi|θ(t)
k )π

(t)
k

K∑
l=1

f(yi|θ(t)
l )π

(t)
l

(4)

are considered to be fixed and maximization of (3) results in π(t+1) and
θ(t+1). This iterative process starts with some appropriate initial values
θ(0) and π(0).

3 Marginal Confidence Intervals

An objective of this study is the accurate prediction of gas flow for low
temperatures where the observations are typically sparse. The use of mix-
tures of GNMs enables the prediction of gas flow comprising individual
differences in consumption levels within the identified components. The
forecast of gas flow is therefore expressed by the general mean over the
K-component mixture denoted as µM (·) and evaluated at the component
specific distribution parameters βk and weighted by the prior probabilities
πk for k = 1, . . . ,K.
The predictions are subject to a specific level of uncertainty. In order to
assess the variability of the mean predictions, the corresponding confidence
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intervals are constructed by the use of the Delta method. Thus, the variance
of the mean function µM (β̂) can be approximated by its gradient and the
variance-covariance matrix of the MLE β̂. The latter can be approximated
by the following expression

V ar(µM (β̂)) ≈ ∇(µM (β̂))>Cov[β̂]∇(µM (β̂)),

where the gradient ∇(µM (β̂)) ∈ RKP contains all the derivatives with
respect to the parameters and is thus given by

∇(µM (β)) =

(
∂µM (β)

∂βkp

)

k=1,...,K; p=1,...,P

.

The corresponding level (1−α) confidence interval for µM (β) can be derived
as

(1− α)% CI(µM (β)) ≈
(
µM (β̂)± z1−α/2 ·

√
V ar(µM (β̂))

)
,

where µM (β̂) corresponds to the predicted mean value of the maximum
gas consumption given an average outside temperature xi and zα denotes
the α quantile of the standard normal distribution.

4 Results

We now apply such a gamma mixture model to the real world gas flow
data that have been already visualized in Figure 1. For this purpose the R

package flexmix was extended for a new model class enabling the fitting
of mixtures of GNMs. Figure 2 shows the original data together with the
fitted nonlinear mean models for the application of two-component gamma
mixture models.
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FIGURE 2. Fitted two-component gamma mixture models



Friedl and Omerovic 155

The mean of each of both gamma components is modelled according to the
sigmoidal function (2). A final component classification of all the responses
is determined by their maximum posterior weights maxk wik, i = 1, . . . , n,
as given in (4).
The first data set (left side) exhibits a dense structure whereas under the
gamma mixture model two components with intersecting mean functions
have been identified. The mixture model further succeeds to identify the
two evident minimum consumption levels.
The second data set (right side) shows two well separated components
with a band-like structure. Within the present data sample, as displayed
in Figure 1, the gas flow attains temperatures up to a level of about −10
degrees Celsius (o).
The fitted mean functions enable the prediction of the mean maximum
gas flow for low temperatures, even below the observed temperatures. The
predicted values for the temperatures −12o, −14o and −16o are displayed
in Table 1. In order to assess the variability of the predicted values, the
respective 95% confidence intervals are also displayed as additional infor-
mation.

TABLE 1. Predicted values and confidence intervals (in kWh/h)

Temperatures in degrees Celsius (o)

−12o −14o −16o

Data set 1 415 419 422
(396, 434) (399, 439) (400, 444)

Data set 2 13072 13153 13215
(12113, 14031) (12137, 14168) (12153, 14277)

5 Conclusions

Mixtures of GNMs prove as an adequate statistical model to incorporate
heterogeneity due to latent classes whereas the application of GNMs enables
the use of distributional shapes and models beyond the classic nonlinear
regression model. The fitting can be also easily extended to K > 2 compo-
nents whereas a direct comparison of different models is enabled through
appropriate model selection criteria. Further extensions allow for modifica-
tions of the applied nonlinear mean function.

Acknowledgments: The authors are thankful to Bettina Grün for all the
fruitful discussions and for sharing her knowledge regarding the implemen-
tation of the extension FlexMixNL within the flexmix package in R.
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Abstract: During the last decades there has been an increasing interest in dis-
tributional regression models that allow to model the entire data distribution
conditional on covariates. In particular, the framework of structured additive
distributional regression models enables to specify different types of effects such
as linear, nonlinear or interaction effects on all the distribution parameters hence
providing a very flexible and generic framework suited for many complex real
data problems. However, when it comes to the question of variable selection, es-
tablishing a reasonable and ‘good’ distributional model is difficult in practice. In
addition, the exact functional forms and possible interactions are often hard to fix
in advance even with advanced expert knowledge. To overcome this drawback, we
propose an extension of the structured additive regression predictors by a feed-
forward neural network that allows to learn the functional forms and potential
complex interactions of dependent variables from the data within the algorithm.
We propose an efficient implementation that allows for sparsity through the elas-
tic net. In an application on leukaemia survival data we show that the novel
unstructured approach clearly outperforms a number of benchmark models.

1 Introduction

Semiparametric regression models offer considerable flexibility concerning
the specification of additive regression predictors including effects as di-
verse as nonlinear effects of continuous covariates, spatial effects, random
effects, or varying coefficients. Recently, such flexible model predictors have
been combined with the possibility to go beyond pure mean-based analy-
ses by specifying regression predictors on potentially all parameters of the
response distribution in a distributional regression framework (Klein et al.,

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).



158 Neural Network Distributional Regression

2015). In these models, one assumes

y ∼ D (h1(θ1) = η1, h2(θ2) = η2, . . . , hK(θK) = ηK) ,

where D denotes a parametric distribution for y with K parameters θk,
k = 1, . . . ,K, that are linked to additive predictors using monotonic one-
to-one transformations hk(·). The k-th additive predictor is given by ηk =
ηk(x;βk) = f1k(x;β1k)+ . . .+fJkk(x;βJkk), Several approaches have been
developed to allow for the inclusion of general tensor product interactions
within the structured additive framework. However, one drawback of all
these models is that the predictors need to be specified by the user which
can be difficult since in most situations higher dimensional nonlinear inter-
actions between covariates are hard to identify a priori and comparison of
all potential model specifications is computationally infeasible.

2 Cox Model for Leukaemia Survival Data

For instance, for the analysis of leukaemia survival data of n = 1, 043
patients in a study reported by the North West Leukaemia Register in the
United Kingdom, the hazard of an event (status dead) at time t can be
described with a relative additive risk model of the form:

λ(t) = exp (η(t)) = exp (ηλ(t) + ηγ) ,

i.e., a model for the instantaneous event risk conditional on being alive
before time t. The probability to not survive after time t is

S(t) = Prob(T > t) = exp

(
−
∫ t

0

λ(u)du

)
.

Here, the hazard function is assumed to depend on a time-varying pre-
dictor ηλ(t) and a time-constant predictor ηγ . In most survival models,
the time-varying part ηλ(t) represents the so-called baseline hazard and
is a univariate function of time t. However, Henderson et al. (2002), who
analysed this data before found that considerable between patient hetero-
geneity remains conditional on treatment and known prognostic factors
despite effective therapies. Part of this heterogeneity may be linked to spa-
tial effects but also complex and nonlinear interactions of demographic or
clinical variables across time and space.

3 Unstructured Neural Network Predictors

To address these challenges we consider feedforward neural networks (FNN),
which are extensively used in regression and classification applications in
machine learning. The general idea is to use a FNN model term fjk(Xjk;βjk)
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additional to all other effects in a typical structured additive predictor ηk. A
FNN model term has the simple structure fjk(Xjk;βjk) = Xjkβjk, where
the columns of Xjk are a composition of activation functions, e.g., using
the sigmoid the l-th column (node) is

hl(x) =
1

1 + exp(−(w>l x + bl))
,

where wl and bl are inner weights and biases. However, estimation is usually
difficult due to the high dimensionality of these parameters. To render
inference in a distributional model feasible we follow Dudek (2017) and
randomly sample the weights and biases such that the most nonlinear and
steepest parts of the activation functions are inside the data region. In
addition, to obtain sparsity and to avoid overfitting, we use elastic net
regularization

λjk1 · JL(βjk) + λjk2 · JR(βjk),

%mbox with ridge penalties JR and quadratic approximations of the lasso
penalties JL.

4 Model Specification and Results

For the leukaemia survival example, we use the following additive predictors

ηλ = f1(time) + f2(time, sex, age, wbc, tpi, xcoord, ycoord)

ηγ = β0 + sex + f3(age) + f4(wbc) + f5(tpi) +

f6(xcoord, ycoord) + f7(sex, age, wbc, tpi, xcoord, ycoord).

Here, functions f2(·) and f7(·) represent a time dependent and a time con-
stant neural network model term, respectively. A description of the vari-
ables can be found in Table 1.

TABLE 1. Variable description in the Leukaemia data set.

Variable Description.
time Survival time in days.
cens Right censoring status 0=censored, 1=dead.
xcoord Coordinates in x-axis of residence.
ycoord Coordinates in y-axis of residence.
age Age in years.
sex male=1 female=0.
wbc White blood cell count at diagnosis, truncated at 500.
tpi The Townsend score for which higher values indicates

less affluent areas.
district Administrative district of residence.

We evaluate the performance of the neural network Cox model (GAM+Net)
by randomly sampling 100 individuals that serve as a hold out sample
and compare it with a pure network Cox model (Net), a random forest
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and a Cox model without the network terms (GAM) using the Brier score
(Figure 1). This is done 50 times and our proposed model GAM+Net clearly
outperforms the three competitors. Finally, the predicted probabilities to

FIGURE 1. Out-of-sample Brier score.

not survive t for males (dashed) and females (solid) in two metropolitan
areas Blackpool (blue) and Manchester (yellow) for the GAM model and
the GAM+Net model (right) are shown in Figure 2 and are much more
flexible than the ones of a GAM model.

FIGURE 2. Probability to not survive after time t.
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Abstract: Degradation data are widely analyzed using stochastic processes to
assess the lifetime information of highly reliable products. In this article, we first
review several stochastic degradation-based processes in the literature and then
propose a general stochastic degradation-based process. This model is statisti-
cally plausible and demonstrates substantially improved fit when applied to real
data. We give a consistent interpretation between physical/chemical mechanisms
and statistical explanations. In addition, we provide a simple model-checking pro-
cedure to evaluate the appropriateness of the model assumptions. Several case
studies are performed to demonstrate the flexibility and applicability of the pro-
posed model with random effects and explanatory variables.

Keywords: First passage time; gamma process; inverse Gaussian process; Mean
time to failure; Wiener process.

1 Background

High-quality products are frequently designed with high reliability and de-
veloped in a relatively short period of time. Manufacturers must achieve
product reliability quickly and efficiently within a limited time for internal
reliability tests. One problem with traditional life tests is the lack of suffi-
cient time-to-failure data to effectively make inferences about a product’s
lifetime. Under this situation, if there are quality characteristics related
to the degradation of physical characteristics over time, which are related
to product reliability, an alternative option is to use sufficient degradation
data to accurately estimate the product’s lifetime distribution. General
references for degradation models are included in Nelson (1990), Meeker
and Escobar (1998), Bagdonavičius and Nikulin (2001) and the references
therein. Other important applications of degradation models are in areas
such as engineering, economics, environmental modeling, food and drugs.
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FIGURE 1. Laser data

2 A motivating example

We consider the laser data of an experiment described by Meeker and Esco-
bar (1998, example 13.5) as a motivating example. The QC of a laser device
is its operating current. To maintain nearly constant light output, the laser
device contains a feedback mechanism for increasing the operating current
when its light intensity degrades. Figure 1(a) and 1(b) display the degra-
dation paths of the operating current over 4000 hours for 15 tested units
and the box plot at each measurement time with mean line, respectively.
Current values are recorded every 250 hours. When the operating current
reaches a predefined threshold level ω = 10, the device is considered to have
failed. The primary objective of this experiment is to assess the lifetime in-
formation for lasers, such as the mean-time-to-failure (MTTF ) or the qth
quantile of the time-to-failure distribution. The accuracy and precision of
the product’s lifetime estimation mainly depends on modeling the degra-
dation paths. For laser devices, the degradation (i.e., operating current) is
considered the additive accumulation of damages caused by the feedback
mechanism. Cumulative damage can be approximated as a stochastic pro-
cess. See Singpurwalla (1995) and Bagdonavičius and Nikulin (2001) for
more details. This approximation presents a physical interpretation of the
stochastic processes and is applicable to address realistic problems.

3 Related literature

Generally speaking, non-monotonic and monotonic degradation paths are
two well-known characteristics in the degradation data.
The Wiener degradation-based process (or Gaussian process with specific
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covariance structure) is used to describe a non-monotonic degradation path.
For instance, Whitmore (1995) proposed a Wiener diffusion process, sub-
ject to measurement error, to model the declining gain of a transistor.
Doksum and Normand (1995) presented two Wiener degradation-based
processes to connect biomarker processes, event times and covariates of
interest. Tseng and Peng (2004) described the light intensity of LED lamps
of contact image scanners by using an integrated Wiener process. Peng
and Tseng (2009) proposed a linear degradation model in which the unit-
to-unit variation of all test units can be examined simultaneously with the
time-dependent structure in degradation paths (see Cheng and Peng, 2012;
Peng and Cheng, 2016).
In numerous applications, the gamma and inverse Gaussian (IG) processes
are widely used when the degradation path is strictly increasing. Bagdon-
avičius and Nikulin (2000) constructed a degradation model by using a
gamma process with time-dependent explanatory variables. Lawless and
Crowder (2004) used a gamma degradation-based process that incorpo-
rates random effects on crack growth data. When neither the Wiener nor
the gamma degradation-based processes adequately fit strictly monotonic
degradation paths (see Wang and Xu, 2010), the IG process is an alterna-
tive degradation model that can be used to represent the strictly monotonic
degradation paths. Peng (2015) proposed an IG degradation-based process
with inverse normal-gamma random effects and derived the corresponding
lifetime distribution and its properties.

4 Overview

In this work, we review several stochastic degradation-based processes and
propose a general degradation-based process general as a new degradation
model that is simple, flexible, and easily applied. The model parameters can
vary from unit to unit by using random effects for degradation data. Some
properties of the product’s lifetime distribution are discussed based on the
proposed degradation model. A Monte Carlo simulation study is conducted
to demonstrate the performance of the estimation algorithm and the ade-
quacy of the bootstrap procedure for constructing the confidence interval
of a product’s lifetime. Furthermore, we use a model selection criterion and
provide a simple model-checking procedure to assess the validity of the pro-
posed stochastic processes. Several case applications are used to illustrate
the proposed degradation model with random effects and time-independent
explanatory variables.

Acknowledgments: This work was supported by the Ministry of Science
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Abstract: Early detection of hepatocellular carcinoma (HCC) is essential for
successful treatment. The use of serum biomarkers or the combination of several
biomarkers, age and sex in the so-called GALAD score, have been proposed to
detect the presence of tumours. Previous static cut-off levels have been shown
to be inefficient in detecting HCC due in part to the individual baseline hetero-
geneity, but an exploratory study suggests that analysing biomarker levels over
time is a promising avenue for detecting the development of HCC. In this work we
propose a Bayesian longitudinal hierarchical model for GALAD scores of patients
under HCC screening to identify changes in the trend of this score indicating the
development of HCC. The hidden states correspond to the absence or presence
of HCC at the given time, with the later being an absorbent state. The model
is additionally informed by the the diagnosis by standard clinical practice. We
apply the proposed model to a Japanese cohort database of patients under HCC
surveillance and show that the detection capability of this proposal is greater
that using a fixed cut-off point on the GALAD score.

Keywords: Change-point model; Cancer detection; Hidden Markov model; Lon-
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1 Introduction

Hepatocellular carcinoma (HCC) is the most common type of primary liver
cancer in adults which kills more than 700,000 globally per year, and early
detection is essential for successful treatment (Bray et al., 2018). The use
of serum biomarkers, such as alpha-fetoprotein (AFP) or the combination
of several biomarkers, age and sex in the so-called GALAD score (Johnson
et al., 2014), have been proposed to detect the presence of tumours, with
an increasing level indicative of potential cancer present.
Previous static cut-off levels have been shown to be inefficient in detect-
ing HCC due in part to the individual baseline heterogeneity, but an ex-
ploratory study suggests that analysing biomarker levels over time is a
promising avenue for detecting the development of HCC (Bird et al., 2016).
In this work we propose a Bayesian hierarchical model for longitudinal
GALAD scores of patients under HCC screening to identify changes in the
trend of the GALAD score, that can be indicative of the development of
HCC.

2 The model

For each patient i = 1, . . . , I and observation time j = 1, . . . , Ji, the
GALAD score Bij is considered to follow a Gaussian distribution,

Bij |µij , σ2 ∼ N(µij , σ
2) ,

where the mean µij is described as a general population mean ν plus a
random personal baseline for each patient bi. If a patient has developed
cancer, this mean is linearly increased with a slope β according to the time
elapsed since the development of the cancer τi.

µij = ν + bi + CijSiβ(tij − τi) ,

bi|σ2
b ∼ N(0, σ2

b ) ,

with tij being the time of the observation j of patient i, Si indicating
whether patient i is susceptible of a trend change when developing HCC and
Cij a latent indicator variable that takes value 1 if the patient has developed
HCC at time tij and 0 otherwise. This variable Cij is modelled through an
absorbent continuous time hidden Markov model, with transition matrix

Γij =



e−λi∆tij+1 1− e−λi∆tij+1

0 1


 ,

where γkl is the probability of transitioning from state k in observation j
to state l in the next observation j + 1. This part of the model takes the
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form of a survival model with instant hazard function λi for the time until
the development of HCC, with the peculiarity that this event is a hidden
variable in our model. This hazard is a function of the patient baseline, so
that patients with higher GALAD scores over time have higher probability
of developing HCC,

log(λi) = ζ + ξbi ,

with ζ and ξ to be estimated. The variables Si are modelled through a
Bernoulli distribution with unknown probability pS . The prior distribution
for the time of HCC development τi is defined to be uniform between the
last observation without cancer Cij−1 = 0 and the first observation with
cancer Cij = 1 for the patient i.
Diagnose by standard clinical procedures is only possible when the tumor
has grown to a certain size. Therefore, the probability of a patient being
diagnosed by standard clinical procedures can be modelled in the fashion
of a survival analysis by means of the instant hazard of being diagnosed δ
and the time elapsed since the development of HCC (tij− τi). This informs
the value of the variables Cij taking into account possible false negatives of
the diagnose by standard procedures. The variable od this diagnose, Dij ,
can therefore be modelled with a Bernoulli distribution,

Dij |qCij ,ij ∼ Bernoulli(qCij ,ij)

with probability of diagnose q1,ij = 1− e−δ(tij−τi) if the patient has HCC
and 0 otherwise. Vague prior distributions are set for the parameters of the
model.

3 Results and discussion

We applied our model on the dataset provided by the Ogaki Municipal
Hospital, Japan, comprising of individual longitudinal data on the GALAD
score and the absence or presence of a clinical diagnosis and collected at
irregular times from patients with cirrhosis being screened for HCC. In
total, data from 35001 observations of 2272 patients were available between
the years 2009-2015. The model parameters were estimated using a training
dataset comprising 75% of the patients of the original dataset. The posterior
distributions of the parameters were used as priors for the prediction of the
HCC states (values of the latent variables Cij) of the rest of the patients,
ignoring the information about clinical diagnosis.
The detection performance of our model was compared against the use of
a threshold over the GALAD score (Johnson et al., 2014) using receiving
operating characteristic (ROC) curves. Due to the longitudinal nature of
the data, two different specificities (per patient and per observation) were
considered. With comparable behavior for patient specificity, our model
showed to outperform the use of a threshold with regards to the specificity
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per observation, as seen in Figure 1. These results show the importance
of modeling the longitudinal nature of the data, fitting the characteristic
gradual increase of the GALAD score that occurs from the apparition of the
tumour. Further studies considering the individual contribution of each of
the biomarkers in a multivariate model will be done in the future to improve
the detection power of the proposed method.
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FIGURE 1. ROC curves using specificity per observation and per patient for the
proposal (blue) and the threshold on the GALAD (red).
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Abstract: Our modelling approach is motivated by individual sighting histories
of bottlenose dolphins off the east coast of Scotland. The main objective here
is to model the annual movement patterns of the dolphin population between
different sites, as these migrations can be of conservation importance with regard
to ongoing offshore development. Due to the irregularity of the capture occasions
at hand, we formulate a capture-recapture model in continuous time and develop
an approximate maximum likelihood approach for estimating the effect of time-
varying covariates, which in the given example correspond to seasonal effects.
While motivated by a particular data set and the associated conservation man-
agement problem, our modelling framework is much more generally applicable
to irregularly sampled capture-recapture data subject to switches in underlying
states.
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1 Introduction

Capture-recapture data consist of individual animals’ sighting histories.
When animals can be observed in different “states” (i.e. classes correspond-
ing to location, behaviour, physiology, etc.), multi-state capture-recapture
models allow for inference regarding the transitions between these states,
but also to investigate potential differences in survival and detection proba-
bilities across states. Typically, the Arnason-Schwarz model is fitted to such
multi-state capture-recapture data, assuming a first-order Markov chain in
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discrete time for the state process (Schwarz et al., 1993). However, in cases
where the capture occasions are not regularly spaced in time, standard
multi-state capture-recapture methods are not readily applicable.
Motivated by sighting histories of bottlenose dolphins off the east coast of
Scotland, which do not follow a regular sampling protocol, we develop a
continuous-time formulation of the Arnason-Schwarz model. Due to ongo-
ing offshore development, conservation managers seek to assess the tempo-
ral movement patterns of the dolphin population between different sites,
which constitute the states in our model (in addition to alive and dead).
To investigate how these movement patterns depend on the time of year,
we develop an approximate maximum likelihood approach for estimating
the effect of time-varying covariates on the state transition rates.

2 Methodology

2.1 Basic model formulation

The capture-recapture setting can be regarded as a special case of a (par-
tially) hidden Markov model (HMM), with the observed capture history
of an individual as the state-dependent process and an underlying, par-
tially observed state process, e.g. related to the movement of the individ-
ual between different sites as in our motivating example. Let n denote the
total number of individuals observed, T the total number of survey oc-
casions and M = {1, . . . ,M} the set of possible states while alive. Then
for each individual i = 1, . . . , n, at capture times t = t0, t1, . . . , tT , where
0 = t0 < t1 < . . . < tT , the observed event is given by

xi,t =

{
0 if individual i is not observed at time t;

m if individual i is observed in state m at time t,

and the true state by

si,t =

{
m if individual i is alive and in state m at time t;

M + 1 if individual i is (presumed) dead at time t.

For convenience we will drop the subscript i from now on, but will continue
to refer to the individual.
The conditional probabilities of recapture during a survey, given that the
area is searched (indicated by the dichotomous variable am = 1), are de-
noted by pm = Pr(xt = m|st = m, am = 1). The parameters pm thus are
the state-specific detection (or recapture) probabilities. We assume these
to be constant over time, but this assumption can easily be relaxed. On
survey occasions where one of the sites is not visited, recapture within that
area is not possible (i.e. pm = 0 if am = 0), and hence the probability of
not observing an animal is one (i.e. Pr(xt = 0|am = 0) = 1).
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Due to the temporal irregularity of the survey occasions, we use a continuous-
time Markov chain to model the state process st0 , . . . , stT , which in our
example corresponds to a dolphin’s location – one of M sites – at the time
of the survey occasions. The transitioning between the different states is
then governed by an underlying transition intensity matrix,

Q =




q1,1 q1,2 . . . q1,M q1,M+1

...
...

. . .
...

...
qM,1 qM,2 . . . qM,M qM,M+1

0 0 . . . 0 0


 ,

where the state transition intensity qj,k describes the instantaneous prob-
ability to switch from state j to state k 6= j. Due to the constraints that
qj,k ≥ 0 for j 6= k and

∑M+1
k=1 qj,k = 0, the diagonal entries are obtained

as qj,j = −∑k 6=j qj,k. The last row in Q consists of zeros only because we
assume the last state, corresponding to an individual’s presumed death, to
be an absorbing state.
Given a time-homogeneous intensity matrix Q, the transition probability
matrix (t.p.m.) Γ for a time interval between two consecutive capture oc-
casions [tu−1, tu], u = 1, . . . , T , is obtained as a matrix exponential,

Γ(tu−1, tu) = exp
(
Q · (tu − tu−1)

)
=

∞∑

d=0

Qd(tu − tu−1)d/d!. (1)

The entries γj,k(tu−1, tu) indicate the probability to move from state j at
capture occasion tu−1 to state k at the next capture occasion tu.

2.2 Likelihood evaluation

Since we formulate the capture-recapture model within a continuous-time
HMM framework, we follow Jackson et al. (2003) in exploiting the conve-
nient and efficient HMM-based forward algorithm for evaluating the likeli-
hood. This yields the matrix product

L = πt0

( T∏

u=1

exp
(
Q · (tu − tu−1)

)
︸ ︷︷ ︸

=Γ(tu−1,tu)

P(xtu |am)
)
1, (2)

where πt0 is a row vector indicating the state at first capture, and 1 ∈
RM+1 is a column vector of ones. Furthermore, P(xt|am) is a diagonal
matrix of dimension R(M+1)×(M+1) containing the elements Pr(xt|st, am),
st = 1, . . . ,M+1, with am indicating whether at time t area m was searched
or not.
Assuming independence of the encounter histories, the likelihood over mul-
tiple capture histories is simply calculated as the product of the individual
likelihoods L given in (2). The model parameters, namely the state tran-
sition intensities as well as the detection probabilities, are then estimated
by numerically maximising the joint likelihood.
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2.3 Incorporating time-varying covariates

In general, and in particular in our motivating example, the state transition
intensities may depend on some time-varying covariate z(t), e.g. such that
qj,k(t) = exp

(
αjk0 +αjk1z(t)

)
. However, incorporating such covariates into

the continuous-time state process is rather challenging: Equation (1) then
does not hold anymore and the likelihood function becomes intractable. An
important exception is the case where the covariate of interest and hence
also the intensities are piecewise constant over time (Langrock et al., 2013).
We thus partition the time interval during which observations were made,
[0, tT ], into R intervals, τ1, . . . , τR, with τr = [br−1, br) and b0 = 0, bR = tT ,
on which the (potentially continuously varying) transition intensities are
approximated by a constant function. This approximation leads to a sim-
ple closed-form expression of the likelihood, without the need to evaluate
integrals. Specifically, for piecewise constant transition intensities, we ob-
tain the t.p.m. Γ(tu−1, tu) within (2) recursively as a product of t.p.m.s
over which the intensities are constant (a consequence of the Chapman-
Kolmogorov equation). For example, given t1 ∈ τ1, t2 ∈ τ2, it follows that
Γ(t1, t2) = exp

(
Q1 · (b1− t1)

)
exp
(
Q2 · (t2− b1)

)
. The approximation of the

time-varying intensities by step functions thus allows us to estimate the
parameters by numerically maximising a likelihood similar to (2), which
is an approximation of the likelihood of the actual model of interest. Cru-
cially, the approximation can be made arbitrarily accurate by decreasing
the width of the intervals.

3 Annual movement of bottlenose dolphins

Regarding our motivating data, we are interested in the annual movements
of bottlenose dolphins between two sites, namely the Moray Firth Special
Area of Conservation (SAC) and Tayside and Fife (T&F). Our data set
comprises n = 322 individual capture histories of dolphins that have been
sighted at least six times between the years 1990 and 2015. Figure 1 il-
lustrates such a capture history for one dolphin: The boat trips in both
areas (indicated by waves) are irregularly spaced in time. At some of these
capture occasions, the individual is observed (being identified based on nat-
ural marks), but at most occasions, the whereabouts of the dolphin remain
unknown. Using our developed modelling approach, however, we can still
make inference on the unobserved movement between the sites.
The dolphins’ states, here with M = 2, correspond to their actual location,
i.e. either SAC or T&F. Our covariate of interest is time of year. For the
likelihood approximation using step functions, we partition the observation
period into intervals with a length of 30 days each, here leading to R =
326, which provides a good balance between approximation accuracy and
computational cost.
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SAC

T&F

FIGURE 1. Illustration of a dolphin’s capture history.

Denoting the midpoint (or centre) of each interval by c1, . . . , cR, we then
have

qj,k(t) = exp

(
βjk0 + βjk1sin

(2πcr
365

)
+ βjk2cos

(2πcr
365

))
for t ∈ τr.

The estimation results in Figure 2 reveal clear seasonal patterns with high
intensities to move from T&F to SAC in summer, whereas intensities to
move (back) to T&F are highest in autumn. The quantification of these
migration patterns is of biological interest, and may also help to inform
conservation management.
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FIGURE 2. Seasonal pattern of the transition intensities between SAC and T&F.

4 Conclusion

When survey occasions within capture-recapture studies are irregularly
spaced in time, it may be necessary to model the corresponding process
in continuous time. In cases where individuals may additionally traverse
through different states – e.g. corresponding to different sites, or the ab-
sence or presence of some infection – the corresponding continuous-time
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multi-state model formulation becomes technically more involved than its
discrete-time counterpart, the Arnason-Schwarz model. In this contribu-
tion, we developed a general modelling framework for multi-state capture-
recapture modelling in continuous time, also allowing for time-varying co-
variates to affect the state transition intensities. A great advantage of em-
bedding the capture-recapture setting within an HMM framework is that
it not only facilitates the likelihood evaluation, but also renders other stan-
dard HMM tools applicable, such as the Viterbi algorithm for state decod-
ing.

Acknowledgments: Special Thanks to Andrea Langrock, who turned a
poor draft of the dolphin’s capture history into a comprehensible illustra-
tion.
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1 Introduction

The statistical analysis of time varying astronomical sources is an interdis-
ciplinary field which combines both astronomical and statistical methods
to investigate the physical mechanisms that characterise celestial objects.
This type of analysis starts from collections of photons which fall on the
detector surface of a telescope during the time. After that, the number of
events is usually converted into flux in order to standardise the observations
with respect to the size of the detector pixels and of the total observation
period. The time series that describes the flux variation as a function of
the time is called light curve.
Up to now, several authors [Kelly et al. 2009, Meyer et al. 2014, Sobolewska
et al. 2014 ] considered X-ray light curves, that generally present moderate
variations in the flux. However, lots of phenomena in the universe are high
energetic, but a formal procedure to learn the physical processes of a source
using γ-ray photons still does not exist, due to the complexity of these kind
of light curves. In this paper, we propose a new statistical approach to the

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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analysis of γ-ray light curves of time varying sources using continuous time
hidden Markov models.

2 Hidden Markov modelling approach

2.1 Continuous time observations

We consider a collection of n observations {yti}ni=1 representing the flux of
an astronomical source over a sequence of observation times (t1, . . . , tn) ∈
(0, T ), where T is the entire observation period. The emission activity of a
source is constantly monitored, but in practical data usually show big gaps
in the observation times due to instrumental limits; thus, ∆i = ti − ti−1 is
not constant.
This issue led Kelly et al. (2009) to consider a more appropriate model
for continuous time observations. A generic process y is said to follow an
Ornstein-Uhlenbeck (OU) process if its dynamic can be described by the
stochastic differential equation ∂y = τ(µ − y)∂t + σ∂Zt, where ∂Zt is the
increment of a Brownian motion with Zt ∼ N (0, σ2), µ is a real parameter
which represents the mean, σ is the volatility and τ is the speed of mean
reversion. The solution to the differential equation above leads yti+∆t

|yti
to be Gaussian for every observation time ti and for every arbitrary time
interval ∆t, which directly solves the time gaps problem inside the data.

2.2 Multiple states modelling

Although part of the literature focuses on single OU processes [Kelly et al.
2009, Sobolewska et al. 2014 ], more recently Meyer et al. (2014) proposed
a multiple latent states model to represent different physical mechanisms of
a source. It emerged that a two-states model well accomplishes for different
states of variability in X-ray sources. In particular, the authors distinguish
a prevalent state, whose flux activity is source dominated, from a baseline
state, where the flux variation is due to measurement noise.
We propose to model the signal of time varying γ-ray sources through a
two-states continuous time hidden Markov model [Zucchini et al. 2016,
Chapter 11]. Our goal is to investigate a formal procedure to successfully
fit γ-ray light curves and extrapolate the underlying information about the
occurring physical phenomena. We adopt an OU-process for modelling the
source flux yt as Meyer et al. (2014), but we consider also a continuous
time model for the latent class variable St ∈ S = {1, 2}. The latent Markov
process we assume has initial probability vector δ and generator matrix
Q = {qij , i, j ∈ S}, with qij ≥ 0 when i 6= j, and qii = −∑j 6=i qij .
Given the latent state St, for any time gap ∆t the statistical model is
yt+∆t

|St+∆t
= s, yt ∼ N (µ∗,s, σ2

∗,s), where

µ∗,s = ytie
−τs∆t + µs(1− e−τs∆t), σ2

∗,s =
σ2
s(1− e−2τs∆t)

2τs
.



Sottosanti et al. 177

Let us denote with f (yti ; Θ) the 2 × 2 diagonal matrix whose s-th diag-
onal element is φ(yti ;µ∗,s, σ

2
∗,s), φ is the density function of a Gaussian

distribution, 1 is the unit vector of length 2 and Θ = ∪2
s=1(µs, σ

2
s , τs).

According to Zucchini et al (2016), the likelihood function for the model
parameters (Θ,Q) is

L(Θ,Q) = δT exp{Qt1}f (yt1 ; Θ)

n∏

i=2

exp{Q(ti − ti−1)}f (yti ; Θ)1.

3 Parameters estimation via EM algorithm

We outline in this Section an efficient expectation-maximization (EM) al-
gorithm for parameters estimation. Starting from (Q,Θ)(r−1), the r-th
iteration can be summarised into two steps as follows.

