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A. An algorithm to generate the C matrix

An algorithm to generate the C matrices may also be useful and is given here. Com-
putationally, it is useful to generate the matrices C.) from vectors. Let such a vector
be denoted as s;.; of length 2°. Each element of the vector s|.; identifies the cells
of Cj.) which take the value 1, with the position of the element giving the column
of C[.) and the value of the element giving the row. For instance, returning to the
earlier example, for Cpyg) the corresponding spg = (1,1,2,2,3,3,4,4), or for Cpgs)
it is spges = (1,1,1,1,2,2,2,2). In general, given an arbitrary number of compar-
isons, the entries in s{.j can easily be computed using the following steps: (i) For each
missing block convert the matrix Y with rows y = (Yops, Ymis) (see Table 1) to have
binary entries such that the response 1 is coded as 0 and -1 is coded as 1. (ii) Delete
the columns with missing entries (the starred entries in Table 1). (iii) Consider each
row of the resulting matrix as a binary number, convert it to a decimal number and

add 1. This gives the vectors s.] distinct for every missing block.

Using the s[.} described above, the necessary summations of the probabilities for each

block separately can be applied immediately:

Pyp)= > v, i=1...2" (0.1)
s =k
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where k = 1,...,27%. In R, the computation can be performed using the R func-
tion tapply(gamma, s, sum) where the elements of the vector gamma are summed

according to the values of s.

observed data complete data
(YoR)
missing number observed missing

block of cases pattern Y = (Yobs, Ymis) indicators
(12) (13) (23) (12) (13) (23) (12) (13) (23)
[23] N(1,1,na) 1 1 na 1 1 1% 0 0 1
1 1 —1x 0 0 1
T(1,~1,na) 1 -1 na 1 -1 1% 0 0 1
1 -1 1% 0 0 1
T(-1,1,na) -1 1 na -1 1 1x 0 0 1
-1 1 —1x 0 0 1
N(~1,~1,na) -1 -1 na -1 -1 1 0 0 1
-1 -1 1% 0 0 1

Table 1: Data structure for one missing block: Example for Y53 missing (extract from
Table 1 in main paper)

B. Simulations

Three MNAR models were specified for the simulations, model A with three items
and models B and C with four items. For models A and B we defined the first item
to produce nonignorable missing values using a; = —0.5 and §; = 0.2; all other «
and 3 values were therefore set to zero. For model C' additionally item 2 was specified
to produce nonignorable missing values using ap, = —0.7 and s = —0.2. The As for
model A were fixed at (—0.3,0.3,0) and for models B and C' at (—0.5,0.3,0.2,0),

respectively.

Using these parameter values, we produced “true” (expected) probabilities for each
pattern. Based on these probabilities, random samples were drawn from a multinomial
distribution to obtain simulated counts for the paired comparison patterns. We used
sample sizes of 100, 500, 1000, and 2000. Each combination of models A, B, and C'
with the four different sample sizes was replicated 10000 times. For each simulation
we assessed sensitivity by fitting two models - an “incorrect” MCAR model (without
ps) and a “correct” MNAR model (including the fs). The corresponding MSEs
for each fitted model are reported in Tables 2, 3, and 4. The mean square error

(MSE) of the estimated parameters is defined as the mean squared difference between
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the estimates of the parameters and the true parameter values. We also report the
maximum number of iterations, which is the largest number of iterations used by the

fitting procedure over all 10000 simulations.

N = 100 N = 500 N = 1000 N = 2000
parameters MSE MSE MSE MSE
true values MNAR MCAR MNAR MCAR MNAR MCAR MNAR MCAR
A —0.3 .0129  .0120 .0025 .0029 .0012 .0018 .0006 .0012
A2 0.3 .0091 .0087 .0018  .0020 .0009 .0011 .0004 .0007
a; —0.5 1272 .0294 .0058 .0109 .0028 .0087 .0014 .0074
b1 0.2 1687 .0136 .0065 .0032
max. iter. 44 11 16 11 15 10 14 9

Table 2: Model A: 3 Items, Item 1 missing

N = 100 N = 500 N = 1000 N = 2000
parameters MSE MSE MSE MSE
true values MNAR MCAR MNAR MCAR MNAR MCAR MNAR MCAR
A =5 .0105 .0104 .0021  .0033 .0010  .0024 .0005 .0020
A2 3 .0066  .0066 .0013 .0017 .0007  .0010 .0003  .0007
A3 2 .0059  .0058 0012 .0012 .0006  .0006 .0003  .0003
a; —.b 0309 .0247 .0037  .0130 .0018 .0113 .0009 .0107
51 2 .0407 .0053 .0027 .0013
max. iter. 32 12 14 12 15 12 15 11

Table 3: Model B: 4 Items, [tem 1 missing

N = 100 N = 500 N = 1000 N = 2000

parameters MSE MSE MSE MSE

true values MNAR MCAR MNAR MCAR MNAR MCAR MNAR MCAR
A =5 .0131 .0101 .0025 .0019 .0013  .0010 .0007  .0006
A2 3 .0082  .0090 .0016  .0029 .0009  .0022 .0005 .0018
A3 2 0071 .0072 .0014  .0018 .0007  .0012 .0003  .0008
a;  —.0 0542  .0265 0455  .0141 .0448  .0126 .0441 0117
ay =7 4199 .0229 0127  .0104 .0082 .0088 .0062  .0080

B4 2 .0316 .0061 .0033 .0020
Ba =2 4038 0071 .0033 .0017
max. iter. 73 14 20 14 19 13 19 13

Table 4: Model C: 4 Ttems, Items 1 and 2 missing

In examining the results of the simulations, we can observe three interesting features.

