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A. An algorithm to generate the C matrix

An algorithm to generate the C matrices may also be useful and is given here. Com-

putationally, it is useful to generate the matrices C[ · ] from vectors. Let such a vector

be denoted as s[ · ] of length 2`. Each element of the vector s[ · ] identifies the cells

of C[ · ] which take the value 1, with the position of the element giving the column

of C[ · ] and the value of the element giving the row. For instance, returning to the

earlier example, for C[23] the corresponding s[23] = (1, 1, 2, 2, 3, 3, 4, 4), or for C[13][23]

it is s[13][23] = (1, 1, 1, 1, 2, 2, 2, 2). In general, given an arbitrary number of compar-

isons, the entries in s[ · ] can easily be computed using the following steps: (i) For each

missing block convert the matrix Y with rows y = (yobs, ymis) (see Table 1) to have

binary entries such that the response 1 is coded as 0 and -1 is coded as 1. (ii) Delete

the columns with missing entries (the starred entries in Table 1). (iii) Consider each

row of the resulting matrix as a binary number, convert it to a decimal number and

add 1. This gives the vectors s[ · ] distinct for every missing block.

Using the s[ · ] described above, the necessary summations of the probabilities for each

block separately can be applied immediately:

P (y[ · ]k) =
∑

i:s[ · ]i=k

γi , i = 1, . . . , 2` , (0.1)
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where k = 1, . . . , 2`−κ. In R, the computation can be performed using the R func-

tion tapply(gamma, s, sum) where the elements of the vector gamma are summed

according to the values of s.

observed data complete data

(Y◦R)

missing number observed missing

block of cases pattern y = (yobs, ymis) indicators

(12) (13) (23) (12) (13) (23) (12) (13) (23)

[23] n(1,1,na) 1 1 na 1 1 1∗ 0 0 1

1 1 −1∗ 0 0 1
n(1,−1,na) 1 -1 na 1 -1 1∗ 0 0 1

1 -1 −1∗ 0 0 1
n(−1,1,na) -1 1 na -1 1 1∗ 0 0 1

-1 1 −1∗ 0 0 1
n(−1,−1,na) -1 -1 na -1 -1 1∗ 0 0 1

-1 -1 −1∗ 0 0 1

Table 1: Data structure for one missing block: Example for Y23 missing (extract from
Table 1 in main paper)

B. Simulations

Three MNAR models were specified for the simulations, model A with three items

and models B and C with four items. For models A and B we defined the first item

to produce nonignorable missing values using α1 = −0.5 and β1 = 0.2; all other α

and β values were therefore set to zero. For model C additionally item 2 was specified

to produce nonignorable missing values using α2 = −0.7 and β2 = −0.2. The λs for

model A were fixed at (−0.3, 0.3, 0) and for models B and C at (−0.5, 0.3, 0.2, 0),

respectively.

Using these parameter values, we produced “true” (expected) probabilities for each

pattern. Based on these probabilities, random samples were drawn from a multinomial

distribution to obtain simulated counts for the paired comparison patterns. We used

sample sizes of 100, 500, 1000, and 2000. Each combination of models A, B, and C

with the four different sample sizes was replicated 10000 times. For each simulation

we assessed sensitivity by fitting two models - an “incorrect” MCAR model (without

βs) and a “correct” MNAR model (including the βs). The corresponding MSEs

for each fitted model are reported in Tables 2, 3, and 4. The mean square error

(MSE) of the estimated parameters is defined as the mean squared difference between
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the estimates of the parameters and the true parameter values. We also report the

maximum number of iterations, which is the largest number of iterations used by the

fitting procedure over all 10000 simulations.

N = 100 N = 500 N = 1000 N = 2000
parameters MSE MSE MSE MSE
true values MNAR MCAR MNAR MCAR MNAR MCAR MNAR MCAR
λ1 −0.3 .0129 .0120 .0025 .0029 .0012 .0018 .0006 .0012
λ2 0.3 .0091 .0087 .0018 .0020 .0009 .0011 .0004 .0007
α1 −0.5 .1272 .0294 .0058 .0109 .0028 .0087 .0014 .0074
β1 0.2 .1687 .0136 .0065 .0032
max. iter. 44 11 16 11 15 10 14 9

Table 2: Model A: 3 Items, Item 1 missing

N = 100 N = 500 N = 1000 N = 2000
parameters MSE MSE MSE MSE
true values MNAR MCAR MNAR MCAR MNAR MCAR MNAR MCAR
λ1 −.5 .0105 .0104 .0021 .0033 .0010 .0024 .0005 .0020
λ2 .3 .0066 .0066 .0013 .0017 .0007 .0010 .0003 .0007
λ3 .2 .0059 .0058 .0012 .0012 .0006 .0006 .0003 .0003
α1 −.5 .0309 .0247 .0037 .0130 .0018 .0113 .0009 .0107
β1 .2 .0407 .0053 .0027 .0013
max. iter. 32 12 14 12 15 12 15 11

Table 3: Model B: 4 Items, Item 1 missing

N = 100 N = 500 N = 1000 N = 2000
parameters MSE MSE MSE MSE
true values MNAR MCAR MNAR MCAR MNAR MCAR MNAR MCAR
λ1 −.5 .0131 .0101 .0025 .0019 .0013 .0010 .0007 .0006
λ2 .3 .0082 .0090 .0016 .0029 .0009 .0022 .0005 .0018
λ3 .2 .0071 .0072 .0014 .0018 .0007 .0012 .0003 .0008
α1 −.5 .0542 .0265 .0455 .0141 .0448 .0126 .0441 .0117
α2 −.7 .4199 .0229 .0127 .0104 .0082 .0088 .0062 .0080
β1 .2 .0316 .0061 .0033 .0020
β2 −.2 .4038 .0071 .0033 .0017
max. iter. 73 14 20 14 19 13 19 13

Table 4: Model C: 4 Items, Items 1 and 2 missing

In examining the results of the simulations, we can observe three interesting features.