E-step: Given α0 = δT and βn+1 = 1, update the forward densities
(α1, . . . ,αn) and the backward densities (β1, . . . ,βn) as

αi = αi−1 exp{Q(r−1)(ti − ti−1)}f (yti ; Θ
(r−1)),

βi = exp{Q(r−1)(ti+1 − ti)}f (yti+1 ; Θ(r−1))βi+1.
(1)

The quantities in Formula (1) are in practical numerically unstable, as
they tend to zero or to infinity exponentially fast with the sample size
n. According to Roberts et al. (2006), we rescale αi and βi by a factor
ci = αi1, and we denote the new scaled quantities as α̃i and β̃i. Compute

now A
(r)
s,s′ =

∑n
i=1 α̃i−1Λ

(r−1)β̃i+1, where

Λ(r−1) =

∫ ti

ti−1

exp{Q(r−1)(t−ti−1)}eseT

s′ exp{Q(r−1)(ti−t)}f (yti; Θ
(r−1))dt.

A
(r)
s,s′ is the probability to transit from state s to s′ during the total obser-

vation period (0, T ) and es is a vector of length 2 whose s-th element is 1
and the other is 0. To deal with the above matrix integral, we can factorise
Q(r−1) into SDS−1, where S is the matrix of eigenvectors and D is the
diagonal matrix of eigenvalues. In this way, it is possible to show that the
pq-th element of Λ(r−1) becomes equal to

Λ(r−1)
p,q =

2∑

u=1

2∑

v=1

SpuS
−1
us Ss′vS

−1
vq φ(yti ;µ

(r−1)
∗,s′ , σ2(r−1)

∗,s′ )J (du, dv),

where du refers to the u-th eigenvalue of D and J (·, ·) is given by Rydén
(1996).
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FIGURE 1. Left: γ-ray light curve of the blazar PKS 1510-05 (solid black line)
against the model fitting (solid red line) and 95% prediction interval (dashed
light blue line). Right: probability of each point to be a flaring observation.

M-step: Update the elements of Q out of the diagonal by doing q
(r)
s,s′ =

q
(r−1)
s,s′ A

(r)
s,s′/A

(r)
s,s, for s, s′ = 1, 2 and s 6= s′, while q

(r)
s,s = −q(r)

s,s′ . The so-
lutions to the score equations for the mean µs and the volatility σs are
available in closed form, while the speed of mean reversion τs requires a
Newton-Raphson step to be updated. The estimated probability of being
in the state s at the i-th observation time is P(Sti = s) = α̃i,sβ̃i,s. Finally,

we derive the estimate of δs by considering δ̂s = P(St1 = s), which does not
necessarily coincide with the stationary distribution of the latent Markov
process.

4 Results

We present in this Section an application of our model to a real-case dataset,
and in particular we consider a light curve from the blazar PKS 1510-05
detected by the Fermi LAT telescope. Blazars are very luminous and en-
ergetic sources characterised by an high variable signal, with heavy fluc-
tuations in brightness on short time intervals. The available light curve of
630 observations is shown in the left plot of Figure 1, together with the
model fitting and the 95% prediction interval obtained using a parametric
bootstrap. The two-states model fits properly the prominent observations
that come off from the resting flux concentrated around the mean value
4.779 ·10−7. The only exception is made by the most evident flare recorded
at time 54845.5, which does not fall into the 95% prediction interval and
thus results as outlier with respect to the fitted model. We deduce that
some external factors interacted with the light curve at that time, causing
an extra amount of variability.
Table 1 displays the estimates of the model parameters. The second compo-
nent, labelled as s = 2, has a larger and more variable flux activity than the
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TABLE 1. Estimates of the model parameters in the two latent states. From left
to right: mean, volatility, speed of mean reversion and probability to remain in
the same state in a unitary time interval (∆t = 1).

µ̂ σ̂2 τ̂ p̂s,s
s = 1 4.779 · 10−7 5.198 · 10−14 0.615 0.981
s = 2 1.152 · 10−6 3.244 · 10−13 0.359 0.950

first; moreover, it is faster mean reverting. This state mainly describes the
flaring activity of the source, where a general augment of the average flux
is anticipated by prominent spikes in the light curve. Solving exp{Q̂∆t},
we can access also to the estimated transition probability matrix of the
Markov process for any arbitrary ∆t. The last column of Table 1 displays
the persistence probabilities assuming a unitary time gap, and confirms
that both the identified states find large evidence. Contrary to Meyer et al.
(2014), none of the states we distinguish is noise dominated, but each one
represents a specific phase of the emission activity of the source. Finally,
the right plot in Figure 1 displays the probability of each point to be a
flaring observation, and confirms the good separation between resting and
flaring activity performed by our model.
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1 Introduction

Dynamic models, also known as autoregressive or lagged response mod-
els, are widely used in the analysis of longitudinal data in the health and
social sciences. Standard discrete-time dynamic models assume that mea-
surements of the response and time-varying covariates are equally spaced
over time, but unequal spacing often arises by design or because of wave
nonresponse. For example, it is common for household panel studies to
use rotating modules to reduce survey costs and respondent burden, which
leads to some variables being measured less frequently, and often at irregu-
lar intervals, than variables collected in the core questionnaire at each wave.
This paper is concerned with dynamic models for the analysis of responses
that are measured less frequently than time-varying covariates.

There has been little research on handling unequal spacing since early
work by Rosner and Muñoz (1988). Recent work has proposed extensions
to existing estimators for models for continuous equally-spaced responses

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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with fixed individual effects (e.g. Millimet and McDonough 2017; McKenzie
2001). While fixed effects models avoid the distributional assumptions of
random effects models, they are less flexible in other respects such as the
facility to handle categorical or multivariate outcomes, and are difficult to
implement. We propose a random effects approach that can be generalised
to ordinal and binary outcomes by specifying the model in terms of an un-
derlying latent variable (Pudney 2008). The proposed model is applied in
a study of the effects of changes in adult children’s circumstances on help
received from and given to their non-coresident parents.

2 Dynamic model for unequal spacing

Suppose that the underlying data generating process (DGP) for response
yti at year t (t = 1, 2, . . . , T ) for individual i (i = 1, . . . , n) takes the form
of a linear first-order dynamic panel model

yti = γyt−1,i + βxti + ui + eti, t = 2, 3, . . . , T (1)

where γ is the autoregression parameter, xti is a time-varying covariate with
coefficient β, ui ∼ i.i.d.N(0, σ2

u) is an individual random effect capturing
unmeasured time-invariant influences, and eti ∼ i.i.d.N(0, σ2

e) is a time-
varying residual.

Let m = 1, . . . ,M index the occasions at which y is measured, and denote
by tm the timing of measurement m and ∆tm = tm − tm−1 the gap in
years between consecutive measurements. It can be shown that the DGP
(1) implies the following model for the observed data

ymi = γ∆tmym−1,i + β

∆tm−1∑

k=0

γkxtm−k,i +

(
1− γ∆tm

1− γ

)
ui + εmi, (2)

where εmi =
∑∆tm−1
k=0 γketm−k,i. Model (2) has two important features:

(i) the coefficients and residual and random effect variances are nonlinear
functions of the parameters of interest β, γ, σ2

e and σ2
u; (ii) the predictors

include values of x at tm and each year since the time of the previous
measurement of y. We consider a setting where x is available at each year
(possibly with missing data).

In the application, we consider a generalisation where y is a bivariate binary
response and (1) and (2) are types of random effects bivariate probit models
for latent response y∗ underlying y. We also model the initial condition
y1i. The time-varying covariate x is replaced by a set of indicators for
transitions in individual characteristics for each year between tm − 1 and
tm. For continuous y, (2) can be estimated via maximum likelihood, but
Bayesian estimation is more flexible for binary y. All model estimation is
carried out in JAGS (Plummer 2003) using the rjags R package.
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3 Simulation study

A simulation study was carried out to assess the finite-sample performance
of the proposed method for continuous and binary y. Data were generated
for T = 15 from a model of form (1) for continuous y, or the corresponding
latent autoregressive model (Pudney 2008) for binary y. Unequal spacing
was generated by selecting observations of y at t = 1, 6, 11, 13, 15, corre-
sponding to the spacing in the application. Combinations of three simu-
lation conditions were considered for n = 1000 individuals: (i) balanced
(M = 5) and unbalanced (Mi ≤ 5) panels, (ii) strong and weak autocorre-
lation (γ = 0.4, 0.8), and (iii) moderate and low within-individual variation
in xti. For all conditions, and for both continuous and binary data, esti-
mates were found to be unbiased with good confidence interval coverage.

4 Application

We analyse exchanges of help between a respondent (child) and their non-
coresident parent(s) using combined data from the British Household Panel
Survey and its successor the UK Household Longitudinal Study for 2001-
2015. Sample members were contacted at each year, but data on exchanges
were collected in the family network module which was administered at
less frequent and unequal intervals (in 2001, 2006, 2011, 2013 and 2015).
The bivariate response consists of binary indicators of whether any help
was given to or received from parents (based on a set of questions about
different types of help). Covariates include respondent’s gender and age and
time-varying indicators of the presence of children, the age of the youngest
child and annual changes in partnership and employment status. The time-
varying covariates are based on data collected at each wave in the household
and individual questionnaires.

TABLE 1. Parameter estimates from random effects bivariate probit model for
any exchanges of help between children and their parents. Means and 95% credible
intervals from 5 chains of 20k (burn-in=5k), thinning=5.

To parents From parents
Parameter Mean 95% CI Mean 95% CI

Lag y∗tm−1 0.715 (0.658, 0.765) 0.681 (0.618, 0.733)
Partner at tm − 1 -0.040 (-0.091, 0.011) -0.095 (-0.146, -0.047)
Formation (tm − 1, tm) -0.085 (-0.334, 0.163) -0.363 (-0.595, -0.130)
Separation (tm − 1, tm) -0.092 (-0.360, 0.170) 0.392 (0.132, 0.649)
Age (years) at tm 0.013 (0.011, 0.016) -0.029 (-0.034, -0.025)
Female 0.113 (0.071, 0.158) 0.121 (0.078, 0.166)
σ2
u 0.187 (0.118, 0.273) 0.128 (0.073, 0.201)
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Table 1 shows preliminary results from a model with gender, age and in-
dicators of partnership transitions. We find that partnership transitions
in the year before tm are associated with the propensity to receive help
from parents, but not the propensity to give help at tm (conditional on
helping behaviour in the previous year). The propensity to receive help de-
creases after partnership formation, but increases after a separation. Older
respondents are more likely to give help and less likely to receive help,
while women are more likely than men to engage in exchanges in either di-
rection. There is strong evidence of reciprocity in exchanges with residual
correlation estimates of approximately 0.45 at both the time and individual
levels.
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Abstract: We propose a novel Bayesian nonparametric method for density re-
gression combining dependent Dirichlet process mixtures of normals and pe-
nalised splines. A practically important feature of our method is that, since the
full conditional distributions for all model parameters are available in closed form,
it allows for ready posterior simulation through Gibbs sampling. An application
to a study concerning the association of a toxic metabolite on preterm birth is
provided.
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1 Introduction

In many real-life applications, it is of interest to study how the distribu-
tion of a continuous (real-valued) response variable changes with covariates.
Dependent Dirichlet process mixtures of normals models, a Bayesian non-
parametric method, successfully address such goal. Roughly speaking, and
in its full generality, these models can be thought of infinite mixtures of
normal regression models where both the weights associated to the mixture
components as well as the components’ parameters are covariate dependent.
The approach of considering covariate independent weights, also known as
the single-weights dependent Dirichlet process mixture of normals model,
it is very popular due to its computational convenience, but can have lim-
ited flexibility in practice (MacEachern, 2000). In order to obtain accurate

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
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predictions, flexible forms for the components’ parameters, mainly for the
mean functions, are needed. In turn, formulations also allowing the weights
to be dependent on covariates provide virtually all the flexibility needed for
most data applications. However, such flexibility comes at a computational
cost, with limited availability of simple algorithms for tractable posterior
inference. In this work, to overcome the lack of flexibility, but retaining the
computational tractability, we develop a single weights dependent Dirichlet
process mixture of normals model where the components’ means are mod-
elled using Bayesian penalised splines (P-splines), so that the smoothness
associated with each covariate can be learned automatically. A practically
important feature of our P-splines dependent Dirichlet process mixture of
normals model is that all parameters have conjugate full conditional dis-
tributions thus leading to straightforward Gibbs sampling.

2 Penalised splines dependent Dirichlet process
mixture of normals model

Let y be a continuous response variable and x = (x1, . . . , xp)
′ be a p-

dimensional vector of covariates. For the sake of simplicity, we assume that
all covariates are continuous. However, our modelling procedure can easily
deal with categorical covariates, as well as, the interaction between contin-
uous and categorical covariates.
In a single-weights dependent Dirichlet process mixture of normals model
(De Iorio et al., 2004), the conditional density function is modelled as

f(y | x) =

∫
φ(y | µ(x,β), σ2)dG(β, σ2),

where φ(· | µ, σ2) is the density function of the normal distribution with
mean µ and variance σ2, and G follows a Dirichlet process prior with cen-
tring distribution G0(β, σ2) and precision parameter α > 0. For ease of
modelling we express G in the truncated stick-breaking form and therefore

f(y | x) =

L∑

l=1

ωlφ(y | µ(x,βl), σ
2
l ),

where (βl, σ
2
l )

iid∼ G0 and the weights are such that ω1 = v1, ωl = vl
∏
h<l(1−

vh), for l = 2, . . . , L; the inputs of the weights are distributed according to

a Beta distribution, i.e., v1, . . . , vL−1
iid∼ Beta(1, α), and vL = 1. Note that

L is not the exact number of components we expect to observe but rather
an upper bound on such number.
Regarding the specification of µ(x,βl) the usual, but somewhat rigid, choice
is to assume a linear combination of the covariates in each component, i.e.,

µ(x,βl) = µl(x) = βl0 + βl1x1 + . . .+ βlpxp, l = 1, . . . , L.
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However, this formulation implies that that the expected value of the re-
sponse changes linearly with the covariates. To allow for nonlinear effects
of the covariates we propose to model the mean of each component as an
additive combination of smooth functions, i.e.,

µl(x) = fl1(x1) + · · ·+ flp(xp), l = 1, . . . , L,

where each flj(·), j = 1, . . . , p, is approximated by a linear combination of
cubic B-splines basis functions. More specifically, given a sequence of knots
xj,min = ξj,0 < ξj,1 < . . . < ξj,rj < ξj,rj+1 = xj,max, we may write

flj(xj) =

mj∑

k=1

βljkBjk(xj), mj = rj + 4, l = 1, . . . , L, j = 1, . . . , p,

where Bk(x) denotes the kth cubic B-spline basis evaluated at x. It is well-
known that estimates depend heavily on the number and location of the
knots. Although a prior can be placed on the number of knots and their
position, this could be challenging to implement efficiently in practice (e.g.,
involving reversible jump Markov chain Monte Carlo). As an alternative,
P-splines rely on using a large number of equidistant knots in combination
with a penalty on the regression coefficients to avoid overfitting. This is
the approach we follow in this work. Bayesian P-splines (Lang and Brezger,
2004) are the Bayesian analogue to B-splines penalised by q-order differ-
ences (Eilers and Marx, 1996) and are constructed around q-order Gaussian
random walks. In particular, we consider a second-order random walk prior
to the spline coefficients, that is

βljk = 2βlj,k−1 − βlj,k−2 + uljk, k = 3, . . . ,mj ,

where uljk
iid∼ N(0, τ2

lj). The random walk variance τ2
lj acts as an inverse

smoothing parameter, with small values leading to heavy smoothing and
large values allowing for considerable variation in the estimated function.
To ensure identifiability of the additive structure, all functions flj(·), j =
1, . . . , p, are centred around zero. To complete our model specification, we
let

α ∼ Γ(aα, bα), σ−2
l ∼ Γ(aσ2 , bσ2), τ−2

lj ∼ Γ(aτ2 , bτ2),

where Γ(a, b) denotes the Gamma distribution with shape parameter a and
rate parameter b. We use the blocked Gibbs sampler for posterior sampling
and, as already mentioned, all full conditional distributions have simple
conjugate forms.

3 Epidemiology application

Our method is applied to a dataset (comprised of 2312 observations) aimed
at relating DDE (dichlorodiphenyldichloroethylene) concentration in ma-
ternal serum to the risk of premature delivery (Longnecker et al., 2001).
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The DDE is a persistent metabolite of the pesticide DDT, which is used
against malaria transmitting mosquitoes in endemic malaria areas, in spite
of evidence suggesting adverse effects on premature delivery. The response
variable is the gestational age at delivery (GAD) and births occurring be-
fore the 37th week (corresponding to approximately 260 days) are consid-
ered as preterm. Our interest is in modelling how the GAD distribution
changes with DDE levels, with a particular focus placed on the left tail in
order to assess the effect on preterm deliveries. Figure 1 provides inference
for the conditional distribution of the GAD given the DDE, evaluated at
the 10th, 60th, and 99th percentiles of DDE. It can be observed that the
estimated conditional densities nicely follow the histograms and there is
evidence that the left tail of the GAD distribution becomes fatter as DDE
increases.

DDE=12.57 (10th percentile)
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DDE=28.44 (60th percentile)
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DDE=105.47 (99th percentile)
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FIGURE 1. Histograms of the GAD for selected DDE intervals, along with the
posterior mean (continuous blue line) and 95% posterior credible bands (dashed
lines) of the conditional density of GAD given DDE, computed for the 10th, 60th,
and 99th percentile of DDE.
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UID/MAT/00006/2019. MX Rodŕıguez was funded by project MTM2017-
82379-R (AEI/FEDER, UE), by the Basque Government through the BERC
2018-2021 program and by the Spanish Ministry of Science, Innovation, and
Universities (BCAM Severo Ochoa accreditation SEV-2017-0718).

References

De Iorio, M., Johnson, W. O., Muller, P. and Rosner, G. L. (2009).
Bayesian nonproportional hazards survival modeling. Biometrics, 65,
762 – 771.

Eilers, P.H.C. and Marx, B.D. (1996). Flexible smoothing with B-splines



188 Bayesian flexible density regression

and penalties. Statistical Science, 11, 89 – 121.

Lang, S. and Brezger, A. (2004). Bayesian P-splines. Journal of Computa-
tional and Graphical Statistics, 358, 110 – 114.

Longnecker, M. P. , Klebenoff, M. A., Zhou, H. and Brock, J. W. (2001).
Association between maternal serum concentration of the DDT
metabolite DDE and preterm and small-for-gestational-age babies at
birth. The Lancet, 13, 183 – 212.

MacEachern, S. N. (2000). Dependent Dirichlet processes. Technical re-
port, Department of Statistics, Ohio State University.



Non-parametric Frailty Models for Cardiac
Allograft Vasculopathy Data

Wenyu Wang1, Ardo van den Hout1

1 University College London, United Kingdom

E-mail for correspondence: w.wang.16@ucl.ac.uk

Abstract: The frailty model is a good approach to measure unobserved het-
erogeneity in survival analysis. Non-parametric frailty models define the latent
frailty classes. We propose an extension of the model for class membership. In
the application, we illustrate these frailty models for a disease process.

Keywords: Multi-state model; Longitudinal data; Survival analysis.

1 Introduction

Multi-state models are widely used in survival analysis to describe indi-
viduals change of status over time. There are two types of effects when
describing the hazards for change of status: fixed effects and random ef-
fects. For the fixed-effects multi-state model, the characteristics of individ-
uals are usually considered as covariates, such as age, gender and education
level. However, there are still some differences of the hazards between dif-
ferent individuals, in addition to what we have measured with fixed effects.
These differences can vary depending on the characteristics of individuals
which are not in the data, or some variables which can not be measured
and collected, or some information which researchers did not realize that
may affect the results, or just the measured errors of explanatory variables.
This unobserved heterogeneity can be taken into account as random effects.
Models with both fixed effects and random effects in survival analysis are
called frailty models. See Putter and Van Houwelingen (2011) for details
of the role of frailty in multi-state model and whether we need them.

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
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2 Hazard function

For the frailty model, the hazard function for individual i in transition
r → s can be defined by

hrs.i(t|x) = hrs.0(t) exp(β>rsx)Brs.i , (1)

where x is the vector with covariates values, βrs is a parameter vector,
hrs.0(t) is the baseline hazard. Brs.i is the frailty variable, where Brs.i > 0,
since (1) is a hazard function, which must be positive. Note that Brs.i can
be changed to Brs.g for a group-shared random effect.
Frailties are often assumed to be parametrically distributed. For instance,
frailty Brs.i following a lognormal distribution: Vrs.i ∼ N(0, σ2

rs) where
exp(Vrs.i) = Brs.i. Or one parameter gamma distributionBrs.i ∼ Gamma(θ).
Here for this study, we mainly focus on a non-parametric frailty model.
For the non-parametric model, define that there are a number of frailties
Bk according to the classes Ck, where k = 1, 2, . . . ,K. For each individual
(i ∈ Ck) or group (g ∈ Ck), the probability distribution πk of frailties Bk
is unknown. A major benefit of the non-parametric frailty model is that
it is less restricted about the form of the distribution. The non-parametric
model fits data well whether the frailty has a normal trend or not. However,
there is no proper way to determine the optimal K when we fit the model. A
good approach to solve this problem is fitting several models with different
K and use model selection criteria.

3 Likelihood function

Kalbfleisch and Lawless (1985) presented the Markov assumption for anal-
ysis of panel data. For the non-parametric frailty model with K classes Ck,
where k = 1, 2, . . . ,K, the likelihood contribution for individual i under
the Markov assumption is given by

Li(θ|i,y,x) = P (YJ = yJ , . . . , Y2 = y2|Y1 = y1, i,θ,x)

=

K∑

k=1

P (YJ = yJ , . . . , Y2 = y2|Y1 = y1, i ∈ Ck,θ,x)πk

=

K∑

k=1

J∏

j=2

P (Yj = yj |Yj−1 = yj−1, i ∈ Ck,θ, x)πk,

(2)

where θ = (θ0,θ1, . . . ,θK) is a vector which combines the fixed-effects
parameters and class-specific parameters. θ0 denotes the fixed-effect pa-
rameters, θ1 = {B1, π1}, . . . ,θK = {BK , πK}. πk = P (i/g ∈ Ck) for each
individual i or group g.
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Therefore, the likelihood for N individuals is given by

L(θ|y,x) =

N∏

i=1

Li(θ|i,y,x).

In this study, we use the General purpose optimisation optim in the R
software to maximise the likelihood function.

4 Models for CAV Data

We fit a non-parametric frailty model to the cardiac allograft vasculopathy
(CAV) data. CAV is a disease that limits survival for cardiac transplant
recipients. Sharples et al. (2003) defined it by three living states, which are
the levels of CAV at each time. Figure 1 shows the multi-state process. State
1 to 3 are defined by no CAV, moderate CAV, severe CAV, respectively.
State 4 represents dead. In this study, we define a progressive process with
no backward transitions. Therefore, there are 5 transitions: 1→ 2, 1→ 4,
2→ 3, 2→ 4, 3→ 4.

FIGURE 1. Transitions in the four-state model for cardiac allograft vasculopathy
(CAV) data.

Computationally, it is easier to optimise over an unrestricted parameter
space when maximising the loglikelihood function. Given the probabilities∑K
k=1 πk = 1, we use the logit link for probabilities πk for class k. For ex-

ample, for a model with K = 2, the two probabilities πk can be represented
by a parameter η with no restriction.

π1 =
1

1 + exp(η)
, π2 = 1− π1

The probabilities defined in above equations do not distinguish the differ-
ences for different people. The model will be more useful if the probabilities
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of each frailty are related to people’s characteristics. Bartolucci and Far-
comeni (2015) proposed an approach to consider parameterizing η to a
linear predictor,

η = δTx,

where δ is a vector of parameters, x is a vector of covariates including an
intercept.
In application, we fit three models with the same fixed-effect covariates:
patients’ age, patients’ baseline age and donor’s age. (i) a fixed-effect multi-
state model. (ii) a 2-class non-parametric frailty model without parame-
terizing η. The frailty is defined in transition 1→ 2. (iii) a 2-class gender-
specific non-parametric frailty model with the gender-specific frailty de-
fined in transition 1→ 2. Table 1 shows the results. The AIC values denote
that both frailty models are better than the fixed-effects model. Regard-
ing Model (ii), the frailty parameters illustrate that the probability of a
random patient being a mover is 61.8% (b1 > 1) as well as 38.2% (b2 < 1)
chance to be a stayer during transition 1 → 2. Model (iii) has the lowest
AIC value. In this model, female patients are more likely to be stayers than
movers during transition 1 → 2, since π1 < π2. In contrast, males have a
higher probability to be a mover rather than stayer (π1 > π2).

TABLE 1. The -2loglik and AIC value and estimates (standard errors) of param-
eters for models for cardiac allograft vasculopathy (CAV) data. (i) is the fixed-ef-
fect model (ii) is the 2-class frailty model (iii) is the gender-specific 2-class frailty
model.

Model -2loglik AIC Frailty

(i) 3446.7 3472.7
(ii) 3438.5 3468.5 b1 = 2.237(0.539) b2 = 0.447(0.539)

π1 = 0.618(0.108) π2 = 0.382(0.175)
(iii) 3432.8 3464.8 b1 = 3.411(0.798) b2 = 0.293(0.069)

for female:
π1 = 0.359(0.023) π2 = 0.641(0.023)
for male:
π1 = 0.613(0.084) π2 = 0.387(0.084)

More comparison for movers (b > 1) and stayers (b < 1) can be illustrated
by transition probabilities. They are the probabilities for each transition
during a certain time interval. In the application, transition probabilities
can be presented in a 4 × 4 matrix, where rows represent current states and
columns represent the next states. Conditional on the mean of baseline age
47.1 and donor’s age 30.6, transition probabilities for movers (b1 = 3.411)
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and stayers (b2 = 0.293) in Model (iii) in 2 years after transplant are

P (t|b1) =




0.688 0.188 0.043 0.081
0 0.586 0.272 0.142
0 0 0.578 0.422
0 0 0 1




P (t|b2) =




0.902 0.019 0.004 0.075
0 0.586 0.272 0.142
0 0 0.578 0.422
0 0 0 1




where t = 2, hazards are fixed midway the interval. It is easy to see the dif-
ference of transition probabilities from the matrixes above. For example, for
individuals who transplant at 47.1 with the donor at 30.6, the probabilities
of staying in state 1 are 68.8% (movers) versus 90.2% (stayers).
For the future work, we plan to explore and extend non-parametric frailty
models. For instance, 3-class non-parametric models, the linear predictor η
with more covariates, and multivariate frailty models.
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1 Introduction

We revisit the rich regression problem where the p ordered regressors en-
semble a signal contained in X with a scalar response, also known as mul-
tivariate calibration. As far as we know little or no work has been done
in implementing robust smoothing into penalized signal regression. An as-
sortment of loss functions — in addition to squared error loss — have been
applied to the penalized spline and regression splines, e.g. Huber (1979),
Härdle and Gasser (1984), Silverman (1985) and Hall and Jones (1990).

2 The Motivating Example

The dataset contains a total of 675 soil samples collected from Seward
County (Nebraska), Kern County (California), and Lubbock County (Texas)
in 2014. Ten physicochemical properties were measured for all 675 soil sam-
ples. They are: soil cation exchange capacity (CEC), electrical conductivity
(EC), sand, among others. The reflectance spectra were measured from 360
to 2490 nm at 10 nm intervals. We aim to predict the nine soil physico-
chemical properties from spectra.
For illustration, PSR was applied to the spectra to predict each of the
nine responses. Figure 1 shows the normal q-q plots of the PSR residuals

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Normal q-q plot of the CEC residuals with PSR fit (top, left); gen-
eralized Huber loss (trailing from squared error loss) with three different values
of η at K = 2 (left); signal coefficient plots with (solid) and without (dash) the
outliers for PSR (bottom, left) and rPSR (bottom left) for CEC; the prediction
plots on test samples with and without the outliers for PSR (bottom, right). The
arrows start from the predicted CEC values including all the training samples
(with outlying samples) to the predicted CEC values excluding the samples with
outlying residuals.

for CEC, with some outlying residuals. Figure 1 also compares the coeffi-
cient plots and prediction on test samples with and without the outliers in
the CEC case for PSR and rPSR. Outliers are those whose standardized
residuals exceed 3 in absolute value. Penalized signal regression (Marx and
Eilers, 1999) uses an objective function S(α) = ||y − XBα||2 + λ||Dα||2,
reexpressing β = Bα, using a rich (n) B-spline basis, along the signal index.
The solution is α̂ = (B′X ′XB + λD′D)−1B′X ′y, with effective regressors
U = XB. The optimal choice of λ can be made using cross-validation.
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3 Generalized Huber Loss

Robust regression employs a criterion that is more resistant (to unusual
observations) than those found using least squares. Li and Yu (2009) gen-
eralized the Huber loss criterion to a class of M -estimators,

ρη(e) =

{
e2 |e| < K
K2 + 2ηK(|e| −K) |e| ≥ K, (1)

where 0 ≤ η ≤ 1. The upper, right panel of Figure 1 illustrates the family
of generalized Huber loss with three different values of η at K = 2, as the
difference between squared error loss and ρη(e). Although the generalized
Huber criterion is not convex (in e ∈ R) for 0 ≤ η < 1, it can be expressed
as a difference of two convex functions (of e) as follows:

ρη(e) = e2 − I(|e| > K)
[
e2 + 2ηK(K − |e|)−K2

]
, (2)

where I(·) is an indicator. The leading convex function is the square loss
function, where the second term of (2) is convex and K-insensitive.

4 Difference Convex Programming

The difference convex (d.c.) programming, developed by An and Tao (1997),
addresses the problem of minimizing an objective function, which can be
expressed as a difference of two convex functions, on the whole space.
Consider minimizing an objective function h(a) which is a difference of
two convex functions, i.e. h(a) = h1(a) − h2(a) where both h1(a) and
h2(a) are convex in a. The key idea of d.c. programming is to construct
a sequence of subproblems, which are obtained by replacing the trail-
ing convex function, e.g. h2(a), by its first order approximation function
h2(a(o)) + 〈a− a(o),5h2(a(o))〉 and solve them iteratively:

anew = argmin
a
h1(a)− [h2(acur) + 〈a− acur,5h2(acur)〉] . (3)

Note that after removing the constant terms in (3), minimization is equiv-
alent to anew = argmina h1(a)− 〈a,5h2(acur)〉.

5 Algorithm of Robust P-Splines

We replace the least square criterion by the generalized Huber criterion
described in (1) within the PSR framework. Hence, the robust penalized
smoothing splines (rPSR) minimizes

Q(α) =
{∑m

i=1
ρη(yi − U ′iα)

}
+ λα′D′dDdα, (4)
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which can be represented as a difference of two convex functions as follows:

Q(α) = h1(α)− h2(α), where (5)

h1(α) =
∑m

i=1
e2
i + λα′D′Dα, (6)

h2(α) =
∑m

i=1
I(|ei| > K)

[
e2
i + 2ηK(K − |ei|)−K2

]
, (7)

and ei = yi − U ′iα. The subgradient of h2(α) with respect to α is

5h2(α) =
∂h2

∂e
· ∂e
∂α

= 2
∑m

i=1
I(|ei| > K)[ei − ηKSign(ei)]Ui. (8)

The vector U ′i is the ith row of U = XB, with n elements {uij}nj=1.
Let V be a column vector of length m with elements {I(|ei| > K)[ei −
ηKSign(ei)]}mi=1. It follows that the right side of (8) above can be expressed
as 2U ′V . The inner product of α and subgradient 5h2(α) is then

〈α,5h2(α)〉 = −2α′U ′V. (9)

Through d.c. programming, the minimization of the objective function (4)
translates to the minimizing of a sequence of subproblems

α̂ = argmin
α

(Y − Uα)′(Y − Uα) + λα′D′Dα− 2α′U ′V. (10)

Setting the first order derivative of the right side of (10) above to zero, we
have the closed form of the solution

α̂ = (U ′U + λD′D)
−1
U ′(Y − V ) = (U ′U + λD′D)

−1
U ′Y A. (11)

The right side of (11) further shows that the subproblem solution is itself
a modified PSR solution, one with the adjusted responses Y A defined as

Y A =



y1 − I(|e1| > K)[e1 − ηKSign(e1)]

...
ym − I(|em| > K)[em − ηKSign(em)]



m×1

. (12)

Note that only the observations with the residuals greater than K (in abso-
lute value) will be “adjusted.” Further if K is greater than all the residuals
{ei}, then rPSR and PSR solutions are the same.
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Robust PSR Algorithm

1. Initializations:

• Choose the tuning parameter value λ and η.

• Construct B using a rich set of n B-spline basis functions of degree q on equally-
spaced knots and penalty order d. Default q = d = 3.

• Calculate U = XB

• Calculate α̂ = PSR(U, Y, λ, d, n, q).

2. Cycle until convergence of α̂:

• Calculate residuals {ei}
m
i=1.

• Find the K based on residuals.

• Update the adjusted response vector YA according to η and K.

• Update α̂ = PSR(U, Y A, λ, d, n, q).

3. Prediction: ŷnew = xnew
′
Bα̂

End algorithm.

The algorithm terminates when max{|(α̂curj − α̂prej )/α̂prej |}nj=1 < ε, where
ε or set tolerance.The cutoff value K is chosen based on the proportion, γ-
quantile, of the outliers among the residuals. In our algorithm, the 1.5×IQR
rule (interquartile range) is used to identify the outlying residuals. Lee and
Oh (2007) and Tharmaratnam et al. (2010) provide advice to choose γ.
The optimal value for η can be tuned through a grid search based on
CV. Our algorithm usually converges within a few iterations. Updating α̂
is only a matrix-vector multiplication (U ′U + λD′D)

−1
U ′, and hence is

computationally efficient.

6 Simulation Studies

Simulation studies showed that both the proposed rPSR is competitive
with PSR for the normal errors, and alos when large errors exist (e.g. the
error term has a heavy-tailed distribution), rPSR achieved better perfor-
mance than PSR in terms of both prediction accuracy as well as model
stability. We used the VisNIR spectra of the soil data and the PSR model
with λ = 10−5 (based on 10-fold CV) was fitted using the CEC response.

