Missing Observations in Paired Comparison Data supplementary material

R. Dittrich * B. Francis [†] R. Hatzinger * W. Katzenbeisser *

14.05.2011

A. An algorithm to generate the C matrix

An algorithm to generate the **C** matrices may also be useful and is given here. Computationally, it is useful to generate the matrices $\mathbf{C}_{[.]}$ from vectors. Let such a vector be denoted as $s_{[.]}$ of length 2^{ℓ} . Each element of the vector $s_{[.]}$ identifies the cells of $\mathbf{C}_{[.]}$ which take the value 1, with the position of the element giving the column of $\mathbf{C}_{[.]}$ and the value of the element giving the row. For instance, returning to the earlier example, for $\mathbf{C}_{[23]}$ the corresponding $s_{[23]} = (1, 1, 2, 2, 3, 3, 4, 4)$, or for $\mathbf{C}_{[13][23]}$ it is $s_{[13][23]} = (1, 1, 1, 1, 2, 2, 2, 2)$. In general, given an arbitrary number of comparisons, the entries in $s_{[.]}$ can easily be computed using the following steps: (i) For each missing block convert the matrix \mathbf{Y} with rows $y = (y_{obs}, y_{mis})$ (see Table 1) to have binary entries such that the response 1 is coded as 0 and -1 is coded as 1. (ii) Delete the columns with missing entries (the starred entries in Table 1). (iii) Consider each row of the resulting matrix as a binary number, convert it to a decimal number and add 1. This gives the vectors $s_{[.]}$ distinct for every missing block.

Using the $s_{[.]}$ described above, the necessary summations of the probabilities for each block separately can be applied immediately:

$$P(y_{[\cdot]k}) = \sum_{i:s_{[\cdot]i}=k} \gamma_i, \qquad i = 1, \dots, 2^{\ell}, \qquad (0.1)$$

^{*}Address for correspondence: Regina Dittrich, WU Vienna University of Economics and Business, Institute for Statistics and Mathematics, Augasse 2-6, 1090 Vienna, Austria, Regina.Dittrich@wu.ac.at

[†]Lancaster University, UK

where $k = 1, ..., 2^{\ell-\kappa}$. In R, the computation can be performed using the R function tapply(gamma, s, sum) where the elements of the vector gamma are summed according to the values of s.

	ol	bserved	l data		complete data						
							$(\mathbf{Y}$	$\circ \mathbf{R})$			
missing	number	0	bserve	d					missin	g	
block	of cases	pattern		y =	$y = (y_{obs}, y_{mis})$		indicators				
		(12)	(13)	(23)	(12)	(13)	(23)	(12)	(13)	(23)	
[23]	$n_{(1,1,na)}$	1	1	na	1	1	1*	0	0	1	
					1	1	-1*	0	0	1	
	$n_{(1,-1,na)}$	1	-1	na	1	-1	1*	0	0	1	
					1	-1	-1*	0	0	1	
	$n_{(-1,1,na)}$	-1	1	na	-1	1	1*	0	0	1	
					-1	1	-1*	0	0	1	
	$n_{(-1,-1,na)}$	-1	-1	na	-1	-1	1*	0	0	1	
					-1	-1	-1*	0	0	1	

Table 1: Data structure for one missing block: Example for Y_{23} missing (extract from Table 1 in main paper)

B. Simulations

Three MNAR models were specified for the simulations, model A with three items and models B and C with four items. For models A and B we defined the first item to produce nonignorable missing values using $\alpha_1 = -0.5$ and $\beta_1 = 0.2$; all other α and β values were therefore set to zero. For model C additionally item 2 was specified to produce nonignorable missing values using $\alpha_2 = -0.7$ and $\beta_2 = -0.2$. The λ s for model A were fixed at (-0.3, 0.3, 0) and for models B and C at (-0.5, 0.3, 0.2, 0), respectively.

Using these parameter values, we produced "true" (expected) probabilities for each pattern. Based on these probabilities, random samples were drawn from a multinomial distribution to obtain simulated counts for the paired comparison patterns. We used sample sizes of 100, 500, 1000, and 2000. Each combination of models A, B, and C with the four different sample sizes was replicated 10000 times. For each simulation we assessed sensitivity by fitting two models - an "incorrect" MCAR model (without β s) and a "correct" MNAR model (including the β s). The corresponding MSEs for each fitted model are reported in Tables 2, 3, and 4. The mean square error (MSE) of the estimated parameters is defined as the mean squared difference between

the estimates of the parameters and the true parameter values. We also report the maximum number of iterations, which is the largest number of iterations used by the fitting procedure over all 10000 simulations.