Firstly, we see that the MSE values for N = 100 are considerably larger than those



values for larger sample sizes, especially for alpha and beta. Secondly, for sample sizes
of 500 or more, the algorithm shows uniform behaviour in MSE, with very small MSEs
being reported for all parameters and MSE declining in size as sample size increases.
It is also interesting to note that the estimates for the misspecified MCAR model
broadly agree with the true parameter values from the simulated MNAR model for
those parameters that are estimated. The parameter estimates of the As are relatively
unaffected by misspecification of the model. Finally, in terms of stability, we notice
that the maximum number of iterations declines as the sample size increases; in

general between 15 and 20 iterations of the maximisation algorithm are needed.



C. Parameter estimates and standard errors for the

four models with and without dependencies

CC-outcome model MCAR model 2
without with without with
dependencies dependencies dependencies dependencies
effect estimate s.e. estimate s.e. estimate s.e. estimate s.e.

AsT 262 .045 278 .054 271 .042 .288 .051
Aem —.084 .045 —.106 .052 —.073 .042 —.081 .049
AAC 152 .045 142 .047 164 .042 154 .045
Asu 105 .045 115 .051 109 .042 122 .048
Ava 0 — 0 — 0 — 0 —
012.13 —.116 .078 —.129 .074
012.14 185 .084 197 .078
01215 —.072 .080 —.025 .075
015.14 —.068 .076 —-.077 .072
013.15 —.167 .073 —.163 .069
014.15 .019 .076 —.013 .072
012.23 .261 .086 232 .080
012 94 —.444 087 — 411 .081
012.25 107 .084 .092 .080
023.24 .064 .085 .037 .079
023.25 .160 .076 174 .072
024.95 —.208 .083 —.175 .078
013.23 .036 .074 .065 .070
013.34 —.209 .073 —.221 .069
013.35 —.092 .074 —.107 .071
023.34 —.002 .073 .021 .069
02335 178 074 185 .071
034.35 115 .074 126 .071
014.24 —.013 .083 —.045 .077
014.34 140 .075 115 .071
014.45 —.121 .073 —.119 .070
024.34 .028 .074 .018 .070
024.45 125 .076 105 .072
034.45 145 .073 145 .069
015.25 .078 .072 .030 .069
015.35 .050 .073 .034 .070
015.45 .045 .072 .045 .068
025.35 —.096 .073 —.106 .070
025.45 .017 .072 .028 .069
035.45 —.046 .072 —.033 .069
«@ —3.642 .130 -—3.642 .130

Table 5: Parameter estimates and standard errors for complete case (CC-outcome) models and
MCAR models with a common «, estimated with and without dependence parameters.



MCAR model 3 MNAR model
without with without with
dependencies dependencies dependencies dependencies
effect estimate s.e. estimate s.e. estimate s.e. estimate s.e.

s 271 042 288 051 268 043 273 .052
Ao —.073 .02  —.081 .049  —.074 .043  —.087 .050
e 164 .042 154 .045 163 .042 147 045
Asu 109 .042 122 .048 115 .042 129 .049
Ava [ — ( J— | — (| —
01913 —.129 .074 —.116 .075
01214 197 .078 200 .078
01215 —.025 .075 —.028 .075
01314 —.077 072 —.073 .072
01515 —.163 .069 —.155 .069
01415 —.013 .072 —.007 .072
01293 232 .080 231 .079
012 24 —.411 .081 —.401 .081
012 95 092 .080 104 .079
025 24 037 .079 040 .078
025 25 174 072 171 .072
04 25 —.175 .078 —.173 078
01523 065 .070 056 .070
01534 —.221 .069 —.221 .069
015 35 —.107 071 —.103 .071
025 34 021 .069 .020 .069
05 35 185 .071 179 071
034 35 126 .071 128 .071
01424 —.045 077 —.041 .078
01434 115 .071 111 .071
014 45 —.119 .070 —.117 .070
024 34 018 .070 017 .070
04 45 105 .072 109 .072
034 45 145 .069 145 .069
015 25 030 .069 029 069
01535 034 .070 037 .070
01545 045 068 045 068
05 35 —.106 .070 —.105 .070
025 45 028 .069 027 069
035.45 —.033 .069 —.033 .069
a —2.087 .240 —2.087 .240 —2.410 .380 —2.427 .383
o ~1.795 220 —1.795 .220 —1.850 .232 —1.856 .233
as —~1.851 .223 —1.851 .223 —1.848 .228 —1.866 .228
a —~1.908 .227 —1.908 .227 —2.212 .323 —2.189 .323
as —~1525 .207 —1.525 .207 —1.543 .218 —1.481 .217
B 570 .397 552 .391
Bs —.416 221  —.305 .219
Bs 395 234 276 233
B4 656 .329 566 .332
Bs —.084 240 120 .251

Table 6: Parameter estimates and standard errors for MCAR models with different as for all items
and MNAR models with different as and Bs for all items, estimated with and without dependence
parameters.