The predicted values {f̂i}675
i=1 from the PSR model are used as the “true”

values for this simulation study. The data were then randomly split into
a training set (506 observations or approximately 75% of the total sam-
ple size) and into a test set (169 observations). For the training samples,
we created some artificial responses y∗i by adding random errors ei to the

“true” values f̂i (i.e. y∗i = f̂i + ei). Three types of error distributions are
considered in this study: a normal distribution (i.e. ei ∼ N(0, 2.392), a
mixed normal distribution, and a slash distribution. Note that 2.39 is the
standard deviation of the residuals from the PSR model. The mixed nor-
mal errors are generated from 0.95N(0, 2.392)+0.05N(0, 23.92), that is the
error constituted with 95% from N(0, 2.392) and 5% from N(0, 23.92). The
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slash distribution is defined as a standard normal variate divided by an in-
dependent standard uniform variate (i.e. N(0, 1)/U(0, 1)), well-known for
its heavy tail and extreme outliers.
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FIGURE 2. Boxplots of comparative RMSE for rPSR and PSR. by distributions.
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Abstract: A nonparametric estimator for the cure rate in the presence of a
covariate is introduced for the cure rate model, with cure partially known. Some
properties are given, and the method is applied to a sarcoma dataset from the
Cancer Epigenomics from Translational Medical Oncology (OMT) group, Health
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1 Introduction

A common assumption in standard survival modeling is that all individ-
uals can experience the event if observed for enough time. Cure models
have been developed because there might be situations where the standard
survival model is not true. For example, in cancer studies, due to advances
in cancer treatment there might be a proportion of patients who will get
cured.
A common aspect in traditional cure models is that cured and uncured
subjects cannot be distinguished within the censored observations. Hence,
the cure indicator is usually modeled as a latent variable. However, some-
times this assumption is not entirely valid, when some extra information
allows to conclude that some individuals with censored lifetimes are cured

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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or long-term survivors. One typical example is the case if individuals are
assumed to be cured when their survival time is larger than a given thresh-
old (e.g., 5 years when considering recurrence in some types of cancer). In
this paper, a nonparametric estimator of the cure rate in the presence of a
known cure fraction and conditional on a covariate is introduced.

2 Nonparametric cure rate estimator

Suppose Y is a random variable representing time to event of interest,
S(t) = P (Y > t) is the survival function, and C is the censoring time. Y
and C are independent given a covariate X. It is assumed that the studied
population is a mixture of individuals: those who will and those who will not
experience the event of interest. According to this assumption the survival
function can be written as

S(t|x) = 1− p(x) + p(x)S0(t|x)

where S0(t|x) is the survival function of the uncured or latency conditional
on X = x, and 1−p(x) is the probability of being cured. The estimation of
the model is usually performed with parametric or semiparametric models.
Xu and Peng (2014) and López-Cheda et al. (2017) proposed a nonpara-
metric mixture cure model which ignored the existence of known cures. In
the presence of known cures the observations are

{(Xi, Ti, δi, ξi, ξiνi) : i = 1, . . . , n}

where X is a covariate, T = min (Y,C) is the observed time, δ = 1(Y ≤
C) is an uncensoring indicator, ξ is a binary variable which indicates the
cure status is known (ξ = 1) or not (ξ = 0), and ν is the cure indicator.
Therefore, ξν = 1 indicates that the individual is known to be cured. Given
the observations, the proposed estimator of 1 − p(x) = P (Y = ∞|X = x)
is,

1−p̂h (x) =

n∏

i=1


1− δ[i]Bh[i] (x)

δ[i]Bh[i] (x) +
n∑

j=i+1

Bh[j] (x) 1
(
ξ[j]ν[j] = 0

)
+Bch (x)




where Bch (x) =
∑n
j=1Bh[j] (x) 1

(
ξ[j]ν[j] = 1

)
is the sum of the weights of

all the individuals known to be cured,

Bh[i] (x) =
Kh

(
x−X[i]

)
n∑
j=1

Kh

(
x−X[j]

)
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are the Nadaraya-Watson weights with Kh (.) =
1

h
K
( .
h

)
a rescaled kernel

with bandwidth h. Finally, δ[i], X[i], ξ[i] and ν[i] are the concomitants of the
ordered observed times T(1) < T(2) < . . . < T(n).
It can be proved that 1− p̂h(x) is the nonparametric local maximum like-
lihood estimator of the cure rate. The proposed estimator of the cure rate
has the following properties:

• If there are no known cures, it reduces to the nonparametric cure rate
estimator proposed by Xu and Peng (2014) and López-Cheda et al.
(2017).

• If there is no censoring it is equal to the sum of the weights of the
known cures.

• In an unconditional setting and if the lifetime is greater than a known
fixed time, it reduces to the generalized maximum likelihood estima-
tor of the cure probability proposed by Laska and Meisner (1992).

• If there exists a common specific known cure threshold, it reduces
to nonparametric cure rate estimator by Xu and Peng (2014) and
López-Cheda et al. (2017).

3 Application to Sarcoma data

While this estimator can be applied into different research areas, the mo-
tivation in this paper was from a data set related to patients with sar-
comas. There were 233 patients with sarcoma in the data set, with an
outcome of interest, lifetime since diagnosis to death from sarcoma. A total
of 59 (25.2%) patients died from sarcoma, and 174 (74.8%) patients were
censored. Of the censored patients, a total of 18 patients were known to be
long-term survivors, as they were tumor free for more than five years.
The covariate age (20 to 90 years) was used to estimate the probability
of being cured. The proposed estimator was compared with the semipara-
metric estimator proposed by Bernhardt (2016), who assumed a logistic
regression model for fitting cure probability.
Figure 1 shows the cure probability estimates obtained with the proposed
nonparametric estimator for different choices of the smoothing parameter.
These estimates are compared with the estimate given by the semiparamet-
ric estimator of Bernhardt (2016). Although the later estimate suggests a
uniformly decreasing effect of the age on the cure rate, the curves from the
proposed estimator are more consistent with a pattern characterized by a
sharp decrease of the cure rate at younger ages until reaching a plateau at
older ages.
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FIGURE 1. Estimation of the cure probability with the nonparametric estimator
for different bandwidths (in black) and with the semiparametric estimator of
Bernhardt (2016) (in red).
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Abstract: The main goal of this paper is to compare the skewness and kurtosis
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1 Introduction

This paper presents a way to compare the skewness and kurtosis of con-
tinuous distributions, and an application to select an appropriate distribu-
tion for a response variable. Section 2 discusses the moment and centile
definitions for skewness and kurtosis. In Section 3, a comparison of differ-
ent theoretical distributions is presented, showing their flexibility in mod-
elling skewness and kurtosis, where six distributions from the gamlss.dist
R package are compared. An application to a real data is presented in sec-
tion 4. Section 5 presents conclusions.
For a thorough investigation of the concept of skewness see MacGillivray
(1986), where a wide variety of skewness measures and orderings are given.
For a thorough investigation of the concept of kurtosis see MacGillivray
and Ballanda (1988) and Balanda and MacGillivray (1990).

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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2 Skewness and kurtosis

2.1 Skewness

A distribution of a random variable Y is defined to be right skewed (i.e.
‘positively skewed’) if Y is more skew to the right than −Y , according to a
particular skewness ordering. The problem is that ‘more skew’ is not well
defined as there are many different skewness orderings which are often not
equivalent. The following are two criteria for comparing the skewness of
two distributions.
Moment skewness: Moment skewness of a random variable Y is defined
by

γ1 = µ3/(µ2)1.5, (1)

where µk is the kth central moment of Y . It is also known as Pearson’s
moment coefficient of skewness. The distribution of Y2 is ‘more moment
skew to the right’ than the distribution of Y1 if γ1(Y2) > γ1(Y1), where
γ1(Yi) is the moment skewness of Yi. [Using this measure, ‘moment positive
skewness’ is defined by γ1 > 0, provided γ1 is finite.]
Centile skewness The centile skewness function of a random variable Y
is defined as

sp =
(yp + y1−p)/2− y0.5

(y1−p − yp)/2
, (2)

for 0 < p < 0.5, where yp = F−1
Y (p) and F−1

Y (·) is the inverse cdf of Y .
The distribution of Y2 is ‘more centile skew to the right’ than the distri-
bution of Y1 if sp(Y2) ≥ Sp(Y1) for all 0 < p < 0.5. [Using this measure,
‘centile positive skewness’ is defined by sp ≥ 0 for all 0 < p < 0.5, with
sp > 0 for some p.]
One important case is p = 0.25 in (2) giving Galton’s measure of skewness

γ = s0.25 =
(Q1 +Q3)/2−m

(Q3 −Q1)/2
, we call this central centile skewness.

The two criteria above for comparing the skewness of two distributions are
not equivalent. For example, when Y ∼ TF(µ, σ, ν), the moment skewness
is finite only if ν > 3.

2.2 Kurtosis

A distribution is defined to be leptokurtic (platykurtic) if it is more (less)
kurtotic than the normal distribution, according to a particular kurtosis
ordering. The problem is that ‘more kurtotic’ is not well defined as there
are many different kurtosis orderings which are often not equivalent. The
following are two criteria for comparing the kurtosis of two distributions.
Moment kurtosis: Moment excess kurtosis of random variable Y is de-
fined by γ2 = µ4/(µ2)2 − 3, where µk is the kth central moment.
The distribution of Y2 is ‘more moment kurtotic’ than the distribution of
Y1 if γ2(Y2) > γ2(Y1), where γ2(Yi) is the moment excess kurtosis of Yi.
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When γ2 < 0, this indicates moment platykurtic, and γ2 > 0 indicates
moment leptokurtic.
Centile kurtosis: The centile kurtosis function (MacGillivray, 1986) of a
random variable Y is defined by

kp(Y ) =
y1−p − yp
y0.75 − y0.25

, (3)

for 0 < p < 0.5, where yp = F−1
Y (p).

The distribution of Y2 is ‘more centile kurtotic’ than the distribution of Y1

if
kp(Y2) ≥ kp(Y1), for all 0 < p < 0.25, (4)

and
kp(Y2) ≤ kp(Y1), for all 0.25 < p < 0.5, (5)

with kp(Y2) 6= kp(Y1) for some p.
Note condition (4) is one definition of Y2 having heavier tails than Y1, while
condition (5) is one definition of Y2 being more peaked than Y1 around their
medians. One important case is p = 0.01 in (3) giving δ = k0.01. The normal
distribution has centile kurtosis k0.01 = 3.449. Hence the centile excess kur-
tosis ek0.01 is given by ek0.01 = k0.01 − 3.449. Figure 1 presents the regions
of combinations of moment excess kurtosis, and (positive) moment skew-
ness for five distributions, and centile excess kurtosis and central centile
skewness for six distributions.

3 Skewness and kurtosis comparison

Here six continuous distributions with range (−∞,∞) implemented in the
gamlss package in R are considered. For more details about gamlss and its
distributions, see Stasinopoulos et al (2017) and Rigby et al (2019). All six
distributions are location-scale family distributions each with parameters:
µ the location shift parameter, σ the scaling parameter (µ and σ do not
affect moment (or centile) skewness and kurtosis) and ν and τ parameters
which control the skewness and kurtosis.
Figure 1 (a) shows the regions of combinations of excess moment kurtosis,
and (positive) moment skewness for five distributions: (i) the exponential
generalised beta type 2, EGB2, (ii) the Johnson SU, JSU, (iii) the Skew t
type 3, ST3, (iv) the skew power exponential type 3 , SEP3, and (v) the
sinh-arcsinh, SHASHo. Figure 1 (b) shows the central centile skewness and
excess centile kurtosis of six distributions, the five distributions presented
in Figure 1 (a) plus the stable distribution, SB, because its moment based
kurtosis-skewness plot is not possible. [The corresponding regions for neg-
ative skewness are given by reflections of Figure 1 (a) and 1 (b) about a
vertical axis at zero skewness.]
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FIGURE 1. The regions of combinations of (a) moment excess kurtosis, and (posi-
tive) moment skewness for five distributions: EGB2, JSU, ST3, SEP3 and SHASHo.
(b) Centile excess kurtosis and central centile skewness for six distributions SB,

EGB2, JSU, ST3, SEP3 and SHASHo.

A modified version of the plots shown in Figure 1 can be useful to decide
(at an exploration stage) about the adequacy of a fitted model, in terms of
skewness and kurtosis. Within the GAMLSS package, gamlss.dist, there
are two function that help: checkMomentSK() and checkCentileSK(). The
functions take as argument either a response variable (with no explanatory
variables) or a fitted GAMLSS model. In the latter case the quantile resid-
uals of the model are extracted and analysed. The sample transformed
skewness and excess kurtosis of the variable (or residuals) are plotted with
the allowable regions of moment or centile skewness and kurtosis of the
theoretical distributions. An assessment can then be made on whether the
skewness and kurtosis of the variable (or residuals) are adequately fitted or
not. However, these plots only tell us about the skewness and/or kurtosis
of the variable or residuals. They are not designed for checking the location
and scale for the variable or residuals. For information related to location
and scale, worm plots and Q-statistics are appropriate. These plots provide
information about the behaviour of the location and scale parameter, as
well as skewness and kurtosis, see Chapter 16 of Stasinopoulos et al. (2017).

4 Application

An illustration of the FTSE returns data from 1991 to 1998. The origi-
nal FTSE index is one of the four financial indices given in the R data
set EuStockMarkets. Returns are calculated by the first difference of the
natural logarithm of the series, Rt = log(Yt/Yt−1). The goal is to find an
appropriate distribution to the FTSE returns.
A histogram of the original data is shown in Figure 2. The moment skew-
ness of the reruns is 0.1095, while the moment excess kurtosis is 2.63976.
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FIGURE 2. The FSTE returns with a fitted t family distribution.

The Jarque-Bera test for testing whether simultaneously there is skew-
ness and kurtosis in the data has a value of 543.4, which compared to a
χ2(2) value of 5.99, it is significant. An automatic search for an appropriate
distribution to the returns resulted in a t family distribution, denoted in
GAMLSS as TF(µ, σ, ν), where µ and σ are location and scale parameters,
respectively, while ν is the degrees of freedom. The fitted distribution is
shown in Figure 2. Figure 3(a) and (b) shows two different plots created by
the function checkMomentSK(). Figure 3(a) shows the skewness and kur-
tosis plot for the original values of the returns, Rftse, while Figure 3(b)
shows the residuals of the fitted t family distribution, respectively. The
background of the function is a standardised version of figure 1(a) reflected
about the y-axis, so both negative and positive skewness can be shown.
The vertical axis of Figure 3(a) and (b) is the transformed moment kur-
tosis γ2t and the horizontal axis is the transformed moment skewness γ1t.
[γjt = γj/(1 − |γj |), for j = 1, 2]. In the middle of the figure there is an
elliptic region around the zero values of γ2t and γ1t. This region represents
a 95% region for γ2t and γ1t based on the Jarque-Bera test, assuming a
normal distribution for the variable (or residuals) with (γ2t, γ1t) = (0, 0).
If any (γ̂2t, γ̂1t) falls in this region then we accept the the null hypothesis
of the normal distribution, i.e. there is no skewness and excess kurtosis in
the variable/residuals. In Figure 3(a) (γ̂2t, γ̂1t) of the returns fall in the up-
per middle quarter of the plot, indicating that no skewness is present but
hight kurtosis (leptokurtosis). The cloud of points around (γ̂2t, γ̂1t) for the
Rftse variable are 99 values obtained from bootstrapping Rftse values.
The cloud gives an indication of the variability of the skewness and kur-
tosis measures. In this case, since the bootstrap points crosses the vertical
y-axis, the cloud indicates that skewness is not a problem for the variable
Rftse. However, there are evidences for leptokurtosis. Figure 3(b) shows
that the fitted model t family distribution is within the Jarque-Bera test
region, and therefore skewness and excess kurtosis have been eliminated.
Note that similar conclusions could be reached using centile measure of
skewness and kurtosis with the checkCentileSK().
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FIGURE 3. The FSTE returns with a fitted t family distribution.

5 Conclusion

The excess moment kurtosis against the moment skewness, and the excess
centile kurtosis against the centile skewness are given for four important
parameter for continuous distributions with range (−∞,∞), implemented
in gamlss package. The SHASHo and SEP3 are flexible enough to model a
response variable which can exhibit a wide range of skewness and kurtosis,
while the SB and ST3 are more appropriate to model a response variable
with high kurtosis and low skewness. A visual method for detecting skew-
ness and kurtosis in practical situations is also proposed. More details and
discussion concerning skewness and kurtosis within a distributional regres-
sion model like GAMLSS can be found in Rigby et al (2019).
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Abstract: Interval sampling often occurs with registry data, induces double
truncation on event times, and may result in a gross estimation bias. In this
work we consider suitable corrections for such a potential bias in the scope of the
competing risks model. Estimation of cumulative incidence functions and related
curves is considered. Regression approaches for cause-specific and subdistribu-
tion hazards are discussed too. The properties of the proposed estimators are
investigated both theoretically and through simulations. Applications to cancer
registry data are included.
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1 Competing risks

Competing risks naturally arise in survival analysis when there exist several
types of endpoints or events. One of the most well-known examples is found
in oncology; when analysing the progression-free survival, one computes
the time to progression or death without prior progression, whatever occurs
first. Then, the separate investigation of each of the two transitions (disease
progression, death) motivates the competing risks model, which has been
the focus of a hugh literature. See for example Tsiatis (1975), Gray (1988),
Pepe and Mori (1993), Lunn and McNeil (1995), Fine and Gray (1999),
Putter et al. (2007) or Beyersmann et al. (2012).

Let T and η denote the absortion time and the even type, respectively,
and assume that there exist K different types of events, so η ∈ {1, · · · ,K}.
Then, the competing risks process is characterized by the joint distribution
of (T, η), that is, by the K subdistributions of T restricted by η. These
subdistributions are the so-called cumulative incidence functions Fj(t) =

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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P (T ≤ t, η = j), 1 ≤ j ≤ K, which can be nonparametrically estimated
under censoring by the method of Aalen and Johansen (1978).

2 Interval sampling

In this work we consider, rather than the standard situation of right-
censoring, the issue of interval sampling. With interval sampling the data
are limited to individuals with events within a certain observational win-
dow, determined by two particular calendar dates d0 and d1. This means
that the available sample (Ti, ηi), 1 ≤ i ≤ n, is formed by iid observations
following the conditional distribution of (T, η) given V −τ ≤ T ≤ V , where
V is the time from onset to d1 (assumed to be independent of T ) and
τ = d1 − d0 is the width of the sampling interval. Besides, it is assumed
that the dates of onset are observable, so the sample is completed with
Vi, 1 ≤ i ≤ n, iid observations following the conditional distribution of V
given V − τ ≤ T ≤ V . Interval sampling frequently occurs with registry
data; indeed, epidemiological data often restrict to events (disease diagno-
sis, for example) within a (typically short) time interval. This may result
in a sampling bias, in the sense that very small or large T -values will be
hardly observed. This is in general the situation with doubly truncated
data; see Zhu and Wang (2014) and references therein.

3 Cumulative incidences

In order to consistently estimate the cumulative incidence functions with in-
terval sampling the aforementioned potential sampling bias must be taken
into account. In particular, it happens that the naive application of the
Aalen-Johansen estimator to interval sampling data is consistent for a
weighted version of Fj(t), specifically for

F ∗j (t) =

∫ t

0

wj(t)Fj(dt),

where the weight function wj(t) may depend on the event type j (de Uña-

Álvarez, 2018). Therefore, a consistent estimator for Fj(t) can be con-
structed by downweighting in the Aalen-Johansen estimator the Ti’s with
relatively larger wj(Ti)’s. This is not immediate however, since the weight
functions wj(t), 1 ≤ j ≤ K, are unknown and must be estimated from
the (Ti, ηi, Vi)’s. See Efron and Petrosian (1999) for more on the difficulties
behind nonparametric estimation from doubly truncated data.

In this work we address the construction of a consistent nonparametric
estimator for Fj(t) and we investigate its finite-sample and asymptotic
properties both theoretically and through simulations. The estimation of
the cumulative cause-specific hazards attached to (T, η) is discussed too.
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4 Modelling for regression

Another question of much interest is how to perform regression analysis for
the competing risks under interval sampling. Here, several modelling ap-
proaches can be considered, ranging from proportional cause-specific (resp.
subdistribution) hazards models (see e.g. Fine and Gray, 1999) to time-
varying coefficients models (Scheike et al., 2008). In this work we introduce
proper corrections of such approaches so they can provide consistent esti-
mates with interval sampling data. Again, the general idea is to use the
estimated weight functions, ŵj(t) say, in the score equations to recover the
true (unbiased) regression coefficients. Mandel et al. (2018) exploited this
idea for the standard Cox regression setting in which there exists an unique
endpoint.

5 Application

As mentioned, the analysis of competing risks with registry data may be
seriously affected by interval sampling. In this work we apply the proposed
models and estimation techniques to cancer registry data, where several
cancer groups are treated as competing risks. The data correspond to all
the children diagnosed from cancer in the region of North Portugal between
January 1, 1999, and December 31, 2003, and were gathered by RORENO
(the cancer registry for that area). Cases were grouped according to the
International Classification of Childhood Cancer (ICCC). Specifically, the
cancer groups are leukaemias (group I), lymphomas (II), central nervous
system (III), neuroblastoma (IV), and other less frequently observed can-
cers (ICCC groups V-XII). In the application it becomes clear that (i) the
correction for the sampling bias is critical, and that (ii) the underlying
assumptions which determine whether or not the weight functions wj(t)
are free of the event indicator j may greatly influence the final estimates.
Practical recommendations are given.
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de Uña-Álvarez 213
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Abstract: Semiparametric regression models offer considerable flexibility con-
cerning the specification of additive regression predictors including effects as di-
verse as nonlinear effects of continuous covariates, spatial effects, random effects,
or varying coefficients. In this paper, we discuss a generic concept for defining
interaction effects in such semiparametric distributional regression models based
on tensor products of main effects. These interactions can be anisotropic, i.e. dif-
ferent amounts of smoothness will be associated with the interacting covariates.
We study identifiability and the decomposition of interactions into main effects
and pure interaction effects (similar as in a smoothing spline analysis of variance)
to facilitate a modular model building process. The decomposition is based on or-
thogonality in function spaces which allows for considerable flexibility in setting
up the effect decomposition. Inference is based on Markov chain Monte Carlo
simulations with iteratively weighted least squares proposals under constraints
to ensure identifiability and effect decomposition. The performance of modular
regression is demonstrated along the construction of spatio-temporal interactions
for the analysis of precipitation sums and extreme precipitation events.
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1 Introduction

In regression analyses, a model includes an interaction of two covariates ν1

and ν2, say, if the effect of ν1 depends on the value observed for ν2 (and
vice versa) which typically leads to a specification such as

ηi = . . .+ νi1γ1 + νi2γ2 + νi1νi2γ3 + . . .

where ηi is some regression predictor, γ1 and γ2 are the main effects pa-
rameters of the covariates ν1 and ν2, respectively, and γ3 represents the
interaction effect. Importantly, the inclusion of an interaction only requires
the definition of a new covariate given by the product of the two original
covariates.
In semiparametric regression models comprising for example nonlinear or
spatial effects, things turn out to be more difficult and in particular there
exist a variety of different types of interaction effects that can be considered.
For example, in a varying coefficient model

ηi = . . .+ νi1f(νi2) + . . .

the effect of covariate ν1 (the interaction variable) is varying with respect
to the second covariate ν2 (the effect modifier). This extends the standard
product form of interactions by allowing for nonlinear or spatial changes
of the effect of ν1 depending on the value of ν2 (which may also reflect
spatial location of observations). Importantly, this type of interaction is
now asymmetric in the sense that ν1 is still assumed to have a linear effect
albeit the dependence on the specific value observed for ν2. This is overcome
in tensor product interaction surfaces

ηi = . . .+ f(νi1, νi2) + . . .

where the joint effect of ν1 and ν2 is represented by a nonlinear surface and
therefore each combination of covariate values ν1 and ν2 may give rise to
a completely different value of the joint effect f(νi1, νi2).
Some more advanced types of interaction effects include spatio-temporal
effects f(t, si) where t represents time and si geographical information on
the observation of interest. In functional random effects models, we include
effects fc(νic) to allow for distinct nonlinear effects of covariate ν relative
to some clustering variable c.
Such types of interactions allow for considerable flexibility in setting up a
regression model, but they are also associated with a number of specific
challenges. For the sake of interpretation, it would be beneficial to decom-
pose the interaction effect into main effects and (maybe several) interaction
effects. Furthermore, models involving multiple interactions are often not
identifiable without imposing appropriate constraints.
In this paper, we will develop a generic and general framework for working
with these and other types of interactions based on tensor products of
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main effects. This will allow us to incorporate the interaction effects in
the framework of structured additive distributional regression (Klein et al.,
2015) and to benefit from efficient modes of Bayesian inference based on
Markov chain Monte Carlo simulations. In addition, we will take particular
care of the separation of interactions into main effects and pure interaction
effects to facilitate the interpretation of estimated models and we will study
the identifiability of specific models.

2 Tensor Product Interactions

2.1 Structured Additive Regression

In structured additive regression, we consider regression models where the
regression predictor ηi obeys an additive structure such that

ηi = f1(ν1) + . . .+ fp(νp)

where f1(ν1), . . . , fp(νp) are different types of (potentially nonlinear, spa-
tial or random) regression effects defined on covariates ν1, . . . , νp repre-
senting different types of regression effects. Each of these effects is then
approximated by an expansion in J basis functions, i.e. (ignoring the func-
tion/covariate index for simplicity)

f(ν) =

J∑

j=1

γjBj(ν).

To enforce specific properties of the estimate such as moothness or shrink-
age, we assign an informative, multivariate prior

p(γ|τ2) ∝
(

1

τ2

) rank(K)
2

exp

(
− 1

2τ2
γ′Kγ

)

with precision matrix K and smoothing variance τ2 to the vectors of basis
coefficients γ = (γ1, . . . , γJ)′. The basis functions and the precision matrix
are then chosen to represent a variety of effect types, see Fahrmeir et al.
(2013, Ch. 9) for an overview.

2.2 Tensor Product Interactions

Turning to the construction of generic interaction effects of the two main
effects

f1(ν1) =

J1∑

j1=1

γj1Bj1(ν1), f2(ν2) =

J2∑

j2=1

γj2Bj2(ν2)



Kneib et al. 217

with priors

p(γd|τ2
d ) ∝

(
1

τ2
d

) rank(Kd)

2

exp

(
− 1

2τ2
d

γ′dKdγd

)
, d = 1, 2,

we define the tensor product interaction of these two effects as

f(ν1, ν2) =

J1∑

j1=1

J2∑

j2=1

γj1j2Bj1j2(ν1, ν2)

with tensor product basis functions

Bj1j2(ν1, ν2) = Bj1(ν1)Bj2(ν2).

This in fact resembles the structure of common interaction since we use all
pairwise products of main effect basis functions as interaction basis func-
tions but, as mentioned above, has the drawback that the interaction effect
usually includes the main effects as special cases which makes both inter-
pretation and identification challenging. We therefore develop appropriate
linear constraints to remove basically arbitrary portions of the interaction
effect while still allowing for efficient Bayesian inference via Markov chain
Monte Carlo simulation techniques.

3 Spatio-Temporal Analysis of Precipitation

We will illustrate the application of the developed methodology for tensor
product interactions along the spatio-temporal analysis of precipitation in
Germany. In a first analysis, we study daily precipitation sums in the period
1986 to 2015 and include all stations from Deutscher Wetterdienst above
900m sea level, while for stations below 900m we selected a representative
subset with good coverage all over Germany. This results in a total of
164 meteorological stations and over 1.6 million spatio-temporally aligned
observations.
For the response variable (total amount of precipitation), we applied a
square-root transformation to improve the fit of a censored normal model
where

yst = max(0, y?st)

and
y?st ∼ N (µst, σ

2
st)

with s = 1, . . . , 164 indexing the spatial locations of the meteorological
stations and t = 1, . . . , T indexing the daily measurement time points. The
predictor structure for both the “location” and the “scale” parameter is
then given by

η = β0 + f1(alt) + f2(day) + f3(lon, lat) + f4(day, lon, lat),
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where alt represents altitutde, day is the day of the year and lon, lat
represent longitude and latitude. As an exemplary result, Figure 1 shows
the predicted precipitation climatology for January and July 10th.

FIGURE 1. Predicted mean precipitation climatology for January and July 10th

In a second analysis, we focus on the spatio-temporal variation in 100
year return levels of precipitation in Germany based on roughly 1.1 millon
observations of 569 meteorological stations. Here we assume a generalized
Pareto model

Pi ∼ GP(ξ(xi), σ(xi))

with the following predictor structure for both parameters:

η = β0 + f1(alt) + f2(year) + f3(day) + f4(lon, lat) + f5(day, lon, lat).

Figure 2 shows the temporal main effects (solid black lines) together with
the spatio-temporal interaction variation around the main effect. To high-
light the north-south gradient in the spatio-temporal interaction, the station-
specific effects are coloured according to their north-south orientation.
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FIGURE 2. Estimated temporal main effect (solid black lines) together with
spatio-temporal interaction effects (coloured lines) for the different measurement
stations.
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Abstract: Network reconstruction is a general problem which occurs if matrix
entries need to be predicted given the margins of the matrix. We show that the
predictions obtained from the Maximum Entropy approach or equivalently using
Iterative Proportional Fitting (IPF) can be obtained by restricted maximum
likelihood estimation. Based on that we extend the framework towards regression
and allow for covariates and random heterogeneity effects. The performance of
the estimator is evaluated with a simulation study. Additionally, we apply the
approach to interbank lending data and show that the inclusion of exogenous
information leads to superior predictions in comparison to the IPF solution.
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1 Model Derivation

We are interested in predicting N = n(n− 1) unobserved dyadic variables
xij ≥ 0 for i, j = 1, ..., n and i 6= j. Let x = (x12, . . . , xn(n−1))

T be the
corresponding column vector and stack the observed row- and column sums
in the column vector y = (y1, ..., y2n)T. Furthermore, we define the binary
(2n×N) routing matrix A with rows Ar, allowing to denote the marginal
restrictions by Arx = yr, for r = 1, ..., 2n. In order to predict the unknown
x based on the observed marginals y, we build on Golan and Judge (1996)
and search for the density f that maximizes the Shannon entropy functional

H[f ] = −
∫

X
f(x) log(f(x))dx,

with support X ∈ RN+ . We require that the density f integrates to unity
∫

X
f(x)dx = 1, (1)

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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and constrain the expectation µ = (µ12, ..., µn(n−1))
T according to the

marginal restrictions
∫

X
Arxf(x)dx = Arµ = yr for r = 1, ..., 2n. (2)

Combining constraints (1) and (2) results in the Lagrangian functional

L[f ] = −
∫
X
f(x) log(f(x))dx−λ0

(∫
X
f(x)dx−1

)
−

2n∑
r=1

λr

(∫
X

Arxf(x)dx−yr
)
,

with Lagrange multipliers λr > 0 for r = 0, ..., 2n. Maximization with
respect to f using the Euler-Lagrange equation (Dym and Shames, 2013)
provides the Maximum Entropy distribution

f̂(x) =
1

c(λ)
exp

{
−

2n∑

r=1

λrArx

}
, for x ∈ X ,

where c(λ) = exp(1+λ0) = c(λ1, ..., λ2n) is the normalization constant that
ensures restriction (1). The parameters λ can be found by IPF (Koller et
al., 2009). We, however, re-sort the sufficient statistics in order to obtain

2n∑

r=1

λrArx =
∑

i 6=j
(λi + λn+j)xij =

∑

i 6=j

xij
µij

with µij = (λi + λn+j)
−1 for i 6= j. Hence, the distribution of the net-

work can be represented by a product of exponentially distributed random
variables Xij :

f̂(x) = exp

{
−
∑

i 6=j

xij
µij
−
∑

i 6=j
log(µij)

}
=
∏

i 6=j

1

µij
exp

{
− xij
µij

}
, (3)

with observed margins Ax = Aµ = y and xij ≥ 0 ∀ i 6= j.

2 Estimation and Inference

Given exogenous covariates zij , we can model the expectation of model (3)
with the parameter vector θ = (δ1, ..., δn, γ1, ..., γn,β)T through

E[Xij ] = µij(θ) = exp(δi + γj + zT

ijβ), for i, j = 1, ..., n and i 6= j, (4)

with δi and γj being subject-specific sender- and receiver-effects and β is
the parameter vector for exogenous covariates zij . For estimation, we pro-
pose to use an iterative procedure similar to the Expectation Conditional
Maximization (ECM, Meng and Rubin, 1993) algorithm. Starting with an
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initial estimate θ0 that satisfies Aµ(θ0) = y, we form the expectation of
the log-likelihood derived from (3)

Q(θ;θ0) =
∑

i 6=j

(
− (δi + γj + zT

ijβ)− Eθ0
[Xij ]

exp(δi + γj + zT
ijβ)

)
.

Then, the maximization problem is given by

max
θ

Q(θ;θ0) subject to Aµ(θ) = y. (5)

A suitable optimizer that allows for maximization under non-linear con-
straints is available by the augmented Lagrangian (Hestenes, 1969)

L(θ; ξk, ζ,θk) = −Q(θ;θk)− ξTk (Aµ(θ)− y) +
ζ

2
||Aµ(θ)− y||22,

with ξk and ζ being auxiliary parameters. The augmented Lagrangian
method decomposes the constrained problem (5) into iteratively solving
unconstrained problems. In each iteration the algorithm starts with an ini-
tial parameter ξk in order to find the preliminary solution θk+1. Then, the
algorithm updates ξk+1 = ξk + ζ(Aµ(θk+1) − y) in order to increase the
accuracy of the estimate. An implementation in R is given by the package
nloptr by Johnson (2014).
The combination of ECM and augmented Lagrangian can easily be ex-
tended to allow for random effects, for example by assuming that the
sender- and receiver-effects are jointly normally distributed

(
δi
γj

)
∼ N2

(
0,

(
σ2
δ σ2

δ,γ

σ2
δ,γ σ2

γ

))
, for i, j = 1, ..., n and i 6= j. (6)

Furthermore, prediction intervals for the unknown matrix entries xij can
be obtained via parametric bootstrap. In order to do so, we define the
prediction error as eij = xij− µ̂ij and construct prediction intervals for the
unknown xij based on the quantiles of the empirical distribution of

µ̂ij + e∗(b),ij = µ̂ij + x∗(b),ij − µ̂∗(b),ij , for b = 1, ..., B,

where B represents the number of bootstrap samples x∗(b),ij and µ̂∗(b),ij
represents the corresponding bootstrap estimates.

