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The supplement is organized as follows: first, the proof of Proposition 1 is presented. Then, it is

shown how pairwise fusion penalties can be represented as weighted sums of adjacent parameter

differences.

1 Proof of Proposition 1

Lemma 1. Consider the estimate β̂ = arg minβ ‖y −Xβ‖22 + λ · P (β) of a penalized lin-

ear model with orthonormal design XTX = I(k+1)×(k+1) and the general penalty P (β) =∑
r∈I1,s∈I2 g(|βr − βs|), where I1, I2 denote nonempty sets of indices, and where g : R+

0 → R+
0

denotes a monotonically increasing function. Then it holds that
∑k

r=0 β̂r =
∑k

r=0 β̂
ML
r and thus,

¯̂
β = β̄ML.

Proof. Consider

β∗ = arg min
β∈R(k+1)

(
M(β) := ||β − β̃||22 + λP (β)

)
, (1)

for any input vector β̃ ∈ R(k+1), for any λ ≥ 0 and for the penalty P (β) that is defined in

Lemma 1. The penalty P and thus the objective function M can be non-convex such that

β∗ is not unique. By definition, P and thusM are bounded by 0 such thatM has a unique

minimum nonetheless. The proof relies only on the uniqueness of this minimum and can be

applied to all solutions of (1).
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Let m ∈ R be a scalar and let 1k+1 denote a vector of ones of length k+ 1. Consider the point

u := β∗ −m · 1k+1 and compareM(β∗) withM(u).

First of all, note that, for any m ∈ R,

P (u) = P (β∗ −m · 1k+1) =
∑
r∈I1

∑
s∈I2

g

(∣∣(β∗r −m)− (β∗s −m)
∣∣)

=
∑
r∈I1

∑
s∈I2

g
(
|β∗r − β∗s |

)
= P (β∗).

Hence, the penalty is irrelevant for the comparison ofM(β∗) andM(u).

Differentiation of the L2
2-term inM(u) with respect to m shows that

m∗ = arg min
m∈R
||β∗ − β̃ −m · 1k+1||22 =

1

k + 1

k∑
r=0

(β∗r − β̃r).

For u∗ = β∗ −m∗ · 1k+1, it holds that

M(u∗)−M(β∗) =
(
||u∗ − β̃||22 + λP (u∗)

)
−
(
||β∗ − β̃||22 + λP (β∗)

)
= ||β∗ − β̃ −m∗ · 1k+1||22 − ||β∗ − β̃||22

≤ 0

⇔M(u∗) ≤ M(β∗).

As the the L2
2-terms are strictly convex,M(u∗) =M(β∗) holds if and only if u∗ = β∗.

Hence, as β∗ = arg minβ∈R(k+1)M(β), any u∗ 6= β∗ is a contradiction. Thus, it holds that

u∗ = β∗ −m∗ · 1k+1

= β∗

⇔ m∗ =
1

k + 1

k∑
r=0

(β∗r − β̃r)

= 0.

As XTX = I(k+1)×(k+1), β̂ML = XTy.
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According to Fan and Li (2001), in this case, the objective can be rewritten as

‖y −Xβ‖22 + λP (β) =
∥∥∥β − β̂ML

∥∥∥2
2

+ λP (β) + const.

Hence, the results obtained above can be applied to the assumed orthonormal setting with

β̃ = β̂ML; thus, Lemma 1 holds.

Proposition 1. Assume a penalized linear model with orthonormal design; that is XTX =

I(k+1)×(k+1) where X ∈ R(k+1)×(k+1) denotes the design matrix without an intercept and where

I denotes the identity matrix. Let the ML estimates be ordered β̂ML
0 < . . . < β̂ML

k and employ

penalty (2.3) with a fixed penalty parameter λ, λ ≥ 0. Then for j, β̂ML
j < β̄ML, β̄ML =

1
k+1

∑k
j=0 β̂

ML
j , one obtains

β̂j = min

{
β̄ML, max{β̂ML

l , β̂ML
j }+

(λ− λl)I(l≥j)
2(l + 1)

}
,

where l = maxl=0,...,k (λl < λ), λl =
∑l

u=1 2u
∣∣∣β̂ML
u − β̂ML

u−1

∣∣∣, and with indicator function I.

For β̂ML
j ≥ β̄ML, one obtains analogously

β̂j = max

{
β̄ML, min{β̂ML

l , β̂ML
j } −

(λ− λl)I(k−l≥j)
2(l + 1)

}
,

with λl =
∑k−1

u=l 2(k − u)
∣∣∣β̂ML
u+1 − β̂ML

u

∣∣∣ and l as before.

Proof. According to Fan and Li (2001), the objective and the estimate are defined by

Mpen(β) =
∥∥∥β − β̂ML

∥∥∥2
2

+ λ ‖Rβ‖1 , (2)

β̂ = argmin
β
Mpen(β),

where λ denotes the tuning parameter of the penalty, and where Rβ with

R =


−1 1 0 . . . 0

0 −1 1 0
...

... . . . . . . . . . . . . ...

... 0 −1 1 0
0 . . . 0 −1 1

 ∈ R
k×(k+1),
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builds the adjacent differences of coefficients.

As the objective (2) is convex, the Karush-Kuhn-Tucker conditions (KKT; Boyd and Vanden-

berghe, 2004, p. 243-244) are sufficient for a solution. The necessary background on subdif-

ferential calculus for the following proof can be found in Hiriart-Urruty and Lemaréchal, 2001.