		N =	100	N = 500		N = 1000		N = 2000	
parameters		M	SE	MSE		MSE		MSE	
true	values	MNAR	MCAR	MNAR	MCAR	MNAR	MCAR	MNAR	MCAR
λ_1	-0.3	.0129	.0120	.0025	.0029	.0012	.0018	.0006	.0012
λ_2	0.3	.0091	.0087	.0018	.0020	.0009	.0011	.0004	.0007
α_1	-0.5	.1272	.0294	.0058	.0109	.0028	.0087	.0014	.0074
β_1	0.2	.1687		.0136		.0065		.0032	
maz	x. iter.	44	11	16	11	15	10	14	9

Table 2: Model A: 3 Items, Item 1 missing

		N =	100	N =	500	N =	1000	N =	2000
para	meters	M	SE	M	SE	M	SE	M	SE
true	values	MNAR	MCAR	MNAR	MCAR	MNAR	MCAR	MNAR	MCAR
λ_1	5	.0105	.0104	.0021	.0033	.0010	.0024	.0005	.0020
λ_2	.3	.0066	.0066	.0013	.0017	.0007	.0010	.0003	.0007
λ_3	.2	.0059	.0058	.0012	.0012	.0006	.0006	.0003	.0003
α_1	5	.0309	.0247	.0037	.0130	.0018	.0113	.0009	.0107
β_1	.2	.0407		.0053		.0027		.0013	
max	. iter.	32	12	14	12	15	12	15	11

Table 3: Model B: 4 Items, Item 1 missing

		N =	100	N =	500	N = 1000		N =	2000
parameters		M	MSE		MSE		MSE		SE
true	values	MNAR	MCAR	MNAR	MCAR	MNAR	MCAR	MNAR	MCAR
λ_1	5	.0131	.0101	.0025	.0019	.0013	.0010	.0007	.0006
λ_2	.3	.0082	.0090	.0016	.0029	.0009	.0022	.0005	.0018
λ_3	.2	.0071	.0072	.0014	.0018	.0007	.0012	.0003	.0008
α_1	5	.0542	.0265	.0455	.0141	.0448	.0126	.0441	.0117
α_2	7	.4199	.0229	.0127	.0104	.0082	.0088	.0062	.0080
β_1	.2	.0316		.0061		.0033		.0020	
β_2	2	.4038		.0071		.0033		.0017	
max	. iter.	73	14	20	14	19	13	19	13

Table 4: Model C: 4 Items, Items 1 and 2 missing

In examining the results of the simulations, we can observe three interesting features. Firstly, we see that the MSE values for N = 100 are considerably larger than those values for larger sample sizes, especially for alpha and beta. Secondly, for sample sizes of 500 or more, the algorithm shows uniform behaviour in MSE, with very small MSEs being reported for all parameters and MSE declining in size as sample size increases. It is also interesting to note that the estimates for the misspecified MCAR model broadly agree with the true parameter values from the simulated MNAR model for those parameters that are estimated. The parameter estimates of the λ s are relatively unaffected by misspecification of the model. Finally, in terms of stability, we notice that the maximum number of iterations declines as the sample size increases; in general between 15 and 20 iterations of the maximisation algorithm are needed.

C. Parameter estimates and standard errors for the four models with and without dependencies

	CC	me model	MCAR model 2						
	without with				without	ıt	with	with	
	depender	ncies	depender	ncies	depender	ncies	depender	ncies	
effect	estimate	s.e.	estimate	s.e.	estimate	s.e.	estimate	s.e.	
λ_{ST}	.262	.045	.278	.054	.271	.042	.288	.051	
λ_{CM}	084	.045	106	.052	073	.042	081	.049	
λ_{AC}	.152	.045	.142	.047	.164	.042	.154	.045	
λ_{SU}	.105	.045	.115	.051	.109	.042	.122	.048	
λ_{VA}	0		0		0		0		
$\theta_{12.13}$			116	.078			129	.074	
$\theta_{12.14}$.185	.084			.197	.078	
$\theta_{12.15}$			072	.080			025	.075	
$\theta_{13.14}$			068	.076			077	.072	
$\theta_{13.15}$			167	.073			163	.069	
$\theta_{14.15}$.019	.076			013	.072	
$\theta_{12.23}$.261	.086			.232	.080	
$\theta_{12.24}$			444	.087			411	.081	
$\theta_{12.25}$.107	.084			.092	.080	
$\theta_{23.24}$.064	.085			.037	.079	
$\theta_{23.25}$.160	.076			.174	.072	
$\theta_{24.25}$			208	.083			175	.078	
$\theta_{13.23}$.036	.074			.065	.070	
$\theta_{13.34}$			209	.073			221	.069	
$\theta_{13.35}$			092	.074			107	.071	
$\theta_{23.34}$			002	.073			.021	.069	
$\theta_{23.35}$.178	.074			.185	.071	
$\theta_{34.35}$.115	.074			.126	.071	
$\theta_{14.24}$			013	.083			045	.077	
$\theta_{14.34}$.140	.075			.115	.071	
$\theta_{14.45}$			121	.073			119	.070	
$\theta_{24.34}$.028	.074			.018	.070	
$\theta_{24.45}$.125	.076			.105	.072	
$\theta_{34.45}$.145	.073			.145	.069	
$\theta_{15.25}$.078	.072			.030	.069	
$\theta_{15.35}$.050	.073			.034	.070	
$\theta_{15.45}$.045	.072			.045	.068	
$\theta_{25.35}$			096	.073			106	.070	
$\theta_{25.45}$.017	.072			.028	.069	
$\theta_{35.45}$			046	.072			033	.069	
α					-3.642	.130	-3.642	.130	