3 Performance of the estimator

We hope to see improvements in the predictions, relative to IPF, if the
variation in zij is able to explain variation in the unknown xij . However,
including zij with a low association to xij might lead to inferior predictions.
For the simulation study, we use the following data generating process

δi ∼ N(0, 1), γj ∼ N(0, 1), zij ∼ N(0, 1), for i, j = 1, ..., 10 and i 6= j

µij(β) = exp(δi + γj + zijβ), xij ∼ Exp(µij(β)).
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FIGURE 1. Median (solid black) and mean (solid grey) of the relative squared
error RSSs(β) (vertical axis) for different values of β (horizontal axis).

Since the association between zij and the unknown xij is crucial, we vary
the parameter β from −4 to 4 and denote with µij(β) the mean based on
β. For each parameter β we re-run the simulation S = 1 000 times and
calculate the IPF solution µ̌s,ij(β) and the restricted maximum likelihood
solution µ̂s,ij(β). Based on that, we calculate the ratio of the squared errors

RSSs(β) =

∑
i6=j(xs,ij − µ̌s,ij(β))2

∑
i6=j(xs,ij − µ̂s,ij(β))2

, for s = 1, ..., 1 000.

This ratio is smaller than one if the IPF estimates yield a lower mean
squared error than the restricted maximum likelihood estimates and higher
than one if the exogenous information improves the predictive quality.
In Figure 1, we show the median (solid black) and the mean (solid grey)
of RSSs(β) for different values of β as well as a horizontal line indicating
the value one (dashed black) and a vertical line for β = 0 (dashed black).
It can be seen, that the mean and the median of RSSs(β) are below one
for values of β that are roughly between −0.5 and 0.5 but increase strongly
with higher absolute values of β. Apparently, the distribution of RSSs(β)
is skewed with a long tail since the mean is much higher than the median.
With very high or low values of β, the median of the relative mean squared
error becomes more volatile and partly decreases.

4 Model Application

We use a multivariate time series of 52 networks consisting of the 21 most
important countries from the locational banking statistics (LBS) provided
by the Bank for International Settlements (www.bis.org). Within each
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country, the LBS accounts for outstanding claims (xij) and liabilities (xji)
of internationally active banks located in reporting countries. Additionally,
we use logarithmic gross domestic product (gdpi) (International Monetary
Fund, www.imf.org) and logarithmic dyadic trade flows (tradeij) between
states (Correlates of War Project, www.correlatesofwar.org) as covariates.
The models to reconstruct the LBS networks are fitted for all 52 time

TABLE 1. Comparison of models with the LBS Dataset (values scaled by 10−5).

Covariates Rand. eff. average L1 SE average L2 SE
(I) - - 80.850 12.564 10.445 1.168
(II) - (6) 80.850 12.564 10.445 1.168
(III) gdpi, gdpj , tradeij - 63.466 9.246 7.802 1.085
(IV) gdpi, gdpj , tradeij (6) 63.763 9.222 7.850 1.052

points separately. By knowing the real matrix entries in this example we
can compare the models in terms of their average L1 and L2 errors and
the corresponding standard errors (SE). In Table 1 we show the IPF model
(I), the regression model with random effects (II) and the model including
exogenous covariates without (III) and with random effects (IV). It can
be seen that the model (III) performs best, i.e. the inclusion of exogenous
information increases the predictive quality as compared to the IPF model.
In Figure 2 we visualize some results from model (III). In the top row on
the left the predicted values are plotted against the real ones for the most
recent network, together with gray prediction intervals. Matrix entries not
covered by the prediction intervals are highlighted. It is also shown that
the coverage of the prediction intervals is quite good for all time points
under study (top, right). The estimated coefficients (bottom) provide the
intuitive result that the claims from country i to country j increase with
gdpi and gdpj and the trade volume between them (tradeij).

5 Discussion

We propose a regression model for predicting matrix entries based on the
marginals and exogenous information. Using a simulation study and real
data we demonstrate that the approach has the potential to increase the
predictive power relative to IPF. Furthermore, the approach allows for un-
certainty quantification via bootstrap and comes with parameter estimates.
Those are, however, to be interpreted with care because they are obtained
in a setting with much less information compared to ”common” regression
settings. As a further caveat it is important to note that the usage of non-
informative exogenous information might decrease the predictive power.

Acknowledgments: We thank Samantha Cook and Kimmo Soramäki
(www.fna.fi) for providing data and discussing the problem with us.
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Abstract: For probabilistic modeling of circular data the von Mises distribution
is widely used. To capture how its parameters change with covariates, a regression
tree model is proposed as an alternative to more commonly-used additive models.
The resulting distributional trees are easy to interpret, can detect non-additive
effects, and select covariates and their interactions automatically. For illustration,
hourly wind direction forecasts are obtained at Innsbruck Airport based on a set
of meteorological measurements.

Keywords: Distributional Trees; Circular Response; Von Mises Distribution.

1 Motivation

Circular data can be found in a variety of applications and subject areas,
e.g., hourly crime rate in the social-economics, animal movement direction
or gene-structure in biology, and wind direction as one of the most im-
portant weather variables in meteorology. Circular regression models were
first introduced by Fisher and Lee (1992) and further extended by Jam-
malamadaka and Sengupta (2001) and Mulder and Klugkist (2017) among
others. While most of the already existing approaches are built on additive
regression models, we propose an adaption of regression trees to circular
data by employing distributional trees.

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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2 Methodology

Distributional trees (Schlosser et. al, 2019) fuse distributional regression
modeling with regression trees based on the unbiased recursive partitioning
algorithms MOB (Zeileis et. al, 2008) or CTree (Hothorn et. al, 2006). The
basic idea is to partition the covariate space recursively into subgroups
such that an (approximately) homogeneous distributional model can be
fitted to the response in each resulting subgroup. To capture dependence
on covariates, the association between the model’s scores and each available
covariate is assessed using either a parameter instability test (MOB) or a
permutation test (CTree). In each partitioning step, the covariate with
the highest significant association (i.e., lowest significant p-value, if any)
is selected for splitting the data. The corresponding split point is chosen
either by optimizing the log-likelihood (MOB) or a two-sample test statistic
(CTree) over all possible partitions.
In this study distributional trees are adapted to circular responses by em-
ploying the von Mises distribution, also known as “the circular normal dis-
tribution”. Based on a location parameter µ ∈ [0, 2π] and a concentration
parameter κ > 0 the density for y ∈ [0, 2π] is given by:

fvM(y;µ, κ) =
1

2πI0(κ)
eκ cos(y−µ) (1)

where I0(κ) is the modified Bessel function of the first kind and order 0 (see,
e.g., Jammalamadaka and Sengupta 2001, for a more detailed overview).
In each subgroup maximum likelihood estimators µ̂ and κ̂ are obtained by
maximizing the corresponding log-likelihood `(µ, κ; y) = log(fvM(y;µ, κ)).
The model scores are given by s(y;µ, κ) = (∂µ`(µ, κ; y), ∂κ`(µ, κ; y)). In a
subgroup of size n, evaluating the scores at the individual observations and
parameter estimates s(yi; µ̂, κ̂) yields an n×2 matrix that can be employed
as a kind of residual, capturing how well a given observation conforms with
the estimated location µ̂ and precision κ̂, respectively. Hence MOB or CTree
can assess whether the scores change along with the available covariates. If
so, by maximizing a partitioned likelihood the parameter instabilities are
incorporated into the model. This procedure is repeated recursively until
there are no significant parameter instabilities or until another stopping
criterion is met (e.g., subgroup size or tree depth).

3 Application

Wind is a classical circular quantity and accurate forecasts of wind direc-
tion are of great importance for decision-making processes and risk man-
agement, e.g., in air traffic management or renewable energy production.
This study employs circular regression trees to obtain hourly wind direc-
tion forecasts at Innsbruck Airport. Innsbruck lies at the bottom of a deep
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FIGURE 1. Fitted tree based on the von Mises distribution for wind direction
forecasting. In each terminal node the empirical histogram (gray) and fitted den-
sity (red line) are depicted along with the estimated location parameter (red
hand). The covariates employed are wind direction (degree), wind speed (ms−1),
and pressure gradients (dpressure; hPa) west and east of the airport, all lagged
by one hour.
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valley in the Alps. Topography channels wind along the west-east valley
axis or along a tributary valley intersecting from the south. Hence, pres-
sure gradients to which valley wind regimes react both west and east of the
airport are considered as covariates along with other meteorological mea-
surements at the airport (lagged by one hour), such as wind direction and
wind speed at Innsbruck Airport. Note that in the meteorological context
wind direction is defined on the scale [0, 360] degree and increases clockwise
from North (0 degree).
Figure 1 depicts the resulting distributional tree, including both the empir-
ical (gray) and fitted von Mises (red) distribution of wind direction in each
terminal node. Based on the fitted location parameters µ̂, the subgroups
can be distinguished into the following wind regimes: (1) Up-valley winds
blowing from the valley mouth towards the upper valley (from east to west,
nodes 4 and 5). (2) Downslope winds blowing across the Alpine crest along
the intersecting valley towards Innsbruck (from south-east to north-west,
nodes 7 and 8). (3) Down-valley winds blowing in the direction of the valley
mouth (from west to east, nodes 12, 14, and 15). Node 11 captures observa-
tions with rather low wind speeds that cannot be distinguished clearly into
wind regimes and consequently are associated with a very low estimated
concentration κ̂. In terms of covariates, the lagged wind direction (“per-
sistence”) is mostly responsible for distinguishing the broad wind regimes
listed above while the pressure gradients and wind speed separate between
subgroups with high vs. low precision.

4 Discussion and outlook

Distributional trees for circular responses are established by coupling model-
based recursive partitioning with the von Mises distribution. The resulting
trees can capture nonlinear changes, shifts, and potential interactions in
covariates without prespecification of such effects. This is particularly use-
ful for modeling wind direction in mountainous terrain where wind shifts
can occur due to turns of the pressure gradients along a valley.

4.1 Ensembles and random forests

A natural extension are ensembles or forests of such circular trees that
can improve forecasts by regularizing and stabilizing the model. Random
forests introduced by Breiman (2001) average the predictions of an en-
semble of trees, each built on a subsample or bootstrap of the original
data. A generalization of this strategy is to obtain weighted predictions
by adaptive local likelihood estimation of the distributional parameters
(Schlosser et. al, 2019). More specifically, for each possibly new observa-
tion x a set of “nearest neighbor” weights wi(x) is obtained that is based
on how often x is assigned to the same terminal node as each learning
observation yi, i ∈ {1, . . . , n}.
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The parameters µ and κ are then estimated for each (new) observation x
by weighted maximum likelihood based on the adaptive nearest neighbor
weights:

argmax
µ,κ

n∑

i=1

wi(x) · `(µ, κ; yi). (2)

Therefore, the resulting parameter estimates can smoothly adapt to the
given covariates x whereas wi(x) = 1 would correspond to the unweighted
full-sample estimates and wi(x) ∈ {0, 1} corresponds to the abrupt splits
from the tree.

4.2 Splits in circular covariates

In order to obtain more parsimonious and more stable trees another possible
extension for circular covariates (with or without a circular response) is
to consider their circular nature when searching the best split into two
segments. In general, searching the best separation of a covariate into a
“left” and “right” daughter node tries to maximize the segmented log-
likelihood:

max


 ∑

y∈left
`(µ̂1, κ̂1; y) +

∑

y∈right
`(µ̂2, κ̂2; y)


 (3)

where µ̂1, κ̂1, µ̂2, κ̂2 are the estimated parameters of the von Mises dis-
tribution in the two daughter nodes. Searching a single split point ν in
a circular covariate ∈ [0, 2π) only considers linear splits into the intervals
left = [0, ν] and right = (ν, 2π), thus enforcing a potentially unnatural
separation at zero. This can be avoided by searching for two split points ν
and τ considering a split into one interval left = [ν, τ ] and its complement
right = [0, ν) ∪ (τ, 2π), encompassing zero. The latter strategy is invariant
to the (often arbitrary) definition of the direction at zero.
When one split point ν is sufficiently close to zero and the other τ suffi-
ciently far away, a simple linear split typically suffices to capture such a
split (as seen for the lagged wind direction in Figure 1). If both ν and τ
differ clearly from zero, two linear splits should also lead to a reasonable
(but less parsimonious) fit. However, if both ν and τ are rather close to
zero, a linear split strategy might miss such a pattern.
The required test statistic to maximally select two split points simulta-
neously is straightforward to accommodate in the CTree framework by
providing all binary indicators corresponding to the splits into left/right
intervals. However, this will become increasingly slow for larger sample sizes
but it might be possible to speed up computations by exploiting the partic-
ular covariance structure similar to Hothorn and Zeileis (2008). In the MOB
framework the extension is not quite as straightforward but one strategy
could be to adapt double maximum tests à la Bai and Perron (2003).
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Hence, the splitting idea can be naturally extended to a two-point search,
however, for an unbiased and inference-based selection the corresponding
testing strategies might need further adaption.

Computational details: R packages implementing the proposed methods
are currently under development at https://R-Forge.R-project.org/

projects/partykit/.
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Abstract: The modelling of brain activity in recent years has started benefit-
ing from extraordinary technological advances. With a remarkable amount of
spatio-temporal data recordable from several parts of the brain, researchers are
challenged to find models that can capture meaningful patterns behind such
complexity. Thus motivated, we aim at modelling neuroscientific data employing
functional data analysis within a Bayesian perspective; in particular, we exploit
the flexibility of a Dirichlet process mixture model for clustering functional prin-
cipal component scores to account for spatial dependence among curves. Our
approach offers a general clustering procedure and a higher level of understand-
ing of brain activity data. We present results from a simulation study and a
resting-state fMRI dataset recorded from a healthy subject.

Keywords: Functional PCA; Dirichlet process; Clustering; Hierarchical model;
Spatio-temporal data, Neuroscientific data.

1 Background

Most of the recoding tools in neuroscience produce a remarkable amount of
spatio-temporal data that are obtained simultaneously from several parts
of the brain. Large datasets require new advanced statistical methods to
efficiently extract useful information.
Functional data analysis (FDA) deals with observed, noise-corrupted sig-
nals Yi(t) for curve i = 1, ..., n at the time interval t = 1, ..., T . These
observations can be expressed by an additive error model:

Yi(t) = µ(t) +Xi(t) + εi(t) (1)

where εi(t) is a white noise process, µ(t) is the underlying mean and Xi(t) is
a realisation of a mean-zero smooth stochastic process. If functional Princi-
pal Components analysis (fPCA) is employed then Xi(t) has the following

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
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expansion:

Xi(t) =

∞∑

k=1

ξikφk(t), (2)

where {φk(t)}∞k=1 are orthogonal eigenfunctions called functional princi-
pal components (fPCs) and ξik are fPC scores with variance given by the
eigenvalues {λk}∞k=1.
Functional data models typically assume Xi(t) to be independent and iden-
tically distributed which implies Cov

(
ξik, ξjk

)
= 0, ∀ i, j, k. Recently, Liu

et al. (2017) modelled spatial dependence among curves through a suitable
covariance function for the fPC scores and estimating the relative param-
eters.
Our proposed model extends the standard Bayesian functional data model
with independent fPC scores (Crainiceanu and Goldsmith, 2010) to a sim-
ple, computationally feasible hierarchical model which allows for depen-
dence among fPC scores through a Dirichlet process mixture prior specifi-
cation.

2 Methods

Let Wi(t) = Yi(t)− µ̂(t), then a Bayesian hierarchical model that allows for
clustering of the fPC scores can be specified as shown in the panel below.
We highlight here some important aspects of this approach.





Wit|mit, τ ∼ N(mit, τ
−1),

mit =
∑K
k=1 ξikφkt,

ξik|dik ∼ N(µjk, ψ
−1
jk ),

dik ∼ Cat(p
k
)

µjk ∼ N(r, w),

ψjk ∼ Gamma(γ, β)

pjk = vjk
∏
l<j(1− vlk)

vjk ∼ Beta(1, α)

τ ∼ Gamma(γ, β) W

φξ d

μ ψ
p

m

τ

v

Curve i

Cluster j

Time t

Dim. space k

Our model employs a truncated approximation of the well known infinite
Gaussian mixture (Rasmussen, 2000) but we shift the mixture from data
to the fPC scores. For every eigendimension k, uncertainty in the latent
component weights pj is accounted for by vj , the inputs into the construc-
tion of the stick-breaking weights. This approach has at least two main
advantages: first, clustering over the fPC scores allows a flexible definition
of their dependence without imposing any model or constraint on its form
(e.g. positive-semidefiniteness of the covariance structure). It follows that
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in the presence of any underlying structural dependence among curves, im-
provements in curve reconstruction are expected compared to the standard
model as also shown by Liu et al. (2017) in a frequentist framework. We
report results of curve reconstruction from a simulation study in Section 3.
Second, our model can be seen as a generalisation of the Bayesian infinite
mixture model based clustering as the fPC scores are clustered for every
mode of variation (eigenfunction) independently, resulting in a potentially
much finer classification. In fact, in the case where two curves have the rel-
ative fPC scores allocated to the same clusters for all K eigendimensions
considered, the classification procedure reduces to the standard curve clas-
sification. Results of clustering fPC scores in a resting-state fMRI dataset
are presented in the next section.

3 Simulation study and fMRI data analysis

We performed a Monte Carlo simulation study to assess the performance of
the proposed model and compare it to the standard Bayesian fPCA model
in terms of curve reconstruction and classification. We generated three
groups (Group 1.1, 1.2 and 2) of n = 100 time series of length T = 150.
We applied a random Gaussian noise and tested the models with high and
low signal-to-noise ratios (STN).
Results of curve reconstruction in the high noise scenario (STN=1) show
improvements in the Integrated Mean Square Error (IMSE) of all curves in
the proposed model compared to the standard model; results of low noise
scenario also support the use of the proposed model with 80% of curves
with IMSE improved (Figure 1). Similar results were also obtained from
correlation reconstruction.
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FIGURE 1. Simulation study: curve reconstruction. IMSE distribution stratified
for noise level (STN=6, STN=1) and curve group (1.1, 1.2, 2).

A thirty year old healthy woman volunteered for the fMRI study. She un-
derwent a resting-state recording at the Department of Radiology, Scientific
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Institute Santa Maria Nascente, Don Gnocchi Foundation (Milan, Italy).
After preprocessing, one minute length time series were extracted according
to the Automated Anatomical Labeling (AAL90) coordinates. The result-
ing dataset was input to fPCA for curve smoothing and dimension reduc-
tion first and subsequently analysed with the proposed model. We identified
21% of curves in the first eigendimension belonging to a separate cluster
(Figure 2, panel B). These curves pertain to brain areas from the occipi-
tal, parietal and temporal lobe which are known to be highly involved in
resting-state brain networks (Figure 2, panel C-D).
Overall, results from simulation and fMRI analyses support the useful-
ness of fPCA clustering in curve reconstruction and exploration of complex
spatio-temporal patterns in neuroscientific data.
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FIGURE 2. fMRI data analysis: cluster identification in the 1st eigendimension
according to MAP and pairwise probabilities. Panel A-B: curves in cluster 1 and
2 according to the fPC scores partition. Panel C-D: 3D localisation of cluster 2
over sagittal and axial slices of human brain. Blue dots: areas identified by MAP
only.

References

Crainiceanu, C.M., and Goldsmith, A.J. (2010). Bayesian functional data
analysis using WinBUGS Journal of Statistical Software, 32(11).

Liu, C., Surajit, R., and Hooker, G. (2017). Functional principal compo-
nent analysis of spatially correlated data. Statistics and Computing,
27(6), 1639 – 1654.

Rasmussen, C.E. (2000). The infinite Gaussian mixture model. In: Ad-
vances in neural information processing systems, 554 – 560.



Non-parametric learning algorithm for
evaluating the influence of environmental
factors on sudden medical emergencies
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Abstract: We develop a non-parametric Cox process model for sparse events in
time. By assuming that the incidence of certain medical emergencies is influenced
by a stochastic process which we interpret as being the environment, our model
can be applied to a population in which each entity reacts to a variety of differ-
ent environmental factors in a similar way. Furthermore, the incidence of events
follows an unknown global trend which can be tracked back to changes in the
population such as migration, aging or changing habits. Moreover, these changes
are supposedly much slower than fluctuations caused by the environmental pa-
rameters. We propose a generalized EM algorithm to infer the global trend and
the influence of the environment. Finally, we demonstrate the capabilities of our
methodology on real medical data.

Keywords: Statistical learning; epidemiology; non-parametric approach; Cox
process model; EM algorithm.

1 Introduction

From birth to death, human body is continuously exposed to environmen-
tal factors such as weather and air pollution. Over the span of the last
decades, statistical modeling has become a considerable part of research

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
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in medical circles, its primary goal being the exact quantification of these
effects. Many attempts have been made to understand the exact causal
relationship between our surrounding environment and the effect it has on
our bodies. Hence, a good quantitative model avers to be crucial since it
can help us separate significant and negligible factors from each other and
let’s us draw adequate and more precise conclusions about the cause of
those effects.
The most used analytical tool in epidemiology nowadays is the Generative
Additive Model (GAM), which is used heavily in different studies relat-
ing to public health. It was originally developed by Trevor Hastie and
Robert Tibshirani to mix the benefits of generalized linear models and ad-
ditive models (Hastie and Tibshirani, 1986). These methods however suffer
from serious limitations such as the presence of confounding variables and
concurvity. Furthermore, by construction, complex non-linear interactions
between explicative variables are ruled out (Jalila, 2011).
In order to alleviate these issues, we propose a robust non-parametric alter-
native based on a Cox process model, where the non-parametric intensity
is the product of a multidimensional link function and a slowly varying hid-
den trend. The non-parametric nature of the model enables it to possibly
learn complex trends that parametric models could not determine.
We demonstrated the efficiency of our algorithm using data sets concerning
pulmonary embolism and weather reports in the concerned area. Our ap-
proach seems suitable for forecasting medical emergencies, provided that
predictions for environmental parameters are available. Potential uses of
this method include the personalization of asthmatic people’s treatment
via an application, considering their medical history and different external
conditions. Finally, our model could predict the effect of different diseases
on a specific population during climate change.

2 Description of the model

Let Nt be the registered number of events on the tth day and Xt ∈ Rp the
actual value of the environmental parameters, t = 1, . . . , T , where p denotes
the number of influencing factors taken into account and T is the length
of the observation period. The conditional distribution of Nt given Xt is
assumed to be Poisson with parameter λ(t,Xt). We also assume that the
intensity parameter can be written as a product in which the dependence of
λ on t and x is separated, that is: λ(t, x) = f(t)2g(x). Here g : Rp → [0,∞)
describes the effect of Xt on Nt and f : N → [0,∞) captures the slowly
varying hidden trend which we cannot observe directly. We propose the
following EM type algorithm to infer the functional form of f and g:

E-step: We define g(j+1)(x) = E(Nt | Xt = x)/
(
f

(j)
t

)2

, where the right

hand side does not depend on t.



238 Non-parametric learning algorithm

M-step: We also define f (j+1) ∈ RT , which minimizes the utility function

UN |X;g(j+1)(f) =

T∑

t=1

f2
t g

(j+1)(Xt)−Nt log(f2
t g

(j+1)(Xt))

+ β

T∑

t=1

(ft − ft−1)2,

where f1 − f0 := 0 and 0 log(0) is defined to be zero.

The utility function is essentially the negative log-likelihood function with
a regularization term, that measures the complexity of f and the parameter
β > 0 is responsible for avoiding overfitting.

Now, we prove that the expected utility function given X1, . . . , XT con-
verges to a minimum. The M step minimizes the utility pointwise, hence

EN |X
(
UN |X;g(j+1)(f (j))

)
≥ EN |X

(
UN |X;g(j+1)(f (j+1))

)

trivially holds. On the other hand, the E step does not increase the expected
utility. We consider the estimate

∆U := UN |X;g(j+1)(f (j))− UN |X;g(j)(f (j))

=

T∑

t=1

(
f

(j)
t

)2 (
g(j+1)(Xt)− g(j)(Xt)

)
−Nt log

g(j+1)(Xt)

g(j)(Xt)

≤
T∑

t=1

[(
f

(j)
t

)2

− Nt
g(j+1)(Xt)

](
g(j+1)(Xt)− g(j)(Xt)

)
,

where we used − log x ≤ 1/x − 1, x > 0. By the definition of g(j+1), we
have

E
[(
f

(j)
t

)2

− Nt
g(j+1)(Xt)

∣∣∣∣Xt

]
= 0, t = 1, . . . , T

hence EN |X (∆U) ≤ 0. Taking into account that the expected utility func-
tion is bounded from below:

EN |X
(
UN |X;g(f)

)
≥

T∑

t=1

E(Nt | Xt)− E(Nt | Xt) log(E(Nt | Xt)),

where the lower bound does not depend on f and g, we can conclude that
EN |X

(
UN |X;g(j)(f (j))

)
converges almost surely as j →∞.

3 Implementation

Suppose that we are given a data set Nt, Xt, t = 1, . . . , T . We set f (0) =
(1, . . . , 1)T . In the E step, we estimate g as follows:

ĝ(j+1)(x) =

T∑

t=1

e−αd(Xt,x)

∑T
s=1 e

−αd(Xs,x)
Nt/

(
f̂

(j)
t

)2

,
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where d : Rp × Rp → [0,∞) is the Mahalonobis distance and α > 0 is a
model parameter. Such kind of estimators are popular in non-parametric
statistics and under mild circumstances they are weakly consistent (Stone,
1977).

In the M step, f̂ (j+1) = argmin
f

UN |X;ĝ(j+1)(f) is obtained by a nonlin-

ear conjugate gradient method using the Polak–Ribière scheme (Polak and
Ribière, 1969). Iteration is stopped when the Euclidian norm of the gradient
became smaller than 10−3 or the number of iterations reached 100.
Let X̄ be the time average of Xt, t = 1, . . . , T . We define the hidden trend
as q̂(t) = ĝ(X̄)f̂(t)2 and introduce

r̂(x) =

(
ĝ(x)

ĝ(X̄)
− 1

)
× 100%

that measures the relative percentage growth of λ̂(t, x).

4 Applications

In our previous work we analyzed fatal pulmonary embolism (PE) data, but
with a different methodology. The target groups included cases of PE in
the capital Budapest. Based on the database of the Department of Forensic
and Insurance Medicine, Semmelweis University there were 23.892 cases
autopsied between 1st January 2001 and 31st December 2010. Among these
cases there were 467 PE defined as cause of death in this time period.
Meteorological data were obtained from the gridded E-OBS datasets. Daily
atmospheric air pressure and atmospheric air pressure change between days
with PE death and the previous days were analyzed from the region of
capital Budapest. We found that cumulative number of registered PE cases
follows a power law in time, moreover, there is a definite link between the
cold temperature and the increasing incidence of fatal pulmonary embolism.
For a more detailed description of the survey, we refer the reader to Törő
et. al (2016).
We performed a simulation on the same dataset with the parameters α, β =
1. The tolerance bound for ‖f̂next−f̂‖∞ was set to 10−3. Iteration converged
in 3056 steps. We can see in Figure 1. that the regulation term becomes
constant while the utility decreases rapidly.
Figure 2 shows the estimated percentage change in daily PE cases depend-
ing on the daily average temperature and atmospheric pressure change
between the actual and previous day. Estimated intensities and cumula-
tive trends are presented in Figure 3. So far, the present results align well
with our previous findings. However, they provide a better picture of the
relationship between weather and the incidence of fatal PE due to the
non-parametric nature of the model.
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FIGURE 1. Utility function (left axis) and the regulation term (right axis).
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FIGURE 2. Estimated r-values. The interior of the convex hull (dotted line) of
weather data can be considered as the domain of validity of the model.

5 Further Applications

We considered other uses for our results such as an application for asth-
matic people that could prescribe a treatment based on the forthcoming
weather conditions. A precise dosage of medication on days with abnormal
or extreme weather conditions could have an overall huge impact on the
number of medical emergencies on a larger population. Another use of our
research could be found in the prediction of larger global phenomenons
concerning the effect of diseases on a certain population considering local
factors such as the weather and different specific regional traits.
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FIGURE 3. Estimated intensities (left axis): daily intensity modulated by weather
– solid line, hidden trend – thick line. Cumulative number of events (right axis):
estimated – dashed line, actual – dotted line.
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Abstract: We present a distributional beta regression approach to analyse bound-
ed outcome variables and combine it with an adapted boosting algorithm. The
approach allows to model both, the expected value and the precision parame-
ter based on covariates. The boosting algorithm leads to data-driven variable
selection and works for high-dimensional data, while the resulting model is in
the same way interpretable as if it was fitted via classical inference schemes. We
analyse the health-related quality of live of patients with chronic kidney disease
from an newly developed German registry, focusing on variable selection and
interpretation of effects.
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1 Introduction

The modelling of interval-bounded outcome variables like proportions or
scores is a common issue in practical data analysis. In this work we will
focus on health-related quality of life scales that are usually bounded be-
tween 0 (lowest possible quality of live) and 100 (highest possible value).
One possibility is to transform the response in order to use classical Gaus-
sian regression approaches, however, a more suitable technique is to directly
apply beta regression (Ferrari and Cribari-Neto, 2004). The most common
parametrization of the beta distribution in this context is

f(y;µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1, 0 < y < 1 ,

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
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with mean parameter 0 < µ < 1 and the precision φ > 0, leading to

E(y) = µ and Var(y) = µ(1−µ)
1+φ .

2 Distributional beta regression

In classical beta regression, the mean parameter µi(xi) = E(y|x = xi) is
modelled – treating the dispersion parameter φ as fixed and nuisance (Fer-
rari and Cribari-Neto, 2004). Distributional beta regression, in contrast,
follows the framework of Generalized Additive Models for Location, Scale
and Shape (GAMLSS, Rigby and Stasinopoulos, 2005) relating also the
precision parameter to an additive predictor:

log

(
µi

1− µi

)
= ηµ(xi) = β0µ +

pµ∑

j=1

fjµ(xij)

log (φi) = ηφ(xi) = β0φ +

pφ∑

j=1

fjφ(xij)

As a result, one estimates two different additive predictors, ηµ and ηφ,
representing the two distribution parameters. This approach is favourable
when explanatory variables do not only affect the location of the outcome
distribution but also its shape. Additionally, it can lead to case-specific
prediction intervals, as not only the center of the interval but also its size
depends on covariates (Mayr et al., 2012).

3 Boosting algorithm

We applied a modified component-wise gradient boosting algorithm with
linear as well as spline-based non-linear base-learners for distributional re-
gression (Mayr et al., 2012). Each base-learner refers to one candidate vari-
able and is fitted one-by-one to the gradient of the Likelihood. Due to
this design, the algorithm works also for high-dimensional data with more
candidate variable p than observations n.
The iterative algorithm basically circles through the different parameter
dimensions and computes any possible update – carrying out only the best-
performing one with respect to the increase of the likelihood (Thomas et
al., 2018). By stopping the algorithm before it converges, variables (and
base-learners) that have never been selected to be updated are effectively
excluded from the final model. This way, we incorporate automatic data-
driven variable selection that works simultaneously for ηµ and ηφ.
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FIGURE 1. Estimated density of the health related quality of life measured via
the Physical Composite Score (PCS) in the German chronic kidney disease study:
Separate densities were plotted for patients regularly doing physical exercise
(n = 3264) and patient without regular exercise (n = 684).

4 German chronic kidney disease study

We analysed the health-related quality of life in chronic kidney disease
patients from an ongoing cohort study (n = 3, 947) . The outcome variable
is the Physical Composite Score (PCS), theoretically ranging from 0 to 100.
The distribution of the PCS values at baseline is left-skewed and shows clear
deviations from normality which also depends on explanatory variables (see
Figure 1).
The set of potential explanatory variables consists of socio-demographic
variables, clinical variables and laboratory measurements obtained from
blood and urine samples. Altogether, there are 54 explanatory variables,
leading to 254 > 1013 potential predictor combinations for ηµ and ηφ.
To evaluate variable selection properties of our approach, we used the boot-
strap to generate 1000 random samples. On each of the bootstrap samples
we fitted both a classical beta-regression model and an distributional one
for the patient’s PCS score. All 54 explanatory variables were considered as
potential predictors (continuous variables as spline effects, categorical vari-
ables as categorical effects). The distributional regression model yielded
higher pseudo R2 values (on test data) than classical beta regression with
fixed φ.
Regarding variable selection, Figure 2 displays the selection rates for ηµ and
ηφ. One can clearly observe, that more potential predictors are included in
the mean model than in the precision part. The average size of mean model
was 26 explanatory variables (median, range:12-46) while the average size
of the precision model was 13 explanatory variables (median,range: 4-36).
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FIGURE 2. Selection rates of the candidate variables both for ηµ (upper plot)
and ηφ (lower plot) estimated from 1000 bootstrap samples.

Furthermore, there is a clear tendency to include mostly variables in ηφ,
that have also an effect on the mean.
The variable selection itself seems to be rather stable, many predictors are
selected in almost all bootstrap samples. One of these variable is the phys-
ical exercise, Figure 3 displays the partial effects on both model-domains
after re-fitting the model on the complete data set. The effect estimate
shows a positive effect of exercise on the quality of life as well as a higher
variance when the patients do not regularly exercise (cf., the empirical
distribution in Figure 1).