Firstly, we see that the MSE values for N = 100 are considerably larger than those
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values for larger sample sizes, especially for alpha and beta. Secondly, for sample sizes

of 500 or more, the algorithm shows uniform behaviour in MSE, with very small MSEs

being reported for all parameters and MSE declining in size as sample size increases.

It is also interesting to note that the estimates for the misspecified MCAR model

broadly agree with the true parameter values from the simulated MNAR model for

those parameters that are estimated. The parameter estimates of the λs are relatively

unaffected by misspecification of the model. Finally, in terms of stability, we notice

that the maximum number of iterations declines as the sample size increases; in

general between 15 and 20 iterations of the maximisation algorithm are needed.
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C. Parameter estimates and standard errors for the

four models with and without dependencies

CC-outcome model MCAR model 2
without with without with

dependencies dependencies dependencies dependencies
effect estimate s.e. estimate s.e. estimate s.e. estimate s.e.
λST .262 .045 .278 .054 .271 .042 .288 .051
λCM −.084 .045 −.106 .052 −.073 .042 −.081 .049
λAC .152 .045 .142 .047 .164 .042 .154 .045
λSU .105 .045 .115 .051 .109 .042 .122 .048
λV A 0 — 0 — 0 — 0 —
θ12.13 −.116 .078 −.129 .074
θ12.14 .185 .084 .197 .078
θ12.15 −.072 .080 −.025 .075
θ13.14 −.068 .076 −.077 .072
θ13.15 −.167 .073 −.163 .069
θ14.15 .019 .076 −.013 .072
θ12.23 .261 .086 .232 .080
θ12.24 −.444 .087 −.411 .081
θ12.25 .107 .084 .092 .080
θ23.24 .064 .085 .037 .079
θ23.25 .160 .076 .174 .072
θ24.25 −.208 .083 −.175 .078
θ13.23 .036 .074 .065 .070
θ13.34 −.209 .073 −.221 .069
θ13.35 −.092 .074 −.107 .071
θ23.34 −.002 .073 .021 .069
θ23.35 .178 .074 .185 .071
θ34.35 .115 .074 .126 .071
θ14.24 −.013 .083 −.045 .077
θ14.34 .140 .075 .115 .071
θ14.45 −.121 .073 −.119 .070
θ24.34 .028 .074 .018 .070
θ24.45 .125 .076 .105 .072
θ34.45 .145 .073 .145 .069
θ15.25 .078 .072 .030 .069
θ15.35 .050 .073 .034 .070
θ15.45 .045 .072 .045 .068
θ25.35 −.096 .073 −.106 .070
θ25.45 .017 .072 .028 .069
θ35.45 −.046 .072 −.033 .069
α −3.642 .130 −3.642 .130

Table 5: Parameter estimates and standard errors for complete case (CC-outcome) models and
MCAR models with a common α, estimated with and without dependence parameters.
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MCAR model 3 MNAR model
without with without with

dependencies dependencies dependencies dependencies
effect estimate s.e. estimate s.e. estimate s.e. estimate s.e.
λST .271 .042 .288 .051 .268 .043 .273 .052
λCM −.073 .042 −.081 .049 −.074 .043 −.087 .050
λAC .164 .042 .154 .045 .163 .042 .147 .045
λSU .109 .042 .122 .048 .115 .042 .129 .049
λV A 0 — 0 — 0 — 0 —
θ12.13 −.129 .074 −.116 .075
θ12.14 .197 .078 .200 .078
θ12.15 −.025 .075 −.028 .075
θ13.14 −.077 .072 −.073 .072
θ13.15 −.163 .069 −.155 .069
θ14.15 −.013 .072 −.007 .072
θ12.23 .232 .080 .231 .079
θ12.24 −.411 .081 −.401 .081
θ12.25 .092 .080 .104 .079
θ23.24 .037 .079 .040 .078
θ23.25 .174 .072 .171 .072
θ24.25 −.175 .078 −.173 .078
θ13.23 .065 .070 .056 .070
θ13.34 −.221 .069 −.221 .069
θ13.35 −.107 .071 −.103 .071
θ23.34 .021 .069 .020 .069
θ23.35 .185 .071 .179 .071
θ34.35 .126 .071 .128 .071
θ14.24 −.045 .077 −.041 .078
θ14.34 .115 .071 .111 .071
θ14.45 −.119 .070 −.117 .070
θ24.34 .018 .070 .017 .070
θ24.45 .105 .072 .109 .072
θ34.45 .145 .069 .145 .069
θ15.25 .030 .069 .029 .069
θ15.35 .034 .070 .037 .070
θ15.45 .045 .068 .045 .068
θ25.35 −.106 .070 −.105 .070
θ25.45 .028 .069 .027 .069
θ35.45 −.033 .069 −.033 .069
α1 −2.087 .240 −2.087 .240 −2.410 .380 −2.427 .383
α2 −1.795 .220 −1.795 .220 −1.850 .232 −1.856 .233
α3 −1.851 .223 −1.851 .223 −1.848 .228 −1.866 .228
α4 −1.908 .227 −1.908 .227 −2.212 .323 −2.189 .323
α5 −1.525 .207 −1.525 .207 −1.543 .218 −1.481 .217
β1 .570 .397 .552 .391
β2 −.416 .221 −.305 .219
β3 .395 .234 .276 .233
β4 .656 .329 .566 .332
β5 −.084 .240 .120 .251

Table 6: Parameter estimates and standard errors for MCAR models with different αs for all items
and MNAR models with different αs and βs for all items, estimated with and without dependence
parameters.
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