Table 5: Parameter estimates and standard errors for complete case (CC-outcome) models and MCAR models with a common α , estimated with and without dependence parameters.

	N	model 3		MNAR model				
	without	ut	with		without with			
	depender	ncies	depender	ncies	depender	dependencies		ncies
effect	estimate	s.e.	estimate	s.e.	estimate	s.e.	estimate	s.e.
λ_{ST}	.271	.042	.288	.051	.268	.043	.273	.052
λ_{CM}	073	.042	081	.049	074	.043	087	.050
λ_{AC}	.164	.042	.154	.045	.163	.042	.147	.045
λ_{SU}	.109	.042	.122	.048	.115	.042	.129	.049
λ_{VA}	0		0		0		0	
$\theta_{12,13}$			129	.074			116	.075
$\theta_{12,14}$.197	.078			.200	.078
$\theta_{12,15}$			025	.075			028	.075
$\theta_{13,14}$			077	.072			073	.072
$\theta_{13,15}$			163	.069			155	.069
$\theta_{14,15}$			013	.072			007	.072
$\theta_{12,23}$.232	.080			.231	.079
$\theta_{12,23}$			411	.081			401	.081
$\theta_{12.24}$ $\theta_{12.25}$.092	.080			.104	.079
$\theta_{23,24}$.037	.079			.040	.078
$\theta_{23,24}$.174	.072			.171	.072
θ24.25			175	.078			173	.078
θ12.22			.065	.070			.056	.070
$\theta_{12,24}$			-221	069			- 221	069
$\theta_{12,25}$			-107	071			-103	071
$\theta_{13.33}$ $\theta_{22.24}$			021	069			020	069
023.34 θος 25			185	071			179	071
023.35 θ24.25			126	071			128	071
034.33 θ14.94			-045	077			-041	078
$\theta_{14.24}$ $\theta_{14.24}$			115	071			111	071
$\theta_{14.34}$ $\theta_{14.45}$			- 119	070			- 117	070
$\theta_{04,04}$			018	070			017	070
θ24.34 θο4 45			105	072			109	072
024.45 A24.45			145	069			145	069
θ_{15} or			030	.000			029	069
015.25 A15.05			034	070			037	070
θ15.35 θ15.45			.001	068			.001	068
$\theta_{05,45}$			-106	070			-105	070
020.30 Hor 45			028	069			.105	069
A 25.45			-0.020	069			-033	069
035.45	-2.087	240	-2.087	240	-2410	380	-2427	383
α ₁ α ₂	-1.795	220	-1.795	2210	-1.850	.000 232	-1.856	233
0.0	-1 851	.220 222	-1 851	.220 222	_1 8/8	.202 228	_1.866	.200 228
<u>аз</u>	_1 009	.449 997	_1 009	.449 997	_9 919	.220 292	_2 180	.220 292
α ₄	-1.500 -1.505	.441 207	-1.900	.441 207	-2.212 -1.542	.525 918	-2.109 -1 /81	.525 917
β_1	-1.020	.201	-1.020	.201	-1.040 570	$\frac{.210}{307}$	-1.401 559	.217 301
β_1 β_2					.070	.597 991	.00Z _ 20K	.591 910
ρ_2 β_2					410 205	.441 994	300 976	.419 922
μ3 β.					.393 656	.204 200	.210 566	.⊿ออ ววว
ρ_4					.000 100	.949 940	.000	.557 921
ρ_5					004	.440	.120	.491

Table 6: Parameter estimates and standard errors for MCAR models with different α s for all items and MNAR models with different α s and β s for all items, estimated with and without dependence parameters.