5 Implementation

Distributional beta regression could be estimated via various inference
schemes. The standard betareg package provides a simple and fast im-
plementation for linear models (Cribari-Neto and Zeileis, 2010) but also
the classical framework for distributional regression (gamlss, Rigby and
Stasinopoulos, 2005 ) as well as the Bayesian counterpart (bamlss, Umlauf
et al., 2018) contain beta regression as a special case.
Our approach is implemented in the R add-on package betaboost (Mayr et
al., 2018), building up on the general boosting implementations mboost and
gamboostLSS. This new package aims at facilitating the usage of boosting
for practitioners, trying further to bridge the gap between methodology and
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FIGURE 3. Resulting partial effect of physical exercise in ηµ (left plot, logit link)
and ηφ (right plot, log link), the lower bar-plots reflect the variable’s empiri-
cal distribution. The grey confidence regions were estimated via 1000 bootstrap
samples.

applications (in the spirit of Groll et al., 2018), sparing the user unnecessary
technical details. For example, the user can include the model formula in
a very similar way to the classical packages, without specifying different
base-learners as it is typically done in boosting implementations.

6 Discussion

We have presented a boosting approach for distributional beta regression
which can be used to model health related quality of life scales. The advan-
tage of our algorithm is, that it can carry out automated variable selection
and works for high-dimensional data. Although relying a machine learn-
ing algorithm, it leads to interpretable statistical models. A limitation of
our approach is the lack of standard errors for effect estimates, making it
necessary to use work-around methods like resampling procedures or per-
mutation tests to construct confidence intervals or p-values (Hepp et al.,
2019), leading to longer run-times.
Further research is warranted on enhancing the variable selection properties
of the algorithm. The resulting models were relatively big: The algorithm
selected on average half of the candidate variables for the mean model.
One way do deal with this could be to incorporate the stability selection
approach on top (cf. Thomas et al., 2018). However, a more elegant solu-
tions might tackle the problem in the algorithm itself, e.g., by adding an
additional penalty for updates on variables that up-to-this iteration have
never been selected.
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Abstract: In this paper, we propose the class of RS-GARCH models, an exten-
sion of the R-GARCH models, where both returns and volatility have stable dis-
tribution. We present the indirect inference method to estimate the RS-GARCH
models, some simulations and an empirical application.
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1 Introduction

The main motivation for introducing the α-stable distribution family is that
it allows asymmetry, tails much heavier than other popular distributions
(as Student’s t) and it is closed under linear combinations. Another impor-
tant characteristic of stable distributions is its ability to accommodate the
leptokurtic feature present in financial data.
There is a simple way to obtain the characteristic function of a stable
distribution,

ln ΦX(t) =

{
itµ− σα|t|α

[
1− iβsgn(t) tan

(πα
2

)]
, if α 6= 1,

itµ− σ|t| [1 + iβsgn(t) ln(t)] , if α = 1,
(1)

and depends on four parameters: α ∈ (0, 2], measuring the tail thickness
(thicker tails for smaller values of the parameter), β ∈ [−1, 1] determining
the degree and sign of asymmetry, σ > 0 (scale) and µ ∈ R (location). The
distribution will be denoted as Sα(σ, β, µ).
Weron and Weron(1995) proposed an algorithm that makes quite straight-
forward to simulate stably distributed pseudo-random numbers.

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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2 SR–GARCH models

This work proposes the hypothesis of stability for the errors of the model,
so we will be able to choose the shape of our distribution, it being more or
less heavy-tailed and more or less leptokurtic. We will call this class RS–
GARCH and we will propose the indirect inference to estimate the model
parameters in addition to generalize some results of R-GARCH models.
The RS-GARCH(r,p,q), (r,p,q ∈ N) model is defined by the equations

rt = h
1/λ
t εt, 1 < λ ≤ 2, t = 0,±1,±2, · · · , (2)

ht =

r∑

i=1

θiηt−i +

p∑

j=1

φjht−j +

q∑

k=1

ψk|rt−k|λ, (3)

where r ≥ 1, p ≥ 0, q ≥ 0, θr > 0, θi ≥ 0, i = 1, · · · , r − 1, φp > 0, φj ≥
0, j = 1, · · · , p − 1, ψq > 0, ψk ≥ 0, k = 1, · · · , q − 1, the innovations εt
are i.i.d. Sλ(σ, 0, 0) random variables, the innovations ηt are positive i.i.d.
random variables and {εt} and {ηt} are independent.
It is easy to see that the distribution of rt conditioned on Ft−1 = σ{εt, ηt :

s ≤ t − 1, s ∈ Z}, is α-stable rt|Ft−1 ∼ Sλ

(
σh

1/λ
t , 0, 0

)
. Thus, the condi-

tional expectation E(rt|Ft−1) is constant and equal to zero and the con-
ditional variance ht of the models RS-GARCH depends on the past as a
linear function of past innovations ηt−1, . . . , ηt−r, the conditional variances
ht−1, . . . , ht−p and also of past observations of returns |rt−1|λ, . . . , |rt−q|λ.

3 The RS-GARCH model with stable innovations

Let us assume the RS-GARCH(r,p,0) model, with strictly stable random
variables ηt totally skewed to the right, distributed as

ηt ∼ Sα/2
(

2
(

cos
πα

4

)2/α

, 1, 0

)
, (4)

where 0 < α < 2. This means that the index of stability of ηt is smaller
than one and the first moment does not exist.

Theorem 2.1. The unconditional distribution of rt in the defined process
RS-GARCH(r, p, 0) with stable innovations given by (4) is symmetric
stable

rt ∼ Sλα
2


2

1
λσ



∞∑

j=1

δ
α/2
j




2
λα

, 0, 0


 . (5)

If we think the SR-GARCH model as representing daily returns, one could
be interested about the unconditional distributions of weekly, monthly, etc.
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returns. Defining m as the number of trading days within the given interval,
the theorem below give us the desired distribution.

Theorem 2.2. The uncoditional distribution of the sum
∑m−1
k=0 rt−k, m ≥

1, in the RS-GARCH(r,p,0) process with innovations ηt given by formula
(4) is symmetric α-stable

m−1∑
k=0

rt−k ∼ Sλα
2

2
1
λ σ

m−1∑
j=1

(
j∑
i=1

δi

)α/2
+

∞∑
j=m

(
j∑

i=j−m+1

δi

)α/2 2
λα

, 0, 0

 .

(6)

After these properties it is desirable that the process is stationary. Indeed,
this is confirmed in the corollary below.

Corollary 2.1. The RS-GARCH(p,q,0) process with innovations given by
formula (4) is symmetric α-stable and stationary, 0 < α < 2 and 1 < λ ≤ 2.

4 Indirect inference for RS-GARCH process

The main purpose of this section is to introduce brieflythe indirect in-
ference approach to estimate the parameters of a SR-GARCH model. As
we observed some interesting asymptotic properties for the model SR-
GARCH(1,1,0) we will illustrate the idea for this model, with the inno-
vations εt i.i.d. Sλ(σ, 0, 0), the innovations ηt i.i.d. stable random variables
distributed as (4) and {εt} and {ηt} are independent.
The indirect inference has the potential to be an intensive computation-
ally method to overcome difficulties associated with stable distributions.
Gourieroux et al. (1993), Lombardi and Calzolari (2009) and Sampaio and
Morettin (2015) are some recent works that confirm this claim and we take
them as basic references for indirect inference.
Here, we have the likelihood of the model of interest (IM),, which is not
available or difficult to handle. We consider an auxiliary model (AM), which
has a likelihood that is easy to handle. The idea is to use simulation going
to the AM and back to the IM model until convergence occurs. If θ is the
vector of parameters of the IM and ζ is the vector of parameters of the
AM, the procedure involves updating the parametrs in order to minimize

[
ζ̂ − ζ̂S

]′
Ω
[
ζ̂ − ζ̂S

]
,

where Ω is a symmetric non negative definite matrix defining the metrics.
For a given estimate θ̂(p), the procedure yields θ̂(p+1); this is then repeated
until the series of estimates θ̂(p) converges.
For proper implementation of the method the first question to be answered
is the identification of an appropriate AM. The parameter vector of the
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AM must be greater than or equal to the dimension of θ in order for the
solution to be unique.
Since we have a simulation-based approach, we decided to use an aux-
iliary model which is close to a SR-GARCH(1,1,0) model, namely the
GARCH(1,1) model with Student’s t innovations.
Denoting the parameters of the AM by ζ = (ν, α0, β1) and the parameters
of the original model by θ = (α, θ1, φ1) we see that dim ζ = dim θ and
therefore the indirect inference estimator is independent of the symmetric
nonnegative matrix Ω. Thus we choose Ω as the identity matrix.

5 Simulation

In this section we conduct a simulation in order to investigate the properties
of indirect inference estimators of the parameters α, θ1 and φ1 for the
SR-GARCH(1,1,0) model. As we wish a leptokurtic distribution for the
residuals and we desire a more efficient estimation, we will choose the values
λ = 1.8 and σ = 0.5 for the parameters.
The estimates were based on 100 independent replications, 10,000 observa-
tions, ν = 4 for the AM and taking S = 10 vectors. We can see the chosen
values and their estimates in Table 1. We decided to use a large number
of observations, since this will be the case for high frequency data. In the
same way, we have chosen θ1 small, since this will be the case in practical
situations. We see, from the table, that the bias and standard errors are
small, showing the good performance of the method. ,

α = 1.5 θ1 = 0.0000001 φ1 = 0.7

Mean 1.5003 1.3718× 10−7 0.7586
Standard error 0.0214 3.7875× 10−8 0.0233

α = 1.6 θ1 = 0.0000001 φ1 = 0.6

Mean 1.5985 1.6802× 10−7 0.6245
Standard error 0.0291 2.6712× 10−8 0.0134

α = 1.7 θ1 = 0.0000001 φ1 = 0.8

Mean 1.7091 1.4225× 10−7 0.8472
Standard error 0.0116 4.86× 10−8 0.0251

TABLE 1. Monte Carlo mean and Standard error for different parameter values.

6 An application

In this section we are interested in evaluating the performance of the SR-
GARCH(1,1,0) model relative to the GARCH models, also relative to the
R-GARCH and R-GARCH-t models which were discussed in Sampaio and
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Morettin (2015). To do this we will adjust the model SR-GARCH(1,1,0)
to intraday Brazilian stock index Ibovespa logreturn series, sampled at
each 15 minutes based on 100 independent replications and S = 4 vectors
assuming the stable distribution S1.8(0.5, 0, 0) for the error. The total of
37,960 observations are taken from April 1998 to June 1998. We can see
the logreturns in Figure 1.
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FIGURE 1. Logreturns of Ibovespa.

We present, in Table 2, the Monte Carlo mean values and standard errors
of the estimated parameters α̂, θ̂1 and φ̂1 where ν = 3 in the auxiliary
model.

α θ1 φ1

Mean 1.5031 1.5140× 10−6 0.7578
Standard error 0.0040 2.3607× 10−7 0.0036

TABLE 2. Monte Carlo mean and standard errors parameters values for the fitted
SR-GARCH(1,1,0) model.

Next, in Table 3, follows the comparison of the mean squared error for
the respective models GARCH(0,1), R-GARCH(1,1,0), R-GARCH-t(1,1,0)
and SR-GARCH(1,1,0).
We can observe that the mean square error of the SR-GARCH(1,1,0) model
is somewhat lower than others. We present the estimated volatility in Figure
2.
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MSE for GARCH(0,1) 2.4778× 10−5

MSE for R-GARCH(1,1,0) 3.5512× 10−6

MSE for R-GARCH-t(1,1,0) 6.7555× 10−7

MSE for SR-GARCH(1,1,0) 6.2983× 10−7

TABLE 3. MSE of residuals from the fitting of GARCH(0,1), R-GARCH(1,1,0),
R-GARCH-t(1,1,0) and SR-GARCH(1,1,0) to the Ibovespa logreturns.
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FIGURE 2. Estimated volatility for SR-GARCH(1,1,0) model.
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1 Introduction

This work is focused on the evaluation of the impact of an intervention over
the number of occurrences of a particular phenomenon by using discrete
time series techniques. Therefore, unlike in many other applications of time
series, the main interest is not in forecasting but in the estimation of the
effect of the intervention and its further inference. Many models of discrete
time series have been considered in the literature (see McKenzie (2003)),
although we focus on Integer Autoregressive (INAR) models, which are a
natural extension to the well known AR models, and are often easily inter-
pretable in practical contexts. It is usual in many contexts such as public
health or sociology to design and conduct an intervention to change some
phenomenon behaviour. When dealing with continuous valued time series
or series with large counts, intervention analysis may be used with this
purpose. When the time point where the potential change occurs is un-
known, some authors have proposed the change-point analysis (see Csörgö
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tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
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and Horváth (1997) and Horváth and Rice (1997)). However, for count
data there is not a clear analogous methodology, although there have been
some recent contributions (Liboschik et al. (2016), Vasileios (2015)) and
an application of the change-point techniques to INAR models (Hudecová
et al. (2015)). Nonetheless, most of these models are focused on real-time
monitoring for structural changes in the series while we are interested on
transient or definitive changes in the new observed cases after an interven-
tion through a retrospective analysis.

2 Model definition and goodness of fit

INAR(k) models are defined by

Xt = p1 ◦Xt−1 + . . .+ pk ◦Xt−k +Wt, (1)

where p1, . . . , pk are fixed parameters, 0 < p1, . . . , pk < 1 andWt is assumed
to follow a Poisson distribution with a fixed mean λ. A recent review of
INAR models can be found in Scotto et al. (2015). For each intervention
we are interested in, we define a dummy variable It, which takes the value
1 if t is within an intervention period or 0 otherwise. The proposed model
is a variation of INAR(k) model (1):

Xt = p1 ◦Xt−1 + . . .+ pk ◦Xt−k +Wt(λ
′
), (2)

where λ
′

= λ+σ ·It. The parameters of the model (2), θ = (λ, σ, p1, . . . , pk),
can be estimated by using the method of conditioned maximum likelihood
and the main interest in our context will be to test the null hypothesis
H0 : σ = 0 using the standard error corresponding to σ̂, obtained from the
inverse of the Hessian matrix. The proposed model is focused on detecting
changes in the innovations (Wt), while a methodology for detecting changes
in the parameters pi, i = 1, . . . , k in (1) is proposed in Hudecová et al.
(2015), introducing a method for monitoring structural changes in INAR(1)
processes. The goodness of fit of the selected model can be assessed through
a discretised version of the Cox-Snell residuals (Cox and Snell (1968)),
computed from the estimated conditional distribution. The normal pseudo-
residual segment [z−n , z

+
n ] can be obtained as

z−n = Φ−1(P̂ (Yn < yn | (Y1, . . . , Yn−1, Yn+1, . . . , YT ))) = Φ−1(u−n ) (3)

z+
n = Φ−1(P̂ (Yn ≤ yn | (Y1, . . . , Yn−1, Yn+1, . . . , YT ))) = Φ−1(u+

n ), (4)

where Φ is the standard normal distribution function. The mid-pseudo-
residuals, defined by

zmn = Φ−1

(
u−n + u+

n

2

)
(5)

are commonly used in practice to check the validity of a fitted model, as a
white noise behavior is expected.
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3 Examples

3.1 Simulated data

Two INAR(1) processes were simulated, with parameters p1 = 0.7 and
λ = 5 for t = 1, . . . , 400 and p1 = 0.7 and λ = 1 for t = 401, . . . , 500. The
simulated series is shown in Figure 1 (a).

FIGURE 1. Simulated INAR(1) process with an intervention at time t = 400 (a)
and no intervention (b).

Therefore, a change is expected to be detected for t > 400, and the fitted
model is

Xt = p1 ◦Xt−1 +Wt(λ
′
),

where λ
′

= λ for t ≤ 400 and λ
′

= λ + σ for t > 400. The estimate for
σ is -5.89 with 95% confidence interval (-6.82, -4.96), meaning that the
intervention at time t = 400 had a significant impact on the series.
Similarly, an INAR(1) process consisting of 500 observations was simulated
with parameters p1 = 0.7 and λ = 5. The simulated process can be seen in
Figure 1 (b). In that case, as expected, an estimate of σ̂ = 0.39 (−0.25, 1.03)
is obtained, which can be interpreted as no effect of the hypothetical inter-
vention at time t = 400.
Another approach would be to test for structural changes in the series, fol-
lowing for example the methodology described in Hudecová et al. (2015). In
this case, as the change in series (a) is structural and the series does not re-
turn to the pre-intervention values after the intervention, this methodology
is able to detect a change at t = 396. No change is observed for series (b), as
expected. It is important to notice that our approach is retrospective and
the potential intervention time is known, while the real-time monitoring
alternatives are able to estimate when the change occurred.
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3.2 Venereal lymphogranuloma and massive events in
Barcelona

Venereal lymphogranuloma (LGV) is a STI caused by the bacteria chlamy-
dia trachomatis. Due to the popularity that the so called circuit parties
have reached recently, especially among gay and bisexual men, the impact
of these massive events over the number of cases of this and other STI is
a public health concern. The analysed data correspond to the number of
LGV cases registered in the Barcelona area from January 2007 to Decem-
ber 2014. The time evolution of these data is shown in Figure 2, and no
trend or seasonal behavior is observed.
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FIGURE 2. Observed number of LGV cases in Barcelona (2007-2014).

According to the ACF and PACF of the process a model of order 1 seems
to be appropriate, so the model

Xt = p1 ◦Xt−1 +Wt(λ
′), (6)

where λ′ = λ + σ · I(t) is proposed. In this case, the indicator variable
takes the value 1 for all periods of time after the celebration of any circuit
festival in Barcelona within the LGV incubation time (between 3 and 30
days). We have σ̂ = 1.51 (0.55; 2.47) so a significant effect of the celebra-
tion of circuit parties over the number of new LGV cases is detected. The
AIC of this model is 706.01, while the AIC corresponding to the standard
INAR(1) model is 716.74. To check the goodness of fit of the model the mid
pseudo-residuals approach was used, and the results are shown in Figure 3,
supporting its suitability.
Following the approach described in Hudecová et al. (2015) no significant
change in the parameters can be detected at a 95% confidence level. This
fact highlights the difference between the two approaches, as the focus here
is in detecting changes in the innovations due to an intervention or several
interventions but then possibly returning to the original pre-intervention
stage.
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FIGURE 3. ACF and PACF of the mid-pseudo-residuals of the model for the
number of LGV cases in Barcelona 2007-2013.
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1 Introduction

Factor analysis (FA) aims to describe the dependence among a set of out-
comes in terms of a lower number of latent factors. Selecting the number of
factors underlying the data is, however, quite challenging in both frequen-
tist and Bayesian approaches. Frequentist procedures for model dimension-
ality selection are based on the likelihood ratio test (LRT), which assumes
that the factor loadings matrix is of full rank. If violated, the method re-
tains too many factors. Similar problems are seen with AIC and BIC, where
it is also not clear how to compute the penalty term.
Many Bayesian approaches have been suggested in the literature to de-
termine number of factors. Lee and Song (2002) proposed to estimate the
Bayes factor via path sampling for comparing factor models. Lopes and
West (2004) proposed a reversible jump MCMC algorithm to move be-
tween models with different number of factors. In genomics, Carvalho et
al. (2008) proposed an algorithm for factor analysis in high-dimensional
settings. But, all of these approaches assume a lower triangular structure
for the factor loadings matrix in order to ensure identifiability of the mod-
els. With this assumption, the order of the variables introduces unintended
prior information. Recently, also other approaches have been suggested.

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
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However, all above approaches either still depend on the lower triangular
representation, or suffer from identification issues or are computationally
not straightforward. Recently, Quintero et al. (2018) suggested a method,
which does not impose the lower triangular condition for the factor load-
ings matrix. Simulations indicate that our method performs substantially
better than other Bayesian techniques and is efficient without much com-
putational burden.

2 Factor Model Specification

The factor analytic model assumes that the p − dimensional observation
yi can be explained by a m− dimensional vector ηi ∼ Nm(0, Im) of latent
factors as follows

yi = ∆ηi + εi, (1)

where ∆ is a p ×m matrix of factor loadings, εi ∼ Np(0,Σ) is a residual
vector with covariance matrix Σ = diag(σ2

1 , . . . , σ
2
p) and ηi is independent

from εi for i = 1, . . . , n. It is assumed here that the outcomes are stan-
dardized (mean=0, SD=1) avoiding the intercept in (1).
The marginal distribution of yi integrating out the latent factors isNp(0,Ω)
with Ω = ∆∆′ + Σ. Hence, the dependence in the outcomes is exclusively
explained by the common latent factors. In practice, the number of factors
is smaller than the number of outcomes (m < p).
When the factor loadings matrix is not of full rank, i.e. rank(∆) = r < m,
the parameters in Σ are underidentified. Indeed, let R be a m × (m − r)
matrix such that ∆R = 0p×(m−r) and R′R = Im−r. Then

Ω = ∆∆′ + Σ = (∆ + MR′)(∆ + MR′)′ + (Σ−MM′), (2)

for any p×(m−r) matrix M with mutually orthogonal rows. This represents
a serious practical problem because it is not possible to determine a priori
the maximum value of m. This may affect the validity of Bayesian results
in a similar way as for LRT in the frequentist setting.

3 Sparse Model Representation

Instead of considering (2) as a difficulty in FA, it can be used as a tool
to determine model dimensionality. For any m ×m orthogonal matrix P,
model (1) can be re-expressed by its rotated solution yi = ∆Pη∗i + εi
with η∗i = P′ηi. Now assume r < m, then there exists a m × (m − r)
matrix R such that ∆R = 0p×(m−r) and R′R = Im−r. In addition, let
Q be any m × r matrix for which Q′Q = Ir and Q′R = 0r×(m−r). Then,
P = (Qm×r Rm×(m−r)) is orthogonal and model (1) can be re-expressed
as

yi = ∆(Qm×r Rm×(m−r))η
∗
i + εi = (∆Qm×r 0p×(m−r))η

∗
i + εi. (3)
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Thus, for overfitting models there must exist a rotated solution in which
(m− r) columns of the factor loadings matrix are null. We introduce aux-
iliary parameters ν1, . . . , νm that control the null columns in the factor
loadings matrix. More specifically, we fit the factor model

yi =
(
ν1δ1 . . . νmδm

)
ηi + εi = ∆Nηi + εi (4)

with factor loadings matrix ∆N where δk corresponds to the kth column
of ∆ (k = 1, . . . ,m) and N = diag(ν1, . . . , νm). When νk = 0, the kth
column νkδk of the factor loadings matrix is rendered null in model (4).
If the number of factors is r ≤ m, there exists a solution of model (4) with∑
k I{νk 6= 0} = r. For all other rotated solutions,

∑
k I{νk 6= 0} ≥ r. Our

approach for inferring dimensionality in factor analysis (IDIFA) employs
the inferential model (4), inducing prior sparsity for the νk components
in order to obtain the representation (3) of the model. For this, we use a
variable selection approach for the νk components.

4 Prior Specification

To find the “effective rank” of the factor loadings matrix via MCMC meth-
ods, we use the concept of “practically null” as defined by George and
McCulloch (1988). Each component of N in (4) is assigned a normal mix-
ture prior as

νk|γk ∼ (1− γk)N(0, τ2
k ) + γkN(0, c2kτ

2
k ) for k = 1, . . . ,m, (5)

with p(γk = 1) = 1 − p(γk = 0) = πk. Setting τ2
k small and c2k to be

large implies that if γk = 0 then νk is “practically null” and when γk =
1 probably νk 6= 0. The elements δjk (j = 1, . . . , p; k = 1, . . . ,m) are
mutually independent having a standard normal prior distribution and are
independent from νk. Hence, if γk = 0, all components of νkδk in (4)
are “practically null” and the corresponding factor is effectively switched
off. But, if γk = 1, the kth factor appears as important in the model. The
“effective rank” of ∆N is then rγ =

∑
k γk. We assume a constant inclusion

probability for all columns, i.e. π1 = · · · = πm = π and assigned a prior π ∼
Beta(a/m, b) where m is the number of potential factors. The values a and
b are selected such that a small number of relevant columns rγ are preferred
a priori, supporting a sparse rotated solution (3). An inverse gamma prior
is chosen for the idiosyncratic variances, namely σ2

1 , . . . , σ
2
p ∼ IG(d, e).

The density in the slab component corresponds to the distribution of the
product of two normal variables, i.e. νk|γk = 1 ∼ N(0, c2kτ

2
k ) and δjk ∼

N(0, 1). Note that the slab prior is also peaked around zero. This is crucial
because, for important factors with γk = 1, some of the factor loadings
νkδjk can still be sampled close to zero. Note that each underlying factor
explains some of the outcomes in practice and not all factor loadings need
to be considerably large.
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In the IDIFA approach, we estimate only model (4) in contrast to other
approaches in which it is necessary to estimate all models with 0, 1, . . . ,
m factors. All prior distributions are conditionally conjugate in IDIFA,
so the conditional posteriors for Gibbs sampling correspond to closed form
distributions. In each Gibbs iteration, we compute the number of important
columns in the factor loadings matrix as rγ =

∑
k γk.

5 Performance of the IFIDA approach

A simulation study set up to evaluate the performance of our approach in
comparison to other approaches, showed that IDIFA finds more often the
correct number of factors.
We also evaluated our approach on the data of the RN4CAST project,
which is a European nurse workforce study. Burnout was measured ac-
cording to the Maslach Burnout Inventory (MBI) scale based on 22 items.
All items are answered in terms of frequency on a seven-point scale. MBI
assumes the presence of three latent components underlying the data: emo-
tional exhaustion, depersonalization and reduced personal accomplishment.
It is of interest to confirm if the hypothesized three factor model is valid in
Belgian university hospitals. In this analysis we select a subset of 11 items
and added the university hospital as a covariate. Implementing the IDIFA
approach with m = 4 suggests a three factor model with posterior prob-
ability equal to 95%. This was also suggested using the Bayes factor via
path sampling. However, when changing the ordering of items, the Bayes
factor favored a two factor model in contrast to the IDIFA approach.
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1 Surveillance using a new multivariate integer-valued
autoregressive model specification

Traditionally, statistical models for health surveillance data aim to effec-
tively capture the endemic and epidemic dynamics of disease risk. In prin-
ciple, the endemic component explains a baseline rate of cases with stable
temporal pattern. The epidemic component on the other hand aims to in-
troduce infectiousness, that is explicit dependence between events. There-
fore the epidemic component is driven by the observed past and is identified
with the autoregressive part of the model (Meyer et al., 2017).
This additive decomposition of disease risk is well embodied in the multi-
variate integer-valued autoregressive model (Pedeli and Karlis, 2013) Xt =
A ◦Xt−1 + εt, t ∈ Z, where A is assumed to be a n × n diagonal ma-
trix with independent elements and {εt}t∈Z is a sequence of non-negative
integer-valued random vectors, independent of A◦Xt−1, that follow jointly
a discrete multivariate distribution. However, the assumption of a diagonal
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matrix A weakens the ability of the model to capture the epidemic dynam-
ics of disease risk since it ignores the relationship with time lag between
series that is typical in disease transmission. Moreover, inference for this
model is based on a pairwise likelihood approach which is not appropriate
for prediction purposes.
To balance between effectiveness and attractiveness of the model, we con-
sider here another specification. In particular, we assume that the correla-
tion matrix A is non-diagonal and we relax the degree of complexity of the
model by assuming that the innovation series εt, i.e. the endemic compo-
nents, are uncorrelated. The resulting model admits a realistic epidemio-
logical interpretation and is extremely advantageous in terms of practical
implementation since the distribution of the innovations becomes a product
of univariate mass functions.
The newly defined multivariate INAR(1) process can be used for modeling
clean historical data and make one-step-ahead forecasts that can be used
for prediction-based monitoring. The suggested outbreak detection statis-
tical process comprises of two steps: In the first step, the available series of
data in the set-up phase (clean historical data) is modeled through a mul-
tivariate INAR(1) process and a parameter vector of maximum likelihood

estimates θ̂ is obtained. In the second step, the actually observed realization
xt+1 is assessed against a multivariate prediction threshold derived from
the model fitted in the first step in order to define whether an alarm should
be triggered. More specifically, for each multivariate observation xt+1 in the
operational phase, we estimate the one-step-ahead predictive distribution
P̂ (Xt+1 = xt+1|xt, θ̂), x ∈ Nn0 and obtain the marginal predictive proba-

bilities P̂ (Xi,t+1 = xi,t+1|xt, θ̂), i = 1, . . . , n. For each observation Xi,t+1,
we construct an (1−α)% prediction interval with upper bound xUBi,t+1 equal
to the (1 − α)-quantile of the corresponding marginal predictive distribu-
tion, where α is a prespecified significance level. The lower bound of the
prediction interval is set equal to 0 since we are only interested in detecting
positive deviations from the in-control model. Each series flags an alarm
at time t + 1 if the corresponding observation lies outside the prediction
interval, i.e. if

xi,t+1 > xUBi,t+1.

Finally, for the overall alarm, a majority rule can be defined, i.e. flagging
an alarm if a certain percentage of the series signals an alarm at the same
point in time (Vial et al., 2016).

2 Application using syndromic data

To illustrate the suggested methodology we consider data that is part of the
syndromic surveillance data collected during Athens 2004 Olympic Games.
For the purpose of the current analysis we consider three distinct syndromes
recorded in a specific hospital that are significantly correlated to each other
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(cross-correlations ranging from 0.31 to 0.48). In particular, we consider
respiratory infection with fever, febrile illness with rash and other syndrome
with potential interest for public health. The latter is a general category
including all symptoms that could not be classified in any of the other
prespecified categories.
Our monitoring period starts on March 2, 2004 and ends on September
28, 2004 while the period between August 1, 2002 and August 29, 2003
is considered as the set-up phase. During both periods syndromes were
recorded every three days so that the historical and surveillance data consist
of t0 = 127 and t1 = 71 observations respectively.
In the following we fit a trivariate INAR(1) model with indepedent Pois-
son innovations for modeling and prediction using the historical syndromic
surveillance data. To account for regressors usually related to infectious dis-
ease data we express the expectation of the innovation series as function of
the available covariate information, i.e. E(εit) = exp(z′tβ), i = 1, 2, 3, where
zt as a vector of covariates with associated regression parameters β. As can-
didate covariates we consider terms for seasonality and a binary indicator
for the day of the week on which the recording of syndromes was imple-
mented (weekdays vs. weekends). We don’t consider time trends since time
series plots do not suggest the presence of any trend in our data. Therefore,
each marginal series is modeled as Xit =

∑3
j=1 αij ◦Xj,t−1 + εit, i = 1, 2, 3,

where εit are independent Poisson random variables with mean

E(εit) = exp

{
βi0 + βi1Weekday + βi2 cos

(
2πt

122

)
+ βi3 sin

(
2πt

122

)}
(1)

for t = 1, . . . , t0. For comparison purposes we also employ a univariate
surveillance approach based on fitting three indepedent INAR(1) regression
models with Poisson innovations. Covariate information is incorporated
in the univariate models in the same way, i.e. through (1). With both
approaches, the marginal one-step-ahead predictive distributions are used
for the construction of (1− α)% prediction intervals, the upper bounds of
which serve as thresholds for outbreak detection. We assume a type I error
of α = 0.01 and for the overall alarm we set a rule of 2/3 that is an alarm
is triggered if at least two out of the three series flag an alarm at the same
point in time.
The parameter estimates and corresponding standard errors obtained with
the two modeling approaches indicate significant first-order autocorrela-
tions under both fittings. The cross-correlation parameters estimated by
the trivariate INAR(1) model are also significant indicating the appropri-
ateness of the multivariate approach.
The surveillance plots obtained under the two models are shown in Fig-
ure 1. Red dashed lines represent the upper bounds of the correspond-
ing 99% prediction intervals while blue crosses indicate the time points at
which an overall alarm is raised. The two alarms signalled with the trivari-
ate INAR(1) fitting are also trigerred when three independent INAR(1)
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FIGURE 1. Surveillance plots as obtained after fitting a trivariate INAR(1) re-
gression model with independent Poisson innovations (left panel) or three inde-
pendent Poisson INAR(1) regression models (right panel) to the historical data.

models are fitted to the historical data. However, with the later approach
an additional alarm is also raised. This additional alarm might be due to
the ignorance of cross-correlation between the series that results in nar-
rowing down the corresponding prediction intervals and thus increasing
the number of false alarms.
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Abstract: West, Harrison and Wigan (1985) introduce a class of dynamic gen-
eralised linear models where dynamic updates of the sufficient statistics can be
made through the exploitation of conjugacy. We extend this methodology to mod-
els where the dynamic parameters do not have sufficient statistics but where the
full conditional posteriors of each parameter are known distributions. We illus-
trate our methods using premier league football data collected over the last two
decades. We formulate updates for proxys for the sufficient statistics of each of
the dynamic parameters. We validate our model, test its predictivity and exam-
ine critically our assumptions by examining the out of sample Pearson residuals.
The outcome of our analysis are a set of informative trellis plots, showing the
evolution of strength and style of each of the premier league sides over the last
two decades.

1 Introduction

Our principal objective is to develop a sequential conjugate Bayesian dy-
namic model. Quasi-sufficient statistics are constructed for the dynamic
parameters and are allowed evolve upon realisations of the scores of each
game. Our model has similarities to Dixon and Coles (1997), Karlis and
Ntzoufras (2003), Crowder et. al (2002) and Koopman and (2013). However
unlike them we use a univariate Bayesian dynamic state space model and
make dynamic updates avoiding sampling based methods. Our diagnostic
analysis indicate that the univariate model gives an adequate description
of the data. In section 2. we develop a Bayesian static model and apply

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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it just to one season’s data. In section 3 we formulate our dynamic model
and in section (4) we present our results and make conclusions.

1.1 Data description

We use the last 23 years of UK Premier League data from the web site,
http://www.football-data.co.uk/englandm.phhp.

2 Theory and background

State space models have two components: a state equation that describes
the evolution of the parameter of interest : θt ∼ π(. | θt−1) and an obser-
vation equation Yt ∼ f(. | θt) which conditions on the underlying state. In
order to make updates tractable, West et al., (1998) considered observation
equations from the exponential family.

f(yt|θt, τt) = h(yt, τt) exp
{
τt
[
T (yt)

T η(θt)− b(θt)
]}
.

where θt is the dynamic parameter, η(θt) is the natural parameter, b(θt) ∈ <
is the log partition function and τt is a dispersion parameter which can be
assumed known. The conjugate prior is given by

π(θt | p̃t, q̃t) =
1

c(p̃t, q̃t)
exp{p̃tη(θt)− q̃tb(θt)}

where p̃t and q̃t are the prior sufficient statistics derived from the posterior
from the last observation. The parameter q̃t is known as the prior precision
parameter. The location parameter of the prior us µt = p̃t

q̃t
Then we can

show the posterior has the form

π(θt | pt, qt) =
1

c(pt, qt)
exp{ptη(θt)− qtb(θt)}

which ensures that the updates for the sufficient statistics for the state
becomes

pt ← p̃t + τtT (y) qt ← q̃t + τt (1)

Note that here that the updates of the sufficient statistics, pt and qt from
prior to posterior distribution for densities from the exponential family
involve quantities that are known. In this paper we look at extending this
idea to models where no such sufficient statistics exist.



Ridall et al. 269

2.1 The evolution or state process

We use discount or a forgetting parameters to describe changes of form over
time. The amount of forgetting, can be allowed to increase with increasing
separation in the time between observations: ωt = exp(−k∆t), where k is
a fixed parameter. We formulate the extension of the posterior of the last
observation to the prior of the current observation by

p̃t ← ωtpt−1 q̃t ← ωtqt−1

Note that although the parameter loses precision, the mean is left un-
changed. The updating of the parameters for the prior to the parameters
of the posterior as

pt ← p̃t + τtT (y) qt ← q̃t + τt.

3 Example: Premier League football

Our aim is to develop a good predictive model of football scores encompass-
ing the style and strength of play of each team over the history of the league.
Our data is sourced from http://www.football-data.co.uk/englandm.php.

A stationary model We start this section by looking at models in the
stationary setting where the parameters are assumed fixed over the season.
Let i ∈ {1, 2, . . . , 20} denote the home team and j ∈ {1, 2, . . . , 20} denote
the away team and let the games of the season, in chronological order, be
labelled as t = 1, . . . , 380. Let αi be the attacking strength of team i, βj
be the defensive strength of team j and γ be the common home ground
advantage. Then the home goals Xi,j and away goals Yi,j at time t are
described by two univariate Poisson distributions given by

Xi,j ∼ Poisson (αiβjγ), Yi,j ∼ Poisson (αjβi).

with β1 → 1 to maintain identifiability. We set the priors of the attacking
and defensive strengths of all teams and the HGA to be

αi ∼ Gamma (δ, δ), i = 1, 2, . . . , 20,

βi ∼ Gamma (δ, δ), i = 2, 3, . . . , 20,

γ ∼ Gamma (δ, δ). (2)

Then the posterior at end of season is

π(α,β, γ | x,y) ∝ exp(−
∑
{i,j}∈S

[αiβjγ + αjβi]) ×
∏
{i,j}∈S

{[αiβjγ]xi,j × [αjβi]
yi,j}

︸ ︷︷ ︸
L(θ) Likelihood

×

[
20∏
i=1

αδ−1
i exp(−αiδ)

]
︸ ︷︷ ︸
Prior Attacking Strengths

×

[
20∏
j=2

βδ−1
j exp(−βjδ)

]
︸ ︷︷ ︸
Prior Defensive Strengths

× γδ−1 exp(−γδ)︸ ︷︷ ︸
HGA
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We have found that δ → 1 gives almost identical estimates of posterior
means to their MLEs, calculated numerically. A comparison is displayed in
Figure (1).

The dynamic model Now we assume that the αt, βt, γt evolve over time
and are each described by two quasi-sufficient statistics. We describe the
evolution of these parameters in terms of their quasi-sufficient statistics.
For game t the model is given by.

Xi,j ∼ Poisson (αi,tβj,tγt) (Home Goals)

Yi,j ∼ Poisson (αj,tβi,t) (Away Goals)

The priors of the dynamic parameters at each time point are set at:

αi,t ∼ Gamma
(
p̃αi,t, q̃

α
i,t

)
(AS Home)

αj,t ∼ Gamma
(
pαj,t, q

α
j,t

)
(AS Away)

βj,t ∼ Gamma
(
pβj,t, q

β
j,t

)
(DS Away)

βi,t ∼ Gamma
(
p̃βi,t, q̃

β
i,t

)
(DS Home)

γt ∼ Gamma (p̃γt , q̃
γ
t ) (HGA)

The updates of all five dynamic parameters following the observation of
the game are made using their quasi-sufficient statistics

pαi,t ← p̃αi,t + xi,j qαi,t ← q̃αi,t + γ̂tβ̂j,t, (AS Home)

pαj,t ← p̃αj,t + yi,j qαj,t ← q̃αj,t + β̂i,t, (DS Away)

pβi,t ← p̃βi,t + yi,j qβi,t ← q̃βi,t + α̂j,t, (DS Home)

pβj,t ← p̃βj,t + xi,j qβj,t ← q̃βj,t + γ̂tα̂i,t (DS Away)

pγt ← p̃γt−1 + xi,j qγt ← q̃γt−1 + α̂i,tβ̂j,t (HGA)

(3)

where for instance β̂j,t refers to the expectation of βj,t at the previous

observation which is β̂j,t =
pβj,t−1

qβj,t−1

.

3.1 Between and within season variability

We denote all the dynamic parameters by θt = {αt,βt, γt, }. After each
game five of these dynamic parameters are updated through their suffi-
cient statistics pt and qt. Note that at any time the expectation of the dy-
namic parameters can be estimated from their sufficient statistics θ̂t = pt

qt
.

Updates are carried out by repeatedly applying the two steps below.
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FIGURE 1. A comparison of maximum likelihood estimates and sequential
Bayesian estimates of attacking and defensive strengths using only the data from
the current season with no parameter discounting and the parameter of the prior
from Equations (2) set to δ → 2 .

1 Extend the prior In this step the means of the posteriors dynamic
parameters from the previous game are extended in such a way that
the means of θt−1 are preserved whilst increasing their variances.
The updating from the posterior of last observation to the prior of
the new observation are driven by the within season and between
season fixed forgetting or volatility parameters: 0 ≤ ωw, ωb ≤ 1, which
can be allowed to vary by team and season. ∀t ∈ {2, . . . , 380} and
∀s ∈ {1, 2, . . . , 23} .We set ωw → .98 and ωb → .67.

p̃s,t ← ωwps,t−1, q̃s,t ← ωwqs,t−1

p̃s,1 ← ωbps−1,380, q̃s,1 ← ωbqs−1,380 (For surviving teams)

p̃s,1 ← δ, q̃s,1 ← δ (For promoted teams)

2. Update and predict Updates are made on the sufficient statistics for
the dynamic parameters using Equations (3) in Section (3).

4 Results and conclusion

We have carried out thorough diagnostics of the out of sample Pearson
residuals and find little evidence of either over-dispersion or correlation,
suggesting that our univariate Poisson dynamic model is adequate for our
purposes. We have compared our Bayesian estimates of just the current
season to their MLE estimates of the same season and have displayed them
in Figure (1). We have analyzed the evolution of style and strengths of
form of all the participating teams in the premier league, but have just
presented the results of Manchester United in Figure (2).We believe that
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FIGURE 2. 50 % credible intervals for αi,t and 1/βi,t illustrating the evolution
of the attacking and defensive strengths of Manchester United over the last two
decades or so.

such an analysis will be a useful tool for the evaluation of the coaching
regimes of each team over the history of this league and any other football
competitions where the data is available.
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Abstract: Joint modeling of longitudinal and time-to-event data provides in-
sights into the association between the two quantities. The joint latent class
modeling approach assumes that conditioning on latent class membership, the
trajectories of longitudinal data such as biomarkers are independent of survival
risks. The resulting latent classes provide a data-dependent clustering of the
population, which is also of interest in clinical studies of, for example, precision
(personalized) medicine. Existing joint latent modeling approaches are paramet-
ric and suffer from high computational cost. We propose a nonparametric joint
latent class modeling approach based on trees (JLCT). JLCT is fast to fit, and
can use time-varying covariates in all of its modeling components. Based on sim-
ulations JLCT has similar performance to current approaches when using only
time-invariant covariates, but can take advantage of the prognostic value of using
time-varying covariates. We apply JLCT to a real application and see evidence
of JLCT’s strong predictive performance, while being orders of magnitude faster
than the standard latent class model approach.

Keywords: Biomarker; Conditional independence; Recursive partitioning; Sur-
vival data; Time-varying covariates.

1 Introduction

Clinical studies often collect three types of data on each subject: the time to the
event of interest (possibly censored), longitudinal measurements on a continuous
response (for example, some sort of biomarker viewed as clinically important), and
an additional set of covariates (possibly time-varying) about the subject. Analysis
then focuses on the relationship between the time-to-event and the longitudinal
responses, using the additional covariates.

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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The most common approach for the joint modeling problem is the shared random
effects model (SREM); for discussion see Tsiatis and Davidian (2004). A different
line of research focuses on the joint latent class model (JLCM); for discussion
see Proust-Lima et al. (2014). JLCM assumes that the population of subjects
consists of multiple latent classes. A subject’s time-to-event and longitudinal
responses are independent conditioning on his or her latent class membership. In
addition, JLCM assumes the latent classes are homogeneous, so subjects within
a latent class follow the same survival and longitudinal model. The latent class
membership is modeled by a multinomial logistic regression model. Blanche et
al. (2015) showed that JLCM and SREM are each special cases of a general
parametric joint modeling of the longitudinal and time-to-event outcomes, with
the variable that ties the two together either continuous (SREM) or discrete
(JLCM). What makes JLCM interesting conceptually, however, is the idea of
latent class membership, which can be used to identify clinically important groups
useful in, for example, precision (personalized) medicine. JLCM is restricted to
time-invariant covariates for both latent class membership and time-to-event in
current software implementation, and is quite computationally intensive.
In this work, we propose the joint latent class tree (JLCT) method. JLCT, like
JLCM, is based on the key assumption that conditioning on latent class member-
ship, time-to-event and longitudinal responses are independent. JLCT therefore
looks for a tree-based partitioning such that within each estimated latent class
defined by a terminal node, the time-to-event and longitudinal responses display
a lack of association. Once the tree is constructed, we assign each observation
to a latent class (i.e. terminal node), and independently fit survival and linear
mixed-effects models, using the class membership information.

2 Joint Latent Class Trees

The joint latent class modeling problem makes the key assumption that a sub-
ject’s time-to-event and longitudinal outcomes are independent conditioning on
his or her latent class membership (git) ∈ {1, . . . , G}. Without controlling the
latent class membership, time-to-event and longitudinal outcomes may appear
to be correlated because each is related to the latent class, but given it the two
are independent of each other. The modeling of the time-to-event and the lon-
gitudinal outcome are therefore separated conditioning on group membership,
greatly simplifying things. We assume the longitudinal outcomes come from a
linear mixed-effects model. Conditioning on latent class membership, we assume
the time-to-event depends on a subset of covariates observed at all time points
through the extended Cox model for time-varying covariates (Cox, 1972), al-
though once a tree is constructed the user can decide which type of survival
models and which covariates to use within each terminal node, providing addi-
tional flexibility to the analyst.
Under these assumptions, JLCT looks for a tree-based partitioning such that
within each estimated class defined by a terminal node the time-to-event and
longitudinal outcomes display a lack of association. Tree-based methods are fast
to construct, able to uncover nonlinear relationships between covariates, and are
intuitive and easy to explain, making them ideal for this purpose (see chapter 9
of Hastie et al., 2009, for background on trees).
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We consider binary trees, where each node is recursively split into two children
nodes based on a splitting criterion. The splitting criterion ensures that the two
children nodes are more “homogeneous” than their parent node. The measure of
“homogeneity” in JLCT is based on the conditional independence between the
time-to-event and the longitudinal outcomes: the more apparently independent
the two variables are conditioning on the node, the more “homogeneous” the
node is. The splitting criterion repeatedly uses the likelihood ratio test statistic
for the hypothesis test

H0 : by = 0, vs. H1 : by 6= 0,

under the extended Cox model,

h(t,Xi,Yi) = h0(t)eYi(t)by+Xi(t)bx ,

where h(t) is the hazard (risk) at time t, h0 is a baseline hazard function, and
Xi(t) and Yi(t) indicate values at t . The coefficient by is the slope associated
with the longitudinal outcomes, and thus by = 0 corresponds to the longitudinal
outcome having no relationship with the time-to-event in the node given the
other covariates. Note that this time-to-event formulation is only being used as
a splitting criterion, not as a representation of the true relationship between Y
and T .
We will denote the test statistic of the hypothesis test as TS. The smaller the value
of TS is, the less related longitudinal outcomes are to the time-to-event data given
the covariates and current node. JLCT seeks to partition observations such that
TS is small within each leaf node, but stops partitioning when TS is less than a
specified stopping parameter. The stopping criterion is based on the property that
under the null model the distribution of TS is approximately a χ2

1 distribution.
This criterion can be tuned by changing the nominal significance level of the test,
resulting in more or less aggressive splitting of nodes; here α = 0.05 is taken as
a default.
Simulations demonstrate that the performance of JLCT is comparable to that of
JLCM when there are no time-varying covariates for the time-to-event or latent
class, but can greatly outperform it when there are such covariates. In addition,
when the underlying latent classes follow a tree structure, JLCT is very successful
in recovering that structure, which makes inferences for the longitudinal and time-
to-event variables within these estimated classes reasonably effective. Further, the
JLCT algorithm is orders of magnitude faster than is the JLCM algorithm when
the latter can be fit.

3 Application

In this section, we apply JLCT to a real dataset, the PAQUID dataset from the R

package lcmm, which was also examined in Proust-Lima et al. (2017), The dataset
collects five time-varying cognitive test score values along with age at visit, and
three time-invariant covariates. The time-to-event is the age at dementia diagnosis
or last visit. The goal is to jointly model the trajectories of the Mini-Mental State
Examination score (normMMSE) as a biomarker (longitudinal outcomes) and the
risk of dementia (time-to-event), using the remaining covariates.
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We consider two JLCM, an SREM, and three JLCT models: the time-invariant
model in Proust-Lima et al. (2017) (JLCM1) and its corresponding shared random
effects (SREM1) and tree version (JLCT1), the extension of JLCM1 (JLCM2)
that uses the first occurrence of the time-varying covariates as time-invariant
covariates and its corresponding tree version (JLCT2), and the full version of
JLCT (JLCT3) that uses all of the values of time-varying covariates. More com-
plex SREM models could not be fit with available software. For the two JLCM
models, the number of latent classes is chosen from 2 to 6 according to the BIC
selection criterion. For the four JLCT models, we set the stopping threshold to
3.84 and prune the trees to have no more than 6 terminal nodes.
Table 1 summarizes the results. When using only time-invariant covariates, JLCT1

performs similarly to its counterpart JLCM1 in prediction accuracy, while SREM
outperforms both in terms of survival prediction. When using the same predic-
tors JLCT1 is orders of magnitude faster than the two parametric methods. By
adding four “time-invariant” covariates (which are converted from time-varying
ones) to the class membership and survival models, the performance of JLCT2

remains similar, but the performance of JLCM2 becomes much worse, mainly
because JLCM failed to converge when optimizing the log-likelihood function (in
fact, its performance is worse than a simple prediction of Ŝ = 0.5 for every obser-
vation, which gives IBS = 0.25. When using the original time-varying covariates
in the class membership and survival models, however, JLCT3 improves its time-
to-event prediction accuracy and outperforms all other methods by a significant
margin on that measure. Further, JLCT is much faster than JLCM: fitting using
JLCT took less than 2 minutes even for the most complex model, while fitting
using JLCM took from 40 to 60 minutes. The experiments are performed on a
desktop with 2.26GHz CPU and 32GB of memory.

TABLE 1. Performance of JLCM, SREM, and JLCT methods on the PAQUID
dataset based on 10-fold CV; IBS refers to Integrated Brier Score of time-to-event
prediction and RMSE refers to root-mean squared error for biomarker prediction.

JLCM1 JLCM2 SREM1 JLCT1 JLCT2 JLCT3

IBS 0.1731 0.4467 0.1262 0.1611 0.169 0.0966
RMSE 14.759 18.354 14.669 14.550 14.291 14.501

Time (secs) 2448.7 4107.6 97.1 1.7 40.9 87.9

Figure 1 gives the tree associated with the construction of the latent classes.
The tree splits into three nodes based only on age, splitting at ages 82 and 90,
suggesting that people transition into different dementia statuses as they get
older, which are reflected in differences in the distributions of both cognitive test
score (normMMSE) and time until a dementia diagnosis.

4 Conclusion

In this paper we have proposed a tree-based approach to jointly model longitudi-
nal outcomes and time-to-event with latent classes. JLCT performs comparably
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FIGURE 1. JLCT using time-varying covariates.

to its parametric counterpart JLCM, but makes full use of time-varying infor-
mation when it is available and can significantly outperform JLCM as a result.
JLCT is orders of magnitude faster than JLCM, and is highly flexible, allowing
the data analyst to fit any longitudinal and time-to-event models they wish at
each terminal node of the tree. Interesting generalizations of this tree-based ap-
proach to joint modeling include situations where there are competing hazards
risks (the PAQUID data is actually an example of this type, since there is a risk of
death before dementia is observed), where time-to-event is only known to within
an interval of time (interval-censoring), and where several potentially prognostic
longitudinal variables (biomarkers) are available for a subject (this is also the
case for the PAQUID data, as there are other cognitive test variables in addition
to normMMSE that could be used as biomarkers).
An R package, jlctree, that implements JLCT is available at CRAN.
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Abstract: Motivated by an empirical analysis of Duchenne muscular dystrophy
(DMD) data collected in a study, we propose a joint modeling technique for es-
timating the association between two responses: a continuous longitudinal one
and a time-to-event indicator subject to censoring. We propose a two-stage ap-
proach to handle this type of data sets using all available information. At the first
stage, we summarize the longitudinal information with the linear mixed-effects
model, and at the second stage, we include the Empirical Bayes estimates of the
subject-specific parameters as predictors in the accelerated failure time (AFT)
model. We conclude that either joint modeling or the simpler two-stage multilevel
approach can be used to estimate conditional associations between growth and
later outcomes, but that only joint modeling is unbiased with nominal coverage
for unconditional associations.

Keywords: Duchenne muscular dystrophy; Two-stage approach; AFT model.

1 Section 1

In clinical and epidemiological studies we often come across types of data where
we perceive repeated evaluations of outcomes of a particular characteristic of
a subject in time, along with an event of interest. Joint modelling deals with
these two processes i.e., longitudinal and time-to-event processes simultaneously,
as separate analysis and estimation of them could lead to biased and misleading
estimates. In our present work we have extended the bivariate approach of joint
modelling to a data set with n + 1 components where the first n components
define the longitudinal process, and the last component is the time-to-event.

1.1 Section 1.1

Here, Yij denotes the longitudinal trajectory for subject i = 1, ..,m at time j for
j = 1, ...., ni. Let Ti denotes the time-to-event outcome for the ith individual,

This paper was published as a part of the proceedings of the 34th Interna-
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where δi is denoted as the censoring parameter. Then the joint distribution of
longitudinal and time-to-event data, given subject-specific random effects bi can
be modeled by using the multivariate normal specification

(Y ′i , log Ti)
′ ∼ N(Xiβ +Zibi,Σi),

Vi =

(
Yi

log Ti

)
= Xiβ +Zibi + εi (1)

Here, the design matrix for the fixed effects and random effects are denoted by
Xi and Zi respectively, and β is the vector of regression parameters. Further,

εi ∼ N(0,Σi) with Σi =

(
ΣYi σ1i

σ′1i σ2
Ti

)
(2)

The vector σ1i signifies the association structure between Yi and log Ti. The as-
sociation between these two simultaneous processes has till now been captured
through the subject specific random effects bi in literature. In our proposed frame-
work, mainly the longitudinal correlation is captured by bi. So it indicates that
dependency between the longitudinal and survival part can still be captured using
the conditional distribution even if these two processes do not share common bi.
Owing to difficulties due to positive definiteness constraints and high-dimensional
complexities it is cumbersome to model the entire covariance matrix for each
subject. This issue can be addressed by factorization of the joint distribution of
(Yi, log Ti). In our proposed modeling framework, we factor the joint distribution
of Yi and log Ti into two components: a marginal model for Yi and a correlated
regression model for log Ti given Yi. In the presence of subject specific random
effects bi, let

Xi =

(
Xi1 0

0 Xi2

)
,Zi =

(
Zi1 0
0 Zi2

)
and β =

(
β1

β2

)
Then by implementing the Bartlett decomposition of a covariance matrix, the
new models can be expressed as:

Yi|bi = Xi1β1 +Zi1bi + εi1

log(Ti|Yi, bi) = Xi2β2 +Zi2bi +Bi(Yi −Xi1β1 −Zi1bi) + εi2 (3)

where Bi = σ′1iΣYi is the vector reflecting structural association between these
two processes. Here we also capture the local dependency through non-zero Zi1
and Zi2. Further let us assume, εi1 ∼ N(0,ΣYi) and εi2 ∼ N(0, σ2

T ). In the
present work, to capture longitudinal correlation, we have assumed bi = (bi1, bi2)′

are from N2(0,Σb). The covariance matrix Σb is denoted as(
1 ρσb
ρσb σ2

b

)
(4)

the variance of bi1 being set to 1 for identifiability issue, σ2
b is the variance of bi2,

and ρ is the correlation coefficient between the two random effect components.
Subsequently, we assume Zi1 = (1, 1) and Zi2 = (ν1, ν2). Let f0(.), S0(.) and
h0(.) denote the density, survival, and hazard functions of random error εi2 in
equation (3), respectively. Let f(.), S(.) and h(.) denote the density, survival,
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and hazard functions of T , respectively. The contribution to the
likelihood can be expressed as:

f(logTi; yij , bi) = h(ti|bi)δiS(ti|bi)

where h(ti|bi) is the conditional hazard and S(ti|bi) is the conditional survival
function. Under the log-normal assumption, we have

S(ti|Yi, bi) = 1− Φ(
log ti −Xi2β2 −Zi2bi +Bi(Yi −Xi1β1 −Zi1bi)

σT
)

The AFT (accelerated failure time) structure in joint modeling is troublesome to
deal with compared to the Cox model since f(logTi; yij , bi) is more complicated
and unlike the Cox model, the baseline function involves unknown quantities. As
a result, it is not possible to use the point mass function with masses assigned to
all uncensored survival times ti for the baseline hazard function., The Complete
data Likelihood for the ith individual can be expressed as:

Li =

( ni∏
j=1

f(yij |bi)
)
f(logTi|yij , bi)f(bi;σ

2, ρ)

Assuming independence among subjects, we can take ΣYi = σ2
yI, where I is a

ni × ni matrix., For notational simplicity, we let y = {yij} ∪ {Ti} ∪ {δi} be the
observed data and Ψ = (β′1,β

′
2, σ

2
y, σ

2
b , ρ, σ

2
T , ν1, ν2)′ be the parameter vector.

1.2 Section 1.2

The frequentist method of estimation poses as a major hurdle leading to issues of
non-convergence or slow convergence of the model parameters. Moreover, when
the dimension of the random-effects is high or the parameter space is large it poses
as a serious difficulty for the classical estimation procedure to yield satisfactory
estimates (due to the intractability of the Hessian matrix). Here in the first
stage Linear mixed-effects regression for the longitudinal data is fitted using
lme4 package. In the second stage, the estimates thus obtained are used as plug-
in estimates in the survival part of our model. Survival parameters are estimated
by adopting Gradient-Descent algorithm (with adaptive learning rate)

2 Section 2

We had conducted an extensive simulation study in order to check the efficacy of
our proposed model and had also performed the robustness check under model
misspecification (as we had used parametric AFT model). We had performed
two data studies, i.e., the popular AIDS data and Duchenne muscular dystrophy
(DMD) data. The DMD data consists of composite scores based on six different
muscles (neck, deltoids, bicep, iliopsoas, quadriceps, and hamstrings) observed
at different time points and are actually responsible for all movements. We had
used three settings for the analysis purpose, i.e the usual joint model (proposed),
the joint model with local independence (where the two processes are linked by
conditional dependence only) and the fully independent model. The table on
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the DMD data study below displays comparable estimates on the joint models
and displays tight 95% confidence intervals thus ensuring the precision of the
estimates. The parameter estimates of the survival part in the fully indepen-
dent model fail to converge which is predictable. The simulation study and the
robustness check under model misspecification also yielded satisfactory results
with negligible bias, low mean squared error and standard error for the first two
settings (thus asserting our claim).

TABLE 1. Duchenne Muscular Dystrophy data study

Parameter Joint Model JM with local independence

Estimate SE 95% CI Estimate SE 95% CI

longitudinal
α 4.74537 0.34276 [4.07,5.42] 4.74537 0.34276 [4.07,5.42]
β 0.10298 0.06024 [-0.02,0.22] 0.10298 0.06024 [-0.02,0.22]
σ2
b 0.03339 0.0065 [0.02,0.05] 0.03339 0.0065 [0.02,0.05]
ρ -0.29 0.318 [-0.7328,0.34] -0.29 0.318 [-0.7328,0.34]

time-to-event
β0 1.1 0.001 [1.097,1.102] 1.1 0.00109 [1.097,1.102]
σ2

(1) 0.03 0.0012 [0.027,0.032] 0.029 0.0010957[-0.0036,0.061]

σ2
T 1.702 0.01586471 [1.67,1.733] 1.7 0.016649 [1.667,1.732]
ν1 -0.199 0.00109 [-0.2011,-0.1968] - - -
ν2 -0.799 0.00109 [-0.8011,-0.7968] - - -

Parameter Independent Model

Estimate SE 95% CI

longitudinal
α 4.74537 0.34276 [4.07,5.42]
β 0.10298 0.06024 [-0.02,0.22]
σ2
b 0.03339 0.0065 [0.02,0.05]
ρ -0.29 0.318 [-0.7328,0.34]

time-to-event
β0 not conv. - -
σ2

(1) - - -

σ2
T not conv. - -
ν1 - - -
ν2 - - -
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Abstract: Ensemble of decision trees are popular techniques for regression and
classification either because of their forecasting performances and their ability to
account for complex nonlinear dependence structures among predictors. Lever-
aging on the Bayesian Additive Regression Trees (BART) approach, we propose
new methods to deal with binary classification for CART and BART. Specifi-
cally, we introduce a new representation for the Probit classification model that
avoid the data augmentation scheme. The proposed approach is illustrated and
validated through comparison with alternative methods on real datasets.

Keywords: Bayesian additive trees, classification, unified skew–normal distribu-
tion, probit regression.

1 Introduction

Decision trees and their ensemble counterparts, [?] and [?], have been originally
proposed for binary classification and regression and extended in several direc-
tions, for modelling conditional quantiles or to include high–order approximating
polynomials for the conditional mean function on each terminal node. On the
likelihood–based side, the Bayesian estimation of decision trees have been ini-
tially proposed for both classification and regression and extended to additive
trees (BART), see Chipman et al. (1998), Denison et al. (1998), Chipman et al.
(2010). The main novelty of this latter approach relies on exploiting the likeli-
hood of parametric models where regressors splitting rules play the role of hard
thresholding operators that partition the overall model into local models. For the
binary classification problem previous algorithms directly apply to the augmented
representation of the Probit link function of Albert and Chib (1993). Therefore,
unlike the regression trees, classification trees suffer the major drawback that the
marginal likelihood for sampling the tree structure is only available up to the
latent factors.

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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In this paper, we propose new methods for dealing with binary classification
within the context of Bayesian additive regression trees (BART) of Chipman et
al. (2010). Specifically, leveraging the results of Durante (2018) on Probit regres-
sion, we introduce a new representation for the Probit classification that avoid
the data augmentation scheme of Albert and Chib (1993), thereby leading to a
sampling scheme for the tree structure which relies on the proper marginal like-
lihood, i.e., the normalising constant of the posterior distribution of the model
parameters.

2 Binary regression tree

We consider the following formulation of the BART for classification with Probit
link function. Let y = (y1, y2, . . . , yn) be the vector of observations on the re-
sponse variable Y and let x = (x1, . . . ,xn)′ be the associated matrix of covariates
of dimension (n× q), then the likelihood function of the i–th observation yi can
be factorised as follows:

Y | X = x ∼ Ber (1, ψ (x)) (1)

ψ (x) = P (Y = 1 | x) = Φ [η (x)] (2)

η (x) ≈
m∑
j=1

g (x, Tj ,Mj) , (3)

where Φ(·) denotes the Probit–link function and m denotes the number of trees.
For m = 1 we get the CART algorithm. In equation (3) we assume that the probit
transformation of the response variable is a function of the regression trees, which
is composed by a tree structure, denoted by T , and the parameters of the termi-
nal nodes, denoted byM. The tree structure T contains information on how any
observation yi, in a set of n independent and identically distributed observations
y = (y1, y2, . . . , yn), recurses down the tree specifying a splitting rule for each
non–terminal node. We denote by M = {µ1, µ2, . . . , µb} the set of parameters
associated to the b terminal nodes of the tree, where µl, for l = 1, 2, . . . , b denotes
the parameter associates to the l–th terminal node.
The classification tree specified in equations (1)–(3) provides a natural frame-
work for likelihood–based inference on the set of regression parameters, i.e., the
location parameters associated to the terminal nodes of the tree. Due to the com-
plexity of the logistic link function in equation (2), the resulting posterior den-
sity for the regression parameters does not admit a closed form representation
for the full conditional distributions, and needs to be sampled by using MCMC–
based algorithms. To develop their BART probit for classification Chipman et al.
(2010) provide a Gibbs sampling algorithm that relies on the data augmentation
of scheme of Albert and Chib (1993). Our algorithm for simulating the poste-
rior distribution of the classification tree instead exploits the representation of
the likelihood function of the probit regression model as a Unified Skew–Normal
recently provided by Durante (2018). In particular, all the key results we will
consider in developing improved computational methods for BART and CART
rely on the following Theorem 2, which proves that the full conditional distribu-
tion for the terminal nodes parameters in µ, given the trees T = (T1, . . . , Tm),
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belongs to the well known class of unified skew-normal (sun) random variables
Arellano et al (2006), Gupta et al. (2013).
theorem Let y = (y1, . . . , yn)ᵀ denote independent response variables from a
BART model (1)–(3), and assume (mu | T ) ∼ Np(0, σ

2
µIp), with p = b1+· · ·+bm.

Then
(µ | T,y,x) ∼ SUNp,n(f0, σ2

µIp, σµSᵀ,0, σ2
µSSᵀ + In), (4)

where S = diag(2y1 − 1, . . . , 2yn − 1)D and D is the n × p design matrix with
rows Dᵀ

i , i = 1, . . . , n representing the terminal nodes assignments for each unit
i = 1, . . . , n based on the known trees structures T .

3 Numerical comparison

TABLE 1. Assessment on computational efficiency of BART with m = 20. For
each sampling scheme under analysis, total running time in seconds and statistics
summarizing the effective sample sizes (ESS) computed from the produced chains
for the coefficients. The number of draws is 10, 000.

Running time Mixing via ESS

Time in secs Min 1st quartile Median Aver. Aver./Time M.–H. Acc. rate

Pima–Indians data
GS DA 297 51 57 57 58 0.1939 0.0144
GS SUN 567 960 1130 2110 2350 4.138 0.0183

BMKA data
GS DA 137 147 154 157 156 1.1417 0.13147
GS SUN 259 980 2340 4610 4620 17.864 0.0535

We compare the performance of the proposed CART and BART algorithms for
classification with the original versions of Chipman et al. (1998) and Chipman et
al. (2010). We consider four illustrative datasets: the Pima Indians, see Kapelner
and Bleich (2016), and the gene expression (BMKA) dataset, see Martinez et al.
(2005). The datasets have been chosen because of their characteristics in terms of
sample size and dimension. Specifically, the Pima Indians data consists of n = 768
subjects, of which 268 were diagnosed with diabetes, the binary response, and of
p = 8 predictors, thus it is an example of small n–small q dataset. The BMKA
dataset consists of n = 74 gene expressions of normal and cancerous biological
tissues at p = 516 different tags, thus it represents an example where p � n.
Results are reported in Table 1.
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Abstract: The receiver operating characteristic (ROC) curve is the most popu-
lar tool for evaluating the diagnostic accuracy of continuous biomarkers. Often,
covariate information that affects the biomarker performance is also available
and several regression methods have been proposed to incorporate covariates
in the ROC framework. In this work, we propose robust inference methods for
ROC regression, which can be used to safeguard against the presence of outly-
ing biomarker values. Simulation results suggest that the methods perform well
in recovering the true conditional ROC curve and corresponding area under the
curve, on a variety of data contamination scenarios. Methods are illustrated using
data on age-specific accuracy of glucose as a biomarker of diabetes.
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1 Methods

1.1 Biomarker accuracy assessment

Let YD ∼ FD and YD̄ ∼ FD̄, be the biomarker values of diseased and non-diseased
subjects, that is FD(c) = P (YD ≤ c) and FD̄(c) = P (YD̄ ≤ c). Without loss of
generality, we proceed with the assumption that, at any cutoff value c, a subject
is classified as diseased when his/her test outcome is equal or greater than c and
as non-diseased when it is below c. Then, the sensitivity and the false positive
fraction associated with this decision criterion are

Se(c) = Pr(YD > c) = 1− FD(c), FPF(c) = Pr(YD̄ > c) = 1− FD̄(c).

Formally, the ROC curve consists of the set of points {(1 − FD̄(c), 1 − FD(c)) :
c ∈ R}. Setting p = FPF(c) = 1− FD̄(c), it rewrites as

ROC(p) = 1− FD(c) = 1− FD{F−1
D̄

(1− p)}, 0 6 p 6 1. (1)

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
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In order to assess biomarker accuracy, the area under the ROC curve (AUC),
which is given by

AUC =

∫ 1

0

ROC(p) dp = P (YD > YD̄), (2)

is usually computed. The greater the AUC the better the discriminanting abil-
ity of the biomarker. When covariate information is available, ROC regression is
usually employed as a way to evaluate biomarker accuracy as a function of such
covariate (e.g., age, gender). The induced regression approach of Pepe (1998)
is a popular method that addresses the incorporation of covariate information
in the ROC curve. Since the presence of outliers may put at risk the reliability
of the inferences and, in addition, the covariate effects may not necessarily be
linear, a flexible approach to the method of Pepe that incorporates robust regres-
sion techniques and B-splines modelling is proposed and described in the next
subsection.

1.2 Flexible induced ROC regression

We define the covariate-adjusted sensitivity and covariate-adjusted FPF as{
Se(c | x) = Pr(YD > c | x) = 1− FD(c | x),

FPF(c | x) = Pr(YD̄ > c | x) = 1− FD̄(c | x),

where FD(c | x) and FD̄(c | x) are the conditional distributions of the marker,
given the predictor x, in the diseased and non-diseased populations, respectively.
The key object of interest here is given by the covariate-adjusted ROC surface,
formally defined as the plot

{(p,x,ROC(p | x)) : p ∈ [0, 1],x ∈ Rq},

where
ROC(p | x) = 1− FD{F−1

D̄
(1− p | x) | x}, (3)

with F−1
D̄

(1 − p | x) = inf{y : FD̄(y | x) > 1 − p}. Similarly, the covariate-

adjusted AUC is defined as AUC(x) =
∫ 1

0
ROC(p | x) dp. If there are different

covariates for diseased and non-diseased subjects, say xD and xD̄, the definition
in (3) requires only small adjustments.

Suppose we observe data of the type {(YD,i,xTD,i)}
nD
i=1 and {(YD̄,j ,xTD̄,j)}

nD̄
j=1

where YD,i and YD̄,j are biomarker values for diseased and non-diseased subjects
and xTD,i and xTD̄,j are covariates for the corresponding populations of interest.
The general ROC regression approach assumes a location-scale model of the form{

YD,i = µD(xD,i) + σD(xD,i)εD,i, εD,i
iid∼ GD,

YD̄,j = µD̄(xD̄,j) + σD̄(xD,j)εD̄,j , εD̄,j
iid∼ GD̄,

for i = 1, . . . , nD and j = 1, . . . , nD̄, with µD, µD̄, σD and σD̄ functions of the q+1
covariates (intercept included), GD and GD̄ left unspecified and errors assumed
to verify E(εD,i) = E(εD̄,j) = 0, var(εD,i) = var(εD̄,j) = 1 and εD ⊥ εD̄. Under
this model, the ROC curve and the AUC rewrite to

ROC(p | x) = 1− FD{F−1
D̄

(1− p | x) | x} = 1−GD(a(p,x)), (4)
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and

AUC(x) =

∫ 1

0

ROC(p | x) dp = 1−
∫ 1

0

GD(a(p,x)) dp, (5)

where

a(p,x) =
µD̄(x)− µD(x)

σD(x)
+
σD̄(x)

σD(x)
G−1
D̄

(1− p). (6)

The method of Pepe (1998) assumes the simple location-scale model, i.e., µD(x) =
xTDβD, µD̄(x) = xTD̄βD̄, σD(x) = σD and σD̄(x) = σD̄. Here, estimation of the
unknown parameters is done via least squares. Once the estimates of βD, βD̄,
σD and σD̄ are obtained, the distribution of the errors are estimated on the basis
of the empirical distribution of the standardized residuals, i.e., as

ĜD(e) =
1

nD

nD∑
i=1

I

(
yi − xTD,iβ̂D

σ̂D
6 e

)
, ĜD̄(e) =

1

nD̄

nD̄∑
j=1

I

(
yj − xTD̄,j β̂D̄

σ̂D̄
6 e

)

where sample quantiles Ĝ−1
D̄

(1 − p) are evaluated as in Hyndman (1996). Infer-
ence can then be done through bootstrap techniques. Our proposed approach,
firstly approximates functions µD(x) and µD̄(x) by a linear combination of cu-
bic B-spline basis functions over a sequence of knots (De Boor et al., 1978) and
subsequently estimates the unknown parameters of the location-scale model via
M-regression Maronna, 2006).

2 Simulation and Results

The simulation study is conducted considering several linear and non-linear sce-
narios over 1000 replications. For illustration we set nD = nD̄ = 100 for the
diseased and non-diseased populations contemplating several % of location and
scatter outliers. See Figure 1 for a summary of our main results. There is good
evidence of the ability of the proposed method in recovering the true functional
form of the covariate adjusted AUC as well as providing confidence intervals with
smaller amplitudes containing the true conditional AUC.

3 Diabetes data

To illustrate our method we resort to data from a population-based survey in
Cairo, Egypt (Smith & Thompson, 1996) where postprandial glucose measure-
ments (biomarker values) were obtained from a fingerstick on 286 subjects. Ac-
cording to the World Health Organization diagnostic criteria for diabetes, 88
subjects were classified as diabetic and 198 subjects as non-diabetic. This infor-
mation is used as gold-standard in our evaluation of the accuracy of glucose as
a biomarker for diabetes. In particular, we are interested in assessing the change
in the accuracy of the biomarker with age.

Figure 2 suggests that the accuracy of the biomarker decreases with age. Our
robust method is not only able to capture a slight non-linearity of the covariate
effect but also hints that the decrease of biomarker accuracy is more evident from
around 67 years onwards.
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FIGURE 1. True conditional AUCs (solid) and estimated conditional AUCs (blue) using

the proposed robust B-spline (with no interior knots) and Pepe’s approaches. Left and right

panels refer to the linear and non-linear scenarios, respectively; grey areas refer to the 95%

confidence bands computed from the distribution simulated quantiles; each row refers to 0, 2

and 5% levels of location outliers. Results referring to scatter outliers are similiar.
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FIGURE 2. Estimated robust and classical conditional AUCs (left and center, respectively)

with 95% bootstrap confidence bands; and estimated AUC curve comparison (right).
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Abstract: Complexities in survival data is present in most clinical environments.
One of these complexities, is the presence of multiple competing events. This
forms various dependence structures since the realization of an event could in-
fluence the hazards of the other competing events. Additionally, features like
clustering of individuals or spatial clustering present further complications. In
this study, we present a cohesive framework in which we define competing risks
models as latent Gaussian models. This definition enables the efficient imple-
mentation of these models, with or without complicated features, in the R-INLA
framework.

Keywords: Competing risk; INLA; latent Gaussian model; survival.

1 Introduction

Time to event data is observed in its most simplest form, as the time when a par-
ticular event happens or when the monitoring process halts (censoring time). A
competing risks model (Gooley et al. (1999)) arises in the case of multiple events
being monitored. Each observational unit is at risk for each of the C events
until one event occurs. After this, the risk of the other events are either zero
or changed. For this purpose, competing risks should be dealt with accordingly.
Early research in this field, suggested to treat all competing risks as censored
observations when the focus is on only one risk. This could be troublesome due
to the assumption that the competing events could still occur under the censored
idea. In this framework, various approaches has been proposed like the subdistri-
bution hazards (Dixon et al. (2011)), latent lifetimes and cause-specific hazards
approaches (Prentice at al. (1978)). Critiques have been raised against the former
two methods due to their restricting assumptions concerning the independence
of cause and time. Therefore, we will adopt the latter approach.

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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Features that originate from the data generating process, can pose difficulties in
the modeling process. These features can involve clustering effects, spatial effects,
treatment affects, to name a few. Most of the available software for competing
risks are specifically formulated to handle a single feature. This is cumbersome
for users since many different packages should be familiarized for every day use.
We argue that most competings risks models are actually part of the group of
latent Gaussian models and as such, can be handled with ease using R-INLA
(Rue (2009)).

2 Competing risks

In this work we focus on the cause-specific hazard functions to characterize the
risk of a particular event to a patient. Suppose we have C competing events and
N patients, then the cause-specific hazard functions are defined as

λc,i(t) = λc,0 exp(ηc,i), c = 1, ..., C, i = 1, .., N (1)

with λc,0 the baseline hazard function for cause c and

ηc,i = βββTXXXi + uuui(zzzi) + εi (2)

where βββ represent the linear fixed effects of the covariates X, εεε is the unstructured
random effects and γγγ represents the known weights of the unknown non-linear
functions uuu of the covariates zzz. The unknown non-linear functions, also known
as structured random effects, uuu include spatial effects, temporal effects, non-
seperable spatio-temporal effects, frailties, subject or group-specific intercepts
and slopes etc.

If ηc,i depends on time, then we do not have proportional hazards but an ac-
celarated failure time model. The baseline hazard function can be specified para-
metrically or nonparameterically, and most well-known cases, including the Cox
model, are accessible in R-INLA.

The hazard rates λc,i are characterized, in part, by the corresponding linear
predictors ηc,i. The INLA methodology can be applied since the data enters the
model, exclusively, through the linear predictor. The linear predictor can be as
complex as needed without much computational effort.

3 The INLA method

Hierarchical Bayesian additive models are widely used in various applications. A
specific subset of Bayesian additive models is the class of latent Gaussian models
(LGM). An LGM can be efficiently modelled using the INLA methodology imple-
mented in the R-INLA package. (Rue (2009)) This class comprises of well-known
models such as mixed models, temporal and spatial models. An LGM is defined
as a model having a specific hierarchical structure, as follows: The likelihood is
conditionally independent based on the likelihood parameters (hyperparameters),
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θθθ and the linear predictors, ηi, such that the complete likelihood can be expressed
as

π(yyy|ηηη,θθθ) =

N∏
i=1

π(yi|ηi(XXX ), θθθ). (3)

The linear predictor is formulated as follows:

ηi = β0 + βββTXXXi + uuui(zzzi) + εi (4)

where βββ represent the linear fixed effects of the covariates X, εεε is the unstructured
random effects and γγγ represents the known weights of the unknown non-linear
functions uuu of the covariates zzz. The unknown non-linear functions, also known
as structured random effects, uuu include spatial effects, temporal effects, non-
seperable spatio-temporal effects, frailties, subject or group-specific intercepts
and slopes etc. This class of models include most models used in practice since
time series models, spline models and spatial models, amongst others, are all in-
cluded within this class. The main assumption is that the data, YYY is conditionally
independent given the partially observed latent field, XXX and some hyperparam-
eters θθθ1. The latent field XXX is formed from the structured predictor as (βββ,uuu,ηηη)
which forms a Gaussian Markov random field with sparse precision matrixQQQ(θθθ2),
i.e. XXX ∼ N(000,QQQ−1(θθθ2)). A prior, πππ(θθθ) can then be formulated for the set of hy-
perparameters θθθ = (θθθ1, θθθ2). The joint posterior distribution is then given by:

πππ(XXX , θθθ) ∝ πππ(θθθ)πππ(XXX|θθθ)
∏
i

π(Yi|XXX , θθθ) (5)

The goal is to approximate the joint posterior density (5) and subsequently com-
pute the marginal posterior densities, πππ(Xi|YYY ), i = 1...n and πππ(θθθ|YYY ). Due to the
possibility of a non-Gaussian likelihood, the Laplace approximation to approxi-
mate this analytically intractable joint posterior density. The sparseness assump-
tion on the precision of the latent Gaussian field ensures efficient computation.

4 Application

We show that a competing risks model with spatially clustered frailties is actually
a latent Gaussian model and we can thus take advantage of the INLA method.
We illustrate the applicabilty of our method to breast cancer data from the
Surveillance Epidemiology and End Results database of the National Cancer
Institute (SEER (2017)). This data presents competing risks and spatial random
effects per region and per cause. Hesam et al. (2018) proposed a correlated spatial
frailty model and implemented it using OpenBUGS software. They mention that
if more than two competing risks are present, their computational framework is
burdensome and inefficient. We, thus, aim to illustrate a computationally efficient
approach that does not depend on the number of risks and has no difficulty
handling spatial random effects.
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1 Introduction

In regression models, properties of the observed response variable y are related to
the vector of available covariate information x. This is usually done via the linear
predictor, a linear combination of the covariates η = x′β. Without constraining
the vector of regression coefficients β, the domain of the linear predictor is the
real numbers, but the modelled properties may be restricted to a subset of them.
Suppose the expected value of the response variable is to be related to a linear
combination of covariates, as done in GLMs. For a non-negative response variable,
the expected value is also non-negative and thus the linear predictor should not
be negative either. To achieve this, one would have to constrain the regression
parameters, with the exact constraint depending on covariates. Instead, the linear
predictor is usually mapped to the domain of the quantity to be modelled by
means of a response function.
The same problem arises in the context of distributional regression, in which all
parameters of a parametric distribution are linked to the covariate information
(Umlauf and Kneib, 2018), since many distribution parameters can only have
positive values. In both model classes the response functions are essential part
of the model assumptions, but their choice is rarely questioned. In particular, if
the modelled quantities are restricted to be greater than zero, the exponential
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tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
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function is often used as the response function of choice. In general, there is no
indication that this is the correct choice. Of course, the used response function
should emulate the data generating process as closely as possible, but also other
aspects as interpretability of the results and estimability might be important as-
pects to statisticians. Therefore, we propose to take the softplus function (Dugas
et al., 2001) as response function into consideration.

2 Softplus Function

The Softplus function, mainly used in deep neural networks, is a continuous dif-
ferentiable approximation of the ramp function max(0, x). We define the softplus
function with an additional goodness of approximation (goa) parameter a > 0 as
follows

softplusa(x) = log (1 + exp(ax)) /a

with x ∈ R. The additional parameter a allows for a better approximation and the
approximation error can be kept arbitrarily small. Like the exponential function
the softplus function is a smooth and bijective function mapping from the set of
real numbers to the positive domain while having a positive first derivative.
As shown in Figure 1, the softplus function follows the identity function very
closely in the positive domain and rapidly approaches zero in the negative do-
main for x towards minus infinity. This behaviour can be further accentuated by
increasing the goodness of approximation parameter a.

FIGURE 1. Plots of the softplus (left) and softplus exponential function (right)
with the function be be approximated.

The softplus function, used as a response function in a regression model, allows
for a straightforward interpretation of the regression coefficients: as long as the
predictor is large enough, in particular within the linear part of the function,
the effects can be interpreted directly on the parameter, i.e. a change in the
covariate by one unit causes a change by β units on the parameter, where β
denotes corresponding the regression coefficient. In addition, the additivity of
the effects in the predictor is transferred to the parameter space within the linear
part of the function. By choosing a sufficiently large a, the linear part covers
almost the entire positive domain.
In the negative domain and for a sufficiently large a a small change of the co-
variate does usually not cause a significant change on the parameter, since the
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softplus function outputs values very close to zero. To ensure the validity of this
interpretation, it is necessary to check the range of values of the linear predictor
for the observations in the data set. Most of them should be located within the
linear part of the softplus function. This additive interpretation is in contrast to
the usual multiplicative interpretation for positively constraint parameters that
raises form the use of the log-link.
The calculation of the softplus function does not involve numerical issues, since
one can exploit log(1 + exp(x)) = max(0, x) + log(1 + exp(−|x|)) and the calcu-
lation of log(1 + x) can be done very precisely even for |x| � 1 (Nielsen, F. and
Sun, K., 2016; Abramowitz and Stegun, 1972, p. 68).
Another feature of the softplus function is that it can be used to define a function
that initially follows the exponential function very closely, but then increases more
slowly as its first derivative approaches a predefined upper limit. To achieve this,
we define the softplus exponential function as

sp exp(x, b) = b softplus1(x− log(b)) = b log(1 + b−1 exp(x))

with b > 0 being the limit of the first derivative. We refer to Figure 1 for a plot
of this function. We will not discuss the softplus exponential function here but
will provide details during the talk, i.e. we believe that its use can lead to more
numerical stability in some estimation algorithms.

3 Application: Doctor Visits

The objective of this application is the discussion of the application of the softplus
function as a response function to data from the Australian Health Survey (AHS)
1977-1987 (for a detailed description of the data visit Cameron and Trivedi, 1986).
With a regression model we relate the expected count of doctor consultations
within two weeks to a set of covariates. The data consists of 5190 observations of
which 4141 show a zero count of doctor visits. For the remaining 1049 observations
an average of 1.49 consultations can be reported.
We consider the Poisson distribution and Negative Binomial distribution as pos-
sible response distribution for the outcome of interest and use the exponential
function and the softplus function with goa parameter set to 10 as potential re-
sponse functions to ensure positivity of the modelled quantity. The choice a = 20
for the softplus parameter is made since it keeps the expected count very close
to zero when the predictor is negative and thus let the model better deal with
the excess zero-count in the data. Furthermore, with this choice we can apply the
additive interpretation almost on the hole positive domain.
To choose the best fitting model with employ the deviance information criterion
(DIC, Spiegelhalter et al., 2002). As Table 1 shows, the model with negative
binomial response distribution and softplus response function outperforms the
other models in terms of DIC.
We refer to Table 2 for a listing of the posterior mean estimates and their 95%
equal-tailed intervals. For both response functions, the signs of the posterior mean
values of the regression coefficients are the same. However, some of the regression
coefficients are significant with regard to the credibility intervals while using one
of the two response function but not while using the other, i.e. the effect of age.
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TABLE 1. DIC values of fitted models with assumed Poisson or Negative Bino-
mial distributed responses for softplus (a = 20) response function respectively
exponential response function.

response function poisson negbin

softplus 6443.05 6282.69
exponential 6735.44 6479.28

The difference in interpretation can be highlighted by considering the covariate
days of reduced activities due to illness in the last two weeks. The posterior mean
of the corresponding regression coefficient is 0.11 in both models. With the log-
link each additional day of reduced activity would lead to a multiplicative change
of 1.12 expected doctor consultations. For the softplus model, the same change
in the covariate would lead to 0.11 additional expected doctor consultations. Of
course this interpretation is only valid for the linear part of the softplus function.
With the a = 20 this is basically the case on the whole positive domain of
the predictor. For negative values of the predictor the softplus function (with goa
parameter set to 20) outputs values close to zero so that a change of the covariate
only affects the expected count if the threshold at 0 is exceeded.

4 Application: Average Rental Duration of Bicycles

In this section we demonstrate the applicability of the softplus function as a
response function in a Bayesian distributional regression model. We employ data
from Capital Bikeshare, a bicycle sharing service located in Washington D.C., to

TABLE 2. Posterior estimates of the regression coefficients on the expected value
together with their 95% credibility intervals.

softplus exponential
Mean 2.5% 97.5% Mean 2.5% 97.5%

(Intercept) -0.02 -0.07 0.03 -2.20 -2.45 -1.96
age in 100 years 0.12 0.02 0.22 0.30 -0.08 0.67

income in 1k dollars -0.03 -0.07 0.01 -0.14 -0.34 0.06
female 0.05 0.02 0.08 0.17 0.04 0.29

number of illnesses 0.07 0.05 0.08 0.19 0.15 0.24
days of reducd actvty 0.11 0.09 0.12 0.11 0.10 0.12

health score 0.01 0.00 0.02 0.04 0.01 0.06
privateyes 0.05 0.01 0.08 0.20 0.03 0.36

freepooryes -0.06 -0.13 0.01 -0.55 -1.03 -0.13
freerepatyes 0.10 0.04 0.15 0.20 0.00 0.40
nchronicyes 0.01 -0.02 0.04 0.13 0.00 0.28
lchronicyes 0.05 -0.01 0.11 0.17 -0.03 0.36
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analyse the mean rental duration in minutes within each hour in the years 2016
- 2017. A raw descriptive analysis of this quantity gives an average of 10.7 and a
standard derivation of 1.75. We assume it to be normally distributed and model
both distribution parameters (mean, and standard deviation) with structured
additive predictors. For both predictors we use the structure η = f1(yday) +
f2(dhour) +x′β, where yday denotes the day of the year, dhour denotes the hour
of the day and the term x′β contains the intercept and linear effects. We employ
cyclic P-splines (Eilers and Marx, 1996) for the smooth function f1 and f2 and
a response function to transform the predictor for the standard deviation to the
positive domain.
To illustrate the difference in interpretation between the softplus (a = 10) re-
sponse function and the common log-link, we estimate the model for each of
the two response functions with the BAMLSS software package via a MCMC
algorithm (Umlauf et al., 2018).
DIC shows similar values for each model and does not clearly favour one of the
response functions (exponential: 55529, softplus 10: 55389). Results regarding the
parameters of the predictor for the mean are very similar for both models and
are omitted here.
Instead, we focus on the predictor of the standard deviation of the reaction dis-
tribution and, as an example, on the effect of dhour. Figure 2 shows the effect of
the time of the day on the predictor. Both models exhibit a similar pattern. For
the softplus model, the values of the linear predictor are larger than 0.42 and thus
covariate effects can be interpreted as effects on the parameter whereas in the
other model the exponential function has to be applied and then the effect can
be interpreted as multiplicative. In the early morning we observe an increased
standard deviation for both models. The softplus model shows an increment by
about 2.3 units while the exponential model outputs a multiplicative change by
3.5.
Due to the additive nature of its interpretation, the softplus function is even an
alternative if both functions fit equally and it is up to the practitioner to decide
which one to prefer.
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4 Application: Average Rental Duration of Bicycles

In this section we demonstrate the applicability of the softplus function
as a response function in a Bayesian distributional regression model. We
employ data from Capital Bikeshare, a bicycle sharing service located in
Washington D.C., to analyse the mean rental duration in minutes within
each hour in the years 2016 - 2017. A raw descriptive analysis of this quan-
tity gives an average of 10.7 and a standard derivation of 1.75. We assume it
to be normally distributed and model both distribution parameters (mean,
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denotes the day of the year, dhour denotes the hour of the day and the
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To illustrate the difference in interpretation between the softplus (a = 10)
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each of the two response functions with the BAMLSS software package via
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FIGURE 2. Posterior mean estimates on the predictor of the standard deviation
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Abstract: Quantile regression is often used to obtain nonparametric estimates
of the conditional quantiles with respect to a continuous covariate. The presence
of quantile crossing, however, leads to an invalid distribution of the response
and makes it difficult to use the fitted model for prediction. In this paper, we
show that crossing can be eliminated by estimating the multiple quantile curves
jointly while modeling the regression coefficients via constrained B-splines. The
estimating algorithm for such constrained optimization can be used to estimate
quantile functions with the non-crossing property.

Keywords: quantile regression; non-crossing; monotone B-spline; fourth Dutch
growth study

1 Introduction

Quantile regression (qr) was first developed by Koenker and Bassett (1978) to
deal with estimation of quantiles of a continuous response variable as a function
of multiple covariates. A well-known problem, coming from its nonparametric na-
ture, when fitting several quantiles is represented by quantile crossing: e.g., the
estimate of the 95th quantile, say, may be larger than that of the 99th quantile,
at some covariate values. While this may not hinder the interpretation of the re-
gression coefficients, quantile crossing can lead to unpleasant consequences when
the fitted model is used for prediction or classification, e.g., in growth charts (Wei
et al., 2006, Muggeo et al. 2013).
Crossing in quantile regression has been discussed by several authors, including
He (1997), Chernozhukov et al.(2009), Bondell et al. (2010), Muggeo et al (2013)
and Schnabel and Eilers (2013). More recently Frumento and Bottai (2016) pro-
pose the quantile regression coefficients modeling (qrcm) framework, wherein
estimation is performed jointly by imposing a global structure for the quantile

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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curves, rather than estimating them individually, however noncrossing is just dis-
couraged and not eliminated. Based on such idea, we develop a new approach
within the L1 optimization framework which does allow to constrain the quantile
curves to fulfil the noncrossing property.

2 Methods

To illustrate, let Q(τ | x) = xTβτ the quantile regression equation at quantile
τ with corresponding check function to be minimized L(β(τ)). The main idea is
to assume a parametric model for the regression coefficients namely, βτ = θb(τ),
where b(τ) is a set of known basis functions of τ (e.g., polynomials) and θ is the
new parameter vector to be estimated by minimizing the integrated loss function

L̄(θ) =

∫ 1

0

L(β(τ | θ))dτ. (1)

L̄(θ) is smooth and therefore optimization via Newton-Raphson algorithms is
straightforward, although some numerical procedure has to be used to solve (par-
tially) the integral in (1). Minimization of such integrated loss objective (1) is
implemented in the qrcm package in R and polynomials are typically exploited as
basis functions. However joint estimation via minimization of (1) in its current
and plain formulation, only discourages and does not guarantee noncrossing.
We propose to estimate jointly all the quantile curves using a discrete approx-
imation of the objective (1). Let X0 = (x1, . . . , xp)

T and y = (y1, . . . , yn)T be
respectively the model matrix and the vector of responses. Given a set of prob-
ability values τ1, . . . , τK , the K quantile regression equations may be written
as 

Q(τ1 | x)
Q(τ2 | x)

...
Q(τk | x)


︸ ︷︷ ︸

Y[kn×1]

=


X0 0 · · · 0

0 X0

. . .
...

...
. . .

. . . 0
0 · · · 0 X0


︸ ︷︷ ︸

X[kn×kp]


β(τ1)
β(τ2)

...
β(τK)


︸ ︷︷ ︸
β[kp×pq]

(2)

where the first block, say, β(τ1) of the whole regression coefficient vector β rep-
resents the covariate effects at quantile τ1. In order to express each coefficient
as a smooth function of the probability values τ1, . . . , τK , we first permute β
into β̃ such that its first elements refer to the first regression coefficient relevant
to τ1, τ2, . . . , τK . Namely β̃ = (β̃T

1 , . . . , β̃
T
p )T where each block β̃j includes the

coefficients of covariate Xj corresponding to τ1, τ2, . . . , τK . In order to obtain a
smooth pattern, we propose to express each ‘block’ via B-splines, β̃j = Bθj .
Overall we can write β̃ = (Ip ⊗B)θ, where θ collects all the covariate-specific
θjs.
We ‘back’ permute β̃ to express β as a function of the basis coefficients θ, and
plugging in (2) we obtain the augmented design matrix. Hence, by building such
aforementioned design matrix, the response vector 1k⊗y and the weights τ⊗1n,
model estimation is carried out via an usual L1 optimization algorithms. How-
ever, like in the qrcm framework, simply re-parametrizing the coefficient vec-
tor in terms of spline coefficients does not guarantee noncrossing, and further
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constraints are requested. Fortunately, the B-spline parametrization of each re-
gression coefficient allows to set noncrossing constraints straightforwardly by en-
forcing positiveness of the first order differences of the spline coefficients. Posi-
tiveness is easily obtained by imposing a system of linear inequality constraints:
i.e. R[p(q−1)×pq]θ[pq×1] ≥ 0[p(q−1)×1], where R is the matrix of monotonicity
constraints. These inequality constraints can be easily accounted by the Frisch-
Newton algorithm for constrained optimization as explained in Koenker and Ng
(2002). Computational efficiency is attained via managing sparse matrices as in
the usual qr framework.

3 Application

We apply the proposed approach to a well known dataset referring to the Fourth
Dutch Growth Study (Fredriks et al., 2000). It is a cross-sectional study that
measures growth and development of the Dutch population between the ages 0
and 21 years. The study collects, among other variables, height, weight, head
circumference and age for 7482 males and 7018 females. For illustrative purpose,
here we consider only a subsample of n = 1000 observations and the bmi as main
outcome.
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d) Proposal (Constrained)

FIGURE 1. Estimated quantiles at τ = {.01, .05, .10, .25, .50, .75, .90, .95, .99} of
the bmi with respect to age according different approaches. Panels c and d
refer to our proposal, both unconstrained (i.e., without noncrossing constraints)
and constrained (i.e., with noncrossing constraints), respectively. For the qrcm
method and our proposal, a 3rd degree B-splines (rank 8) is used to model τ .

The relationship between age and bmi is well-known to be non-linear, hence we
model the age effect via a 3rd degree B-spline basis with rank equal to 8. We
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compared our proposal, both unconstrained and constrained, with the standard
qr and the qrcm. Results are portrayed in Figure 1
The standard qr approach estimates each curve separately, leading to crossing
curves several times, at about 3-4 years and beyond 20 years. The quantile curve
at .99 has also a rise on the right side which is probably a model artefact related to
the extreme quantile being estimated. On the other hand, joint estimation (panels
b) and c)) with a smooth parameterization for the regression coefficients, strongly
alleviates noncrossing, but without eliminating it completely (see quantile curves
at higher ages). However inequality constraints easily included in the optimization
algorithm, guarantee noncrossing curves as reported in panel d).

τ

β̂ 1
(τ

) /
 β̂

1(τ
 | 

θ̂)
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−
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20
40

60
80

FIGURE 2. Two estimated regression coefficients. Black solid lines refer to stan-
dard qr; grey broken and solid lines refer to our proposal, both unconstrained
and constrained, respectively.

Figure 2 compares the estimated regression coefficients corresponding to the 1st
and the 8th basis function coming from the standard qr with the same coeffi-
cients coming from our approach with and without monotonicity constraints. The
estimate coming from the simple qr, as a consequence of individual estimation,
is clearly very wiggly and inefficient, with an important background noise.

4 Conclusion

In this paper we have proposed an efficient algorithm to estimate jointly multiple
quantile curves as a function of several covariates, possibly modelled via B-splines.
Estimation is performed via minimization of a naive L1 loss function with proper
augmented response, design matrix and weights. The non-crossing property is
attained through simple inequality to perform constrained optimization. While
estimation is based on a set of K fixed probability values, any desired quantile
curve can be obtained by evaluating the B-spline basis at that fixed probability
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value. Preliminary simulations have shown promising results. Current implemen-
tation has been discussed without any penalty on the coefficients but inclusion
of any regularized criterion depending upon (a fixed) tuning parameters appears
feasible and worth discussing. Also quantifying the estimates uncertainty, beyond
any bootstrap solution, appears a crucial point to be investigated.
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Abstract: We consider the modelling of sequences of multivariate point pro-
cesses where the occurrence rate depends on past occurrences within the process.
Building on a traditional model for point processes, the Hawkes process, the
main idea is to take advantage of the decomposition that motivated partial like-
lihood to separate the modelling of the event types and the occurrence times.
We present an application on the modelling of event-sequences in football, where
match events can be treated as a multivariate spatio-temporal point process. The
aim is to provide inferences about previously unquantified measures governing the
dynamics of the game as well as predicting the occurrence of events of interest,
such as goals, in a specified interval of time.

Keywords: Point Processes; Partial Likelihood; Bayesian Inference.

1 Introduction

A point process is a probabilistic model for a random collection of points on some
space often used to describe the occurrence of random events over time. The
Hawkes process (HP), introduced in Hawkes (1971), is a model for self-exciting
point processes, where the chance of a subsequent occurrence is increased for some
time period after the initial occurrence. We are developing multivariate point
processes suitable for a wide range of applications that overcome the limitations
of the HP model. In this paper we will present the challenging case of modelling
in-game events in football. Specifically, we model all touch-ball events, where a
player acts on the ball with some part of their body, as a mutually-exciting point
process that depends on the past history of events and occurrence times.

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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2 Marked point processes

A marked point process consists of occurrence times t = {ti : ti ∈ <, i = 1, . . . , n}
and marks (event types) m = {mi : mi ∈ {1, . . . ,M}, i = 1, . . . , n} with t1 <
. . . < tn. We define the history or filtration Ft at time t of the process as Ft =
{(tj ,mj) : tj ∈ t,mj ∈ m, tj ≤ t}. We shall work under the setting where we
observe a process from its beginning say at time t = 0 and F0 = ∅. The task is
then to model each event, the pair of (ti,mi), given Fti−1(i = 1, . . . , n).

3 Separating times and marks

The characteristic property of the HP is its self-exciting intensity, which leads
to clustering of events in both the time and mark spaces. For applications like
event sequences in team sports that is studied in this paper, the occurrence
times of events appear to be uniformly spaced, and using the HP model may not
be appropriate. In the mark space, self- or cross-excitation is the increase in the
chance of a mark caused by the occurrence of another mark and we definitely want
to capture these effects between events in our model. To restrict the self-exciting
property of the process to the mark space, we take advantage of the decomposition
of a multivariate model in Cox (1975). Specifically, the full likelihood of a marked
point process can always be factorised as

n∏
i=1

g(ti | Fti−1 ; ζ)

n∏
i=1

f(mi | ti,Fti−1 ;θ) , (1)

where g and f are the probability density and mass functions for times and marks
respectively, and ζ,θ are the unknown parameter vectors. The second product
in (1) is a partial likelihood based on the mark sequence m.

4 Model specification

We specify the probability mass function for marks as

f(mi | ti,Fti−1 ;θ) =
δmi +

∑
tj<ti

e
α−βmj (ti−tj)γmj→mi

1 +
∑
tj<ti

e
α−βmj (ti−tj)

,

where δmi ∈ [0, 1] is the the background intensity of mark mi. The parameter α ∈
R controls the magnitude of excitation, βmj > 0 are the event dependent rates
at which the excitation decays over time and γmj→mi ∈ [0, 1] is the probability a
parent event of mark mj generates an off-spring event of mark mi. By definition,∑M
m=1 δm = 1 and

∑M
m=1 γmj→m = 1 for every mj ∈ {1, . . . ,M}. The probability

density function for the occurrence times is set to

g(ti | Fti−1 ; ζ) ∼ Gamma[a(mi−1), b(mi−1)] ,

where, as the notation indicates, the shape and rate parameters of the gamma
distribution depend on the mark of the last observed event.
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5 Application to football matches

For each touch-ball event we have the event type, time-stamp, (x, y) co-ordinates
of its location in the field, team and player ids, game half, event outcome (suc-
cessful/unsuccessful) and the end (x, y) co-ordinates if the event is a pass. In
total we have approximately 1.1 million events recorded over 760 games from the
2013/14 and 2014/15 English Premier League seasons. A snapshot of the data is
shown in Table 1.

TABLE 1. Dataset snapshot

second minute team id player id type outcome x y end x end y

0 0 665 68312 Pass Successful 49.1 51.0 52.5 44.8
2 0 665 14036 Pass Successful 52.2 44.5 36.7 60.6
3 0 665 79050 Pass Successful 36.7 60.6 24.9 39.1
5 0 665 14107 Pass Unsuccessful 25.0 37.9 97.0 22.9

11 0 660 73379 Win Successful 1.9 73.7 1.9 73.7
15 0 660 73379 Pass Successful 5.5 65.3 20.9 21.5
17 0 660 6292 Pass Successful 20.9 21.5 29.0 38.5
19 0 660 26820 Foul Successful 25.8 37.4 25.8 37.4

6 Estimation and inference

For a total of S games, the likelihood is

S∏
s=1

[
ns∏
i=1

g(ts,i | Fts,i−1 ; ζ)

ns∏
i=1

f(ms,i | ts,i,Fts,i−1 ;θ)

]
,

where ns is the number of events in game s, ts,i and ms,i are the occurrence time
and mark of the i-th event in game s respectively.

6.1 Prior specification

We specify exponential priors for the vector of decay rates, β ∼ Exp(0.01) and
for the Gamma shape and rate parameters, a ∼ Exp(0.01) , b ∼ Exp(0.01).
A Normal shrinkage prior on the unbounded parameter α ∼ N(0, σα) with a
hyper-prior σα ∼ half-Cauchy(0, 5). We use non-informative priors on the con-
strained parameter vectors δ ∼ Dirichlet(1) and each row of the γ matrix,
γr ∼ Dirichlet(1) for every r ∈ {1, . . . ,M}.
The first 16 games of the 2013/14 season is used as training data. We obtain pa-
rameter samples by running 3 parallel MCMC chains of 1000 iterations each after
burn-in. From the results of fitting our model, we highlight below the elements of
event conversion matrix γ that can provide insights towards understanding the
dynamics of the game of football.

6.2 Event conversion rates

The posterior means of the event conversion rate parameters in Table 2 highlight
the advantage a team has over the opposition when playing at home. The higher
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conversion rates between Home Passes (row 3, col 1) as compared to Away passes
(row 6, col 3) indicate that the home team is more likely to keep possession of
the ball. The conversion rates to a Home Shot (col 2) are also consistently higher
compared to an Away Shot (col 4), meaning the home team is also more likely
to take advantage of their possession and make goal scoring attempts.

TABLE 2. Posterior means of the conversion rate parameters for selected events.
The suffix Pass S refers to a successfully completed Pass event.

γmj→mi Home Pass S Home Shot Away Pass S Away Shot

Home Win 0.34 0.04 0.07 0.00
Home Dribble 0.20 0.06 0.00 0.00
Home Pass S 0.75 0.02 0.00 0.00

Away Win 0.09 0.00 0.35 0.02
Away Dribble 0.04 0.00 0.23 0.01
Away Pass S 0.00 0.00 0.71 0.02

7 Prediction framework

We have N samples of the posterior parameter vector, pk = {ζk,θk} for k =
1, . . . , N . For a single game, for each pk, we generate M simulations of the game
in the interval (T, T +d), where is T is the game time at which prediction is made
and d is the duration of the prediction interval. Each simulation is carried out
iteratively as follows; we first simulate the occurrence time of next event given
history and then its mark given time and history. This generated pair of (time,
mark) is then added to the history as the most recent event. The simulation is
stopped when the time exceeds T + d.

7.1 Validation

For each game in the test set, we get events counts from the N ×M simulations
and validate against the true counts observed in the game during the prediction
interval. For comparison, we train a homogeneous Poisson model for each mark
on the training data to use as a baseline. To evaluate the performance of the
predictors, we calculate the sum of the log predictive probabilities over all marks.
Table 3 shows the results from validation for d = 2 minute and d = 5 minute
intervals with a prediction start time of T = 10 minutes in both cases. For each
game we used N = 100 samples from the posterior and generated M = 500
simulations of the game in the interval for each sample.
In the case of d = 2, the model performs better than the baseline in 8 out of
10 games. In particular, the model performs exceptionally better in games 1, 5
and 10, which appear to be instances of relatively unpredictable event sequences
indicated by their larger magnitudes. In the case of d = 5, the model outperforms
the baseline in 6 out of 10 games indicating that the differences between the model
and baseline reduce with the size of interval.
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TABLE 3. Sums of log predicted probabilities for the first 10 games in the test
set from predictions made on 2 minute and 5 minute intervals.

T = 10 min d = 2 min d = 5 min
Model Baseline Model Baseline

Test set game 1 -29.31 -34.52 -40.19 -43.22
Test set game 2 -27.30 -27.93 -39.30 -35.95
Test set game 3 -24.11 -25.50 -36.74 -38.86
Test set game 4 -24.95 -24.87 -41.90 -46.45
Test set game 5 -30.75 -35.84 -46.46 -44.92
Test set game 6 -25.63 -24.46 -43.77 -42.35
Test set game 7 -22.24 -23.22 -39.18 -40.87
Test set game 8 -24.95 -27.36 -40.10 -38.36
Test set game 9 -23.76 -23.80 -34.93 -35.78

Test set game 10 -30.59 -35.48 -41.28 -44.64

8 Discussion

Our initial results indicate that the flexible specification of multivariate point
processes that has been introduced here is suitable for the application of modelling
in-game events in football. We are able to provide inferences about previously
unquantified measures governing the dynamics of the game as well as predicting
the occurrence of events in a specified interval of time.

8.1 Future work

Future work includes the following

Game states as covariates Our aim here is to capture the state of the game
using a set of quantities (e.g. teams, location, score) measurable from the data
available to us. Covariates can be incorporated in the conversion rate parameters
using a baseline logit specification in Agresti and Kateri (2011). For example, in
the application for this talk, team information can be incorporated as

log

(
γmj→m(t1, t2)

γmj→M (t1, t2)

)
= κmj→m + µt1,m − νt2,m m ∈ {1, . . . ,M − 1} ,

where κ is the baseline conversion parameter, t1 is the team in possession of the
ball (attacking) and t2 is the defending team. µ and ν are the team abilities
to make or stop a conversion to mark m for the attacking and defending teams
respectively.

Alternative application Another application, for the statistical methodol-
ogy developed as a part of this project, which we wish to explore is in cyber-
security. Internet network companies are prone to incur huge losses due to mali-
cious server attacks. These attacks can result in a breach of data security, reduced
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bandwidth for data transfer and failures in user-network connections. Typically,
the modelling task in such a scenario would involve predicting the time to the
next attack and its type.
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Abstract: In longitudinal studies individuals are measured repeatedly over a
period of time for a response variable of interest. In classical longitudinal models
the longitudinal observed process is considered independent of the times when
measurements are taken. However, in medical context it is common that patients
in worst health condition are more often observed, whereas patients under control
do not need to be seen so many times. Therefore, longitudinal models for data
with this characteristics should allow for an association between longitudinal
and time measurements processes. In this work we propose a joint model for
the distribution of longitudinal response and time measurement using maximum
likelihood methodology to make inference on the model parameters. A simulation
study is conducted and the model proposed is fitted to a data set on progression
of oncological biomarkers in breast cancer patients.
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1 Introduction

Longitudinal data analysis plays a key role in a multiplicity of distinct areas,
including medicine. One of the great difficulties in this type of study is related
to different observation times for different individuals us in unbalanced studies,
times that are usually treated as independent of the response variable. An even
greater difficulty occurs when the different observation times are related with the
response variable. For example, the doctor decides to mark more, or fewer, ap-
pointments according to the patient’s state of health. That is, patients are usually
measured according to their clinical condition. In cases where observation times
and response variables are related, a simple longitudinal analysis will produce

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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biased estimators (Lin et al, 2004). The general linear model (Diggle et al. 2002)
described for longitudinal data analysis, assumes a deterministic follow-up time
process that is noninformative about the outcome longitudinal response. There-
fore, it is necessary to develop new methodologies that allow the inclusion of this
characteristic. We intend to present here some alternative model that fits into
this problematic.
Others have been proposed models for situations where the longitudinal response
variable and the time measurements are related. More lately, Fang et al (2016)
proposed a joint model for longitudinal and informative observation using two
random effects with additive mixed effect model for observation time. Cheng et al
(2015) proposed a model where the probability structure of the observation time
process is unspecified. Lipsitz et al (2002) consider a model where assumptions
regarding the time measurements process result in the likelihood function sepa-
rated in the two components. Lin et al (2004) approach is base on missing data
and proposed a class of inverse intensity-of-visit process-weighted estimators in
marginal regression models. Fitzmaurice et al (2006) consider the same problem
when the longitudinal response is binary.
In this work we consider a response longitudinal variable with Gaussian distri-
bution. We propose a model where the follow-up time process is stochastic. The
model is described through the joint distribution of the observed process and the
follow-up time process. Estimation of model parameters is through maximum
likelihood. We conducted a simulation study of longitudinal data where model
parameter estimates are compared, when using the model proposed and ignoring
the association between processes. Finally, the model proposed is applied to a
real data set when monitoring for biomarkers CEA and CA15.3 on breast can-
cer progression. In these cases the follow-up time process should be considered
dependent on the longitudinal outcome process.

2 Model Proposal

Consider data observed for m individuals, where Yi is the vector of longitudinal
responses and Ti is the vector of time measurements, both for subject i = 1, ...,m.
It is assumed a model for the joint distribution of the longitudinal outcome
process Y and the time measurement process T through an unobserved stationary
Guassian process W(s). Therefore, we propose the following model

[Yi|W(s),Ti] ∼ Normal(µ+ W(tij), τ
2)

and intensity function for the time measurement process at time tij , j = 1, ..., ni

λ(tij)|Whistory(s) ∼ exp {F(Whistory(tij))} ,
where, µ is the expected value that can include regression parameters and F(.)
is any defined function. For example, to describe a time measurement process
dependent on the progression of the patients unobserved health condition, we
might define

λ(tij)|Whistory(s) = exp

α+ β

tij∑
s=(tij−4)

W (s)w(tij − s)ds
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where
∑tij
s=(tij−4) w(tij − s) = 1.

Notice that, process W(s) is continuous in time, though only a discrete version
of it is observed at tij .
For inference we consider a likelihood approach, where the likelihood function is

[Y,T] =

m∏
i=1

[Yi,Ti]

=

m∏
i=1

∫
W

[Yi|W][Ti|W][W]dW

=

m∏
i=1

EW|Yi

(
[Ti|W][Yi|W0]

[W0]

[W0|Yi]

)
where, W0 is the subset with observed time points and W1 is the subset with
unobserved time points.,
We then generate g samples from [W|Yi] and approximate the expectation by
its Monte Carlo version

LMC(θ) =

m∏
i=1

1

g

g∑
j=1

(
f(Ti|Wj)f(Yi|W0j)

f(W0j)

f(W0j |Yi)

)

3 Results

A simulation study is conducted and results are presented when fitting both, the
model proposed and the general linear longitudinal model (Diggle et al, 2002).
A data set on oncological biomarkers, CEA and CA15.3, for breast cancer patients
is available. There are data available on 550 patients, with a mean number of
measurements per subject of 7.6 (median=7 and sd=4.1), with a total number
of observations for CEA of 4166 and 5166 for CA15.3. In Figure 1 longitudinal
profiles of CEA and CA15.3 (logarithm scale) of a random sample of 10 patients
is shown, with black dots representing the location of the time measurements and
the solid black line is the respective smooth spline for all data.
The proposed model is fitted to this data and results are compared with the
classical longitudinal model.
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funded by COMPETE2020 (Programa Operacional Competitividade e Interna-
cionalização) in its component FEDER (Fundo Europeu de Desenvolvimento Re-
gional) and by FCT (Fundação para a Ciência e a Tecnologia, I.P.). This work
was also supported by the PhD grant 128191/2016 funded by FCT I.P., by the
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FIGURE 1. Longitudinal profiles of a random sample of 10 patients measured
for CEA and CA15.3.
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Abstract: Intense solar geomagnetic storms can cause severe damage to world-
wide electrical systems and communications. In this work, a counting process
with Weibull inter-occurrence times is used in order to estimate the probability
of extreme geomagnetic events.
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1 Introduction

A geomagnetic storm is a disturbance in the magnetosphere quantified by changes
in the Dst (disturbance-storm time) index. This index measures the globally
averaged change of the horizontal component of the Earth’s magnetic field at the
magnetic equator and it is recorded once per hour. During quiescent times, the
Dst index varies between -20 and +20 nT (nanotesla). The Carrington event is
the largest known example of geomagnetic storm, occurred by the end of August
and early September 1859 and associated to a minimum Dst under -850 nT.
Richard C. Carrington was observing sunspots on the solar disk and saw a large
solar flare (Figure 1) with optical brightness lasting several minutes and equaling
that of the background sun, due to the destabilization of a large region of the
sun causing an extremely fast coronal mass ejection towards Earth. Nowadays, a
Carrington-like geomagnetic storm would be catastrophic for electrical systems
and communications.
The Dst index has been traditionally modelled by means of its physical properties
(Riley 2012, Kataoka, 2013) although some work has also focused on exploring
its statistical properties (Yokoyama and Kamide, 1997). As far as we know, all
efforts in statistical modelling have been based on the assumption that the occur-
rence of a geomagnetic storm follows an homogeneous Poisson counting process

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).



Puig et al. 317

FIGURE 1. Huge solar flare recorded by NASA

(see for instance Riley, 2012). To analyse the process of temporal occurrence
of geomagnetic storms we use the Dst index, recorded hourly from 1957-01-01
to 2017-12-31 and available from the World Data Center for Geomagnetism in
Kyoto:

http://wdc.kugi.kyoto-u.ac.jp/

2 Statistical Modelling

When the Dst signal crosses a fixed negative threshold from above this defines the
occurrence time or starting time of a geomagnetic storm with an intensity limited
by the threshold. The inter-occurrence time is the time between two consecutive
storms below the threshold, that is just the difference of their occurrence times.
We have found that the distributions of inter-occurrence times seem to be well
fitted by Weibull distributions. The choice of the Weibull distribution is based
on purely empirical grounds, as a common generalization of the homogeneous
Poisson process, which is recovered as a particular case. In terms of the com-
plementary cumulative distribution function, the Weibull distribution takes the
form S(t) = P (X > t) = e(−t/τ)γ , where X is the random variable represent-
ing inter-occurrence times and γ, τ are respectively the parameters of shape and
scale. The details of this research is fully described in Moriña et al. (2019).
It is found that the scale parameter of the inter-occurrence times distribution
grows exponentially with the absolute value of the intensity threshold defining
the storm, whereas the shape parameter keeps rather constant (see Figure 2).
Therefore, the inter-occurrence times were fitted using a Weibull regression model
where the scale parameter changes with the threshold of the storm, T , according
to log(τ) = β0 + β1T and the shape parameter γ is constant. The estimates are
log(γ̂) = −0.39 (SE = 0.023), β0 = 2.96 (SE = 0.17) and β1 = −0.0121 (SE =
0.0008). Because the shape parameter is below one, these Weibull distributions
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defining the storm, whereas the shape parameter keeps rather constant (see
Figure 2).

FIGURE 2. Relationship between Dst threshold (in nT) and Weibull shape (a.)
and scale (b.) parameters, in log-scale, with scale parameter in days. Intensity
thresholds range from -400 nT to -150 nT. The points correspond to maximum–
likelihood estimates of the shape and scale parameters for fixed threshold values.

Therefore, the inter-occurrence times were fitted using a Weibull regression
model where the scale parameter changes with the threshold of the storm,
T , according to log(τ) = β0 + β1T and the shape parameter γ is constant.
The estimates are log(γ̂) = −0.39 (SE = 0.023), β0 = 2.96 (SE = 0.17)
and β1 = −0.0121 (SE = 0.0008). Because the shape parameter is below
one, these Weibull distributions have a decreasing failure rate (DFR) or
decreasing hazard. Therefore the associated count distributions (number of
storms within this threshold in a period of time) should be overdispersed,
a result confirmed in practice.
Knowing that the original Carrington event happened in 1859, about 58000
days ago, one can compute the probability of having a Carrington or more
intense event during the next decade (2019-2028) conditioned to the fact
that no event like this has happened since 1859, in this way,

P (X ≤ tc + td | X ≥ tc) =
S(tc)− S(tc + td)

S(tc)

= 1− exp

[(
tc
τ

)γ
−
(
tc + td
τ

)γ]
= 0.0092,

with tc = 58000 days and td = 3652 days (10 years). According to this
model, the estimated probability is 0.92%, with a 95% confidence interval
equal to [0.46%, 1.88%] . The value reported by Riley (2012) was about
12%, in sharp contrast with our result.

FIGURE 2. Relationship between Dst threshold (in nT) and Weibull shape (a.)
and scale (b.) parameters, in log-scale, with scale parameter in days. Intensity
thresholds range from -400 nT to -150 nT. The points correspond to maximum–
likelihood estimates of the shape and scale parameters for fixed threshold values.

have a decreasing failure rate (DFR) or decreasing hazard. Therefore the associ-
ated count distributions (number of storms within this threshold in a period of
time) should be overdispersed, a result confirmed in practice.
Knowing that the original Carrington event happened in 1859, about 58000 days
ago, one can compute the probability of having a Carrington or more intense
event during the next decade (2019-2028) conditioned to the fact that no event
like this has happened since 1859, in this way,

P (X ≤ tc + td | X ≥ tc) =
S(tc)− S(tc + td)

S(tc)

= 1− exp

[(
tc
τ

)γ
−
(
tc + td
τ

)γ]
= 0.0092,

with tc = 58000 days and td = 3652 days (10 years). According to this model,
the estimated probability is 0.92%, with a 95% confidence interval equal to
[0.46%, 1.88%] . The value reported by Riley (2012) was about 12%, in sharp
contrast with our result.
We can also estimate the expected number of geomagnetic storms for a period of
time t, E(N(t)), with different thresholds. It can be done using the asymptotic
approximation, E(N(t)) = t/µ, where m is the average inter-occurrence time,
in this case coming from the Weibull distribution, given by µ = τΓ(1 + 1/γ).
For instance, for thresholds of −400 nT and −800 nT the estimated expected
number of geomagnetic storms are 1.63 per 10 years and 1.37 per 1, 000 years,
respectively.
Anyway, the estimated probability of a Carrington-type event, 0.92% for the next
10 years, is not insignificant. Public authorities should have a protocol of action
for coping with this kind of disaster. In 2013 Lloyd’s of London and Atmospheric
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and Environmental Research (AER) published a report estimating the cost of a
Carrington-like event to the U.S.: ”The total U.S. population at risk of extended
power outage from a Carrington-level storm is between 20-40 million, with du-
rations of 16 days to 1-2 years. The duration of outages will depend largely on
the availability of spare replacement transformers. If new transformers need to
be ordered, the lead-time is likely to be a minimum of five months. The total
economic cost for such a scenario is estimated at 0.6-2.6 trillion USD”.
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Abstract: Predicting large fetuses at birth is of great interest for obstetricians.
Using an NICHD Scandinavian study that collected longitudinal ultrasound ex-
aminations during pregnancy, we estimate diagnostic accuracy parameters of es-
timated fetal weight (EFW) at various times during pregnancy in predicting large
for gestational age. We propose a placement value based Bayesian Beta regression
model with random effects to ROC curves. The use of placement values allows
us to model covariate effects directly on the ROC curves and the adoption of
Bayesian approach accommodates a priori information and constraints. The pro-
posed methodology is shown to perform better than a standard approach and its
application to the Scandinavian study data suggests that diagnostic accuracy of
EFW can improve almost 75% from week 17 to 37 of gestation age.
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1 Introduction

Predicting large fetuses at birth is of great interest for obstetricians, as these
newborns are usually at higher risk for perinatal morbidity and potentially long
term metabolic complications. Using an NICHD Scandinavian study that col-
lected longitudinal ultrasound examinations during pregnancy (Bakketeig et al.
1993), we seek to estimate diagnostic accuracy parameters of estimated fetal
weight (EFW) at some pre-specified gestational age (GA) in discriminating large
for gestational age (LGA). Here EFW is derived using biparital diameter, middle
abdominal diameter and femur length (Hadlock et al. 1985), and LGA is defined
as birth weight greater than 90th percentile at a given gestational week. Several
challenges arise in the analysis: 1) not all fetuses underwent ultrasound at the

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
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same time, and certainly not at the pre-specified GA’s; 2) each fetus underwent
multiple ultrasound examinations, generating correlated data; and 3) there is a
a priori belief that ultrasound examinations closer to delivery have higher pre-
dictive power. To address these issues, we propose a placement value (PV, Pepe
and Cai 2004) based Bayesian Beta regression modeling framework with random
effect to ROC curves. The use of PV-based regression to ROC curves allows us
to model the effect any covariate directly on the ROC curves rather than on the
distributions of the LGA and non-LGA EFWs, and the adoption of Bayesian
approach accommodates a priori information and constraints.

2 Methods

Let y0ij and y1ij be the EFWs of a non-LGA and LGA fetus i from the jth ultra-
sound examination and x0ij and x1ij be the corresponding GAs. The proposed
approach involves the estimation of the PVs before applying a beta regression
models. As the placement value of y1ij is defined as zij = S0,x1ij (y1ij), where
S0,x(·) is the covariate x-specific survival function for the non-LGA population,
the key step in estimating the PVs is to estimate S0,x(·). Although more com-
plex approach, such as quantile regression, can be used here, a simple parametric
normal model is adequate in many situations. Once the PVs are estimated, we
can model them in a Beta regression model as follows

zij ∼ Beta(aij , bij)

µij =
aij

aij + bij
, φij = aij + bij

logit(µij) = β0 + β1x1ij

where Beta(a, b) is a beta distribution with mean a
a+b

and logit(u) = u
1−u .

We take a Bayesian approach to inference and adopt standard proper yet vague
priors for model parameters. The Bayesian approach is preferred here as it allows
the incorporation of a priori knowledge when available and makes it easy to
accommodate variability associated with estimating PVs. To model correlation
EFWs, we introduce a random intercept in the mean structure logit(µij) = βi0 +
β1x1ij , where βi0 ∼ N(β0, σ

2) is a random effect term with N(µ, σ2) denoting a
normal distribution with mean µ and variance σ2. Under the proposed model, the
covariate-specific ROC curves are simply the covariate-specific Beta CDFs, and
the covariate-specific AUCs are simply given by AUC(x) = aij(x) + bij(x). With
a pre-specified GA x∗, we can estimate the corresponding ROC curves and AUC.
The accommodation of the a priori constraint can be achieved by specifying the
prior β1 ∼ N(β10, σ

2
β1

)I(β1 > 0), where I(c) is the usual indicator function.

3 Application results

We use 2072 participants from the NICHD Scandinavian study who have both ul-
trasound examination and birth weight data. Figure 1 provides an overall picture
of EFWs over time separately for LGA and non-LGA fetuses. In general, LGA
fetuses tend to have higher EFWs than non-LGA ones. We fitted the proposed
Bayesian Beta regression model with random effect to the data and estimated
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ROC curves and AUC measures at 17, 25, 33, and 37 weeks of gestational age.
Table 1 provides the posterior estimates and their corresponding 95% credible
intervals and Figure 2 provides the estimated ROC curves under the proposed
approach at various gestational age. Overall, ultrasound examinations at larger
GA have higher AUC, indicative of better discriminative power. For comparison,
we also fit a näıve model where we group examinations into 4 groups according
to their closeness to GA of 17, 25, 33, and 37 weeks. The estimated AUCs are bi-
ased upwards, possibly due to inappropriate grouping of examinations, and suffer
from some statistical efficiency loss. Considering the a priori constraint does not
impact AUC point estimates much but leads to some statistical efficiency gain
(data not shown).
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FIGURE 1. Spaghetti plot of estimated fetal weight (EFW) overtime during
pregnancy stratified by large for gestational age (LGA) status from the NICHD
Scandinavian study.

TABLE 1. Posterior estimates of area under ROC curves (AUC) for the NICHD
Scandinavia study data.

GA
(weeks)

Proposed Näıve

Mean 95% CI Mean 95% CI

17 0.4454 0.4065 0.4844 0.5451 0.5048 0.5849
25 0.5960 0.5718 0.6198 0.6652 0.6240 0.7022
33 0.7305 0.7091 0.7508 0.7710 0.7386 0.8028
37 0.7859 0.7627 0.8078 0.8450 0.8180 0.8707
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FIGURE 2. Posterior mean ROC curves at various age of gestation (in weeks)
from the NICHD Scandinavian study.
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Abstract: In longevity studies often the interest lies in modeling the time until
death of a group of individuals that might die of different specific causes. The
time to death of an individual is said to be cause-masked when the time to death
of this individual is observed but not the specific cause of death, characterizing
a competing risk problem with masked cause. This work will study some tech-
niques, based on suitable variants of the EM-algorithm, to perform statistical
inference in a competing risk scenario with partial masking and right censoring.
The goal is to extent a class of multivariate proportional hazard models for com-
peting risks containing suitably gaussian random components to characterize the
quantitative genetic aspects of longevity in large scale animal production systems.
The methods will be applied on real data of Danish dairy cattle.

Keywords: censored data; mixed model; multivariate model.

1 Introduction

In longevity studies often the interest lies in modeling the time until death of a
group of individuals that might die of different specific causes. The time to death
of an individual is said to be cause-masked, or simply masked, if it is observed
the time but not the cause of death.
The competing risks with masked causes has been treated in the literature by
using a finite mixture sub-model to represent the masked individuals and then
performing inference via the EM algorithm for finite mixtures (see Flehinger
et al. 1998, 2002 and Craiu and Duchesne 2004a, 2004b). On the other hand,
Maia et al. (2014a,b) used multivariate proportional hazard models for competing
risks containing suitably defined gaussian random components to characterize the

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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quantitative genetic determination of longevity in large scale animal production
systems. Here we will propose a methodology to combine these two techniques in
order to characterize quantitative genetic aspects of traits involving right censure,
competitive risks and partial masking.

1.1 Data set

The dataset comprises records of 82,871 Danish dairy cows of the breed Jersey
calving from 2000 to 2006. Table 1 displays the distribution of the cows according
to their status. Is is presented two general culling reasons: death and slaugther.
Death was treat as one competing risk with no masked individuals. In the other
hand, slaughtering was split in to 4 distinct causes: low milk production (perfor-
mance), infertility, udder problems and a group of other causes.

TABLE 1. Sample distribution according to the status of the cows.

Status Specific Cause Label n %

Dead - Cause 1 9,114 11.0

Slaughtered Performance Cause 2 4,126 5.0
Infertility Cause 3 2,571 3.1

Udder problems Cause 4 6,071 7.3
Other Cause 5 4,448 5.4

Unknown Masked∗ 30,878 37.3

Censured - Censured 25,663 31.0

Total - - 82,871 100.0

∗ The masked individuals are masked only among the specific causes 2 to 5
(slaughtered specific causes)

2 Methods

Define the following r.v.: T as the observed survival time (T ∈ Z+); D as the cause
of death indicator, D ∈ {1, . . . , J}; δ being the not censure indicator; and a γ the
not masked cause indicator. Then, define the cause-specific hazard probabilities
functions, for j = 1, . . . , J , by

λj(t) = P [T = t, δ = 1, D = j |T ≥ t] . (1)

The probability the cause of death of a given individual is masked is

ρj = P [γ = 0 |T,D = j, δ = 1] . (2)

The probability the true cause of death of a individual is j given it has a masked
cause can be obtained by

πj(t) = P [D = j |T = t, γ = 0, δ = 1] =
ρjλj(t)∑J
k=1 ρkλk(t)

. (3)
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2.1 The proportional hazard model

Suppose, we have a sample o n individuals and it is also observed a range of
explanatory variables (possibly time dependent) represented by the vectors Xi(t)
and a matrix of gaussian random components, say U = (U1, . . . ,UJ) with a k
dimensional component (k ≥ 1) for each cause of death. The conditional cause
specific hazard function for the jth cause (j = 1, 2, . . . , J), conditional on Uj =
uj , for the ith individual (i = 1, 2, . . . , n) at the time t, t ∈ Z+, is given by (see
Maia et. al. (2014a))

λij(t|uj) = λj(t) exp
(
Xt
i(t)βj + Ztiuj

)
, (4)

where the λj(·)s are the baseline specific hazard functions and βj are the vectors
of fixed effects. X(·) and Z are incidence matrices. It is assumed that U =
(U1,U2, . . . ,UJ) follows a multivariate normal distribution with mean equal to
zero and covariance matrix given by A⊗Σ, where A is a known matrix (usually
an identity matrix or a relationship matrix build from de pedigree data) and

Σ =


σ2

1 σ12 . . . σ1J

σ12 σ2
2 . . . σ2J

...
...

. . .
...

σ1J σ2J . . . σ2
J

 .
The marginal likelihood function for the respective model is given by

L(β,Σ) =

n∏
i=1

J∏
j=1

{
(1− ρj)γiδijρ

(1−γi)δij
j

×
∫ { n∏

i=1

[1− λi·(ti)]1−δi Si(ti − 1)
J∏
j=1

λij(ti)φ(u; Σ)δij

}
du

}
= L1(ρ)× L2(β,Σ) , (5)

where β = {β1,β2, . . . ,βJ}, ρ = (ρ1, . . . , ρJ), ti is the observed survived time
for the i individual, λi·(t) =

∑J
j=1 λij(t), Si(t) =

∏
s<t [1− λi·(s)] and φ(·) is the

multivariate normal probability density function. Note that the multiple integral
above is typically of very high dimension.

2.2 EM algorithm

The E-step consists on calculate, at the lth interaction, the expected values of
δij conditionally on previous estimates values of the parameters in the model,
say ρl−1 and βl−1. E

[
δij |ρl−1,βl−1

]
is equal to : 1 if γi = 1 and Di = j; 0 if

γi = 1 and Di 6= j or if δi = 0; πlij(ti) if γi = 0 and δi = 1. Where γi = 1 means
not masked, δi = 0 means censored and ti is the observed survival time.
At the M-step we have to maximize

Q1

(
ρ |ρl−1

)
= E

[
logL1(ρ) |ρl−1

]
(6)

and
Q1

(
β,Σ |βl−1,Σl−1

)
= E

[
logL2(β,Σ) |βl−1,Σl−1

]
(7)
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The maximum likelihood estimate for ρ at the lth interaction can be easily ob-
tained. The maximization of Q1 is equivalent to problem with no masking causes
(See Maia et al. (2014a,b) for more details).,

2.3 Simulation Study

This study was based on a range of simulated data of competing risks with three
specific risks based on a proportional hazard model with a binary fixed effect
and a multivariate gaussian random components. Four scenarios were simulated
representing different choices about the masked probabilities and the variance-
covariance structure of the random component. The models involve three differ-
ent causes, there are no censored observations and the baseline specific hazard
probability function was assumed to be constant.

• The cause specific hazard probability, for the jth risk, is modeled by λij(t|u) =
λj exp(βjXi + Ziuj)

• The set values for the fixed parameter are λ1 = 0.10, λ2 = 0.11, λ3 = 0.12,
β1 = −0.12, β2 = −020 and β3 = −015

• The sample sizes are 10, 000 individuals.

2.4 Results

The set of explanatory variables (fixed effects) included in the ajusted model was:
age at the first parity (categorized as: 1st quartile, 2nd and 3rd quartile, and 4ft
quartile), herd sized (categorized as: 1st quartile, 2nd and 3rd quartile, and 4th
quartile) and calving year (as a factor). It was included two random components:
a sire random component (with the relationship matrix) representing the sire
additive genetic effect, and a Herd-Year random component representing the
environment effect.
Table 2 presents the sum among all individuals in the sample of the expected
values of δij for j ∈ { Performance, Udder Problems, Infertility, Other }. We
cand see that form masked individuals 5.540 was assiged to performance prob-
lems, 4.485 to infertility problems, 7.383 to udder problems and 13.480 to other
problems.

TABLE 2. Predicted number of events for the specific slaughtering causes.

Specific Cause
∑
iE[δij |θl]

Performance 9,666.4
Infertility 7,056.2
Udder problems 13,454.7
Other 17,928.6

Total 48,094.0

Table 3 presents the estimates of the variance components and correlations for
the sire and herd-year effect, and the estimates of the dispersion parameters and
heritability for each specifica cause. We see a large variance of the sire effect for
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low performance (0.282 - sd = 0.020), infertility (0.155 - sd = 0.016) and udder
problems (0.124, sd = 0.0111). The larger correlations among sire effects was
between low performance and other causes (0.426 - sd = 0.057); udder problemas
and other causes (0.528 - sd = 0.057); and death and low performance (-0.376 -
sd = 0.094).

3 Conclusion

In general we conclude that the finite mixture model approach via EM algorithm
is able to detect the variance of the random components. Woth the presented
model it was possible to estimated some genetic parameters like variance compo-
nents and heritablitues for a specific cause even with a larger presence of masked
causes. A simulation study also showed that, in general the finite mixture model
approach via EM algorithm is able to detect part of variance of the random com-
ponents but tended to under estimate the variances specially when the probability
of masking were high..

Acknowledgments: This work was financed by CNPq process 301323/2014-3.
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TABLE 3. Estimates of the variance components (diagonal) and of the correla-
tions (under diagonal) for the Sire and Herd-year random components, estimates
of the dispersion parameter (φj) and marginal heritability.

Death Perf. Udder probl.

Sire

Death 0.052 (0.011)
Perf. -0.376 (0.094) 0.282 (0.020)

Udder probl. -0.136 (0.104) -0.053 (0.059) 0.124 (0.011)
Infert. -0.017 (0.112) -0.026 (0.069) -0.072 (0.069)
Other 0.074 (0.111) 0.426 (0.057) 0.528 (0.057)

Herd-Year

Death 0.254 (0.014)
Perf. 0.014 (0.036) 0.380 (0.016)

Udder probl. -0.044 (0.036) -0.028 (0.031) 0.221 (0.001)
Infert. -0.001 (0.038) -0.027 (0.032) -0.073 (0.030)
Other 0.014 (0.036) 0.003 (0.031) -0.048 (0.029)

φj 0.845 (0.003) 0.360 (0.001) 0.414 (0.001)

h2
λj

0.013 0.130 0.078

Infert. Other

Sire

Death
Perf.

Udder probl.
Infert. -0.155 (0.016)
Other 0.046 (0.075) 0.060 (0.006)

Herd-Year

Death
Perf.

Udder probl.
Infert. 0.253 (0.012)
Other 0.011 (0.032) 0.250 (0.011)

φj 0.347 (0.001) 0.464 (0.002)

h2
λj

0.055 0.053
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