With ∇Mpen denoting the subdifferential or, depending on context, the gradient ofMpen, each

solution β̂ is characterized by the condition

0 ∈ ∇Mpen(β̂).

Hence, β̂ is obtained by solving the following equation for β:

0 ∈ ∇Mpen(β) = 2(β − β̂ML) + λ · ∇ ‖Rβ‖1

⇔ β̂ML − β ∈ λ
2
∇‖Rβ‖1 , (3)

In order to obtain β̂j, start with λ = 0 and increase λ gradually. For λ = 0, β̂ = β̂ML. For

λ > 0, let λ1 denote the value of λ for which the first pair of coefficients is fused. That is, for

0 < λ < λ1, all differences in Rβ are unequal zero; the penalty term is differentiable:

[∇‖Rβ‖1]j =



∂
∂βj

(|βj − βj−1|+ |βj+1 − βj|) = 1− 1 = 0 for 0 < j < k,

∂
∂βj

(|βj+1 − βj|) = −1 for j = 0,

∂
∂βj

(|βj − βj−1|) = 1 for j = k.

(4)

Hence, for λ > 0, a distinction of cases is helpful. As the ML estimate is assumed to be ordered

and due to Lemma 1, distinguish coefficients with β̂ML
j < β̄ML and with β̂ML

j ≥ β̄ML.

• Case 1: βj with β̂ML
j < β̄ML

Due to (4), for 0 < λ ≤ λ1, shrinkage only affects β0. There is no shrinkage for j > 0;

the first fusion of coefficients at λ = λ1 must affect β0, β1. If the coefficients are fused, it
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holds that |β1 − β0| = 0. Therefore, define the subdifferential v of |ξ|:

v


∈ [−1, 1] for ξ = 0,

= sign(ξ) else wise.

Thus, for 0 < λ ≤ λ1,

[∇‖Rβ‖1]0 =
∂

∂β0
|β1 − β0|

= −v.

With (3), it follows that

β̂j = β̂ML
j , j > 0

β̂0 =


β̂ML
0 + 1

2
λ for λ < 2(β̂ML

1 − β̂ML
0 ),

β1 for λ = 2(β̂ML
1 − β̂ML

0 ).

That is, the first fusion takes place for λ ≥ λ1 = 2(β̂ML
1 − β̂ML

0 ) so that the estimates

of the coefficients β0, β1 are the same; for λ = λ1, it holds that β̂0 = β̂1 = β̂ML
1 . Let λ2

denote the value of λ for which the second pair of coefficients is fused. Consider now the

case λ1 = 2(β̂ML
1 − β̂ML

0 ) < λ ≤ λ2, where it holds that

[∇‖Rβ‖1]1 =
∂

∂β1

∣∣∣∣β2 − β0 + β1
2

∣∣∣∣
= −v

2
,

[∇‖Rβ‖1]2 = 0.

With the same arguments as above, we obtain

β̂1 =


β̂ML
1 + 1

4
(λ− λ1) for λ < λ1 + 4(β̂ML

2 − β̂ML
1 ),

β2 for λ = λ1 + 4(β̂ML
2 − β̂ML

1 ).
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That is, the estimates of β0, β1, β2 are the same for λ ≥ λ2 = λ1 + 4(β̂ML
2 − β̂ML

1 ); and it

holds that β̂0 = β̂1 = β̂2 = β̂ML
2 for λ = λ2. Recursive application gives

β̂j = min

{
β̄ML, max{β̂ML

l , β̂ML
j }+

(λ− λl)I(l≥j)
2(l + 1)

}
,

with l = maxl=0,...,k (λl < λ), λl =
∑l

u=1 2u
∣∣∣β̂ML
u − β̂ML

u−1

∣∣∣, and with indicator function I.

• Case 2: βj with β̂ML
j ≥ β̄ML

Analogously, one obtains

β̂j = max

{
β̄ML, min{β̂ML

l , β̂ML
j } −

(λ− λl)I(k−l≥j)
2(l + 1)

}
,

with λl =
∑k−1

u=l 2(k − u)
∣∣∣β̂ML
u+1 − β̂ML

u

∣∣∣ and l as before.
Note that, with λmax denoting the minimal value of λ that effects maximal penalization, we

have β̂j = β̄ML for all j for λ ≥ λmax. Due to Lemma 1, for λ = λmax, at least two (groups of)

coefficients are fused with β̂j 6= β̄ML for λ < λmax.

2 Representing Pairwise Fusion Penalties as Weighted Sum

of Adjacent Differences

On page 7, it says: “Assume a fixed value of the tuning parameter λ and let β(0), β(1), . . . , β(k)

denote the (arbitrary) ordering of the solution. Then a short transformation (see Supplement

A) shows that
∑

r>s |β(r) − β(s)| =
∑k

r=1w(r)|β(r) − β(r−1)|, where w(r) = r(k − r + 1).”

Proof. The ordering of the coefficients implies (for r > s) that

|β(r) − β(s)| =
r∑

l=s+1

|β(l) − β(l−1)|.

With

d(r) =
∣∣β(r) − β(r−1)∣∣ ,
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one thus obtains

∑
r>s

|β(r) − β(s)| =
k∑
s=1

k∑
l=s

l∑
r=s

d(r),

k∑
r=1

w(r)|β(r) − β(r−1)| =
k∑
r=1

w(r)d(r).

Hence, it is to show that

k∑
s=1

k∑
l=s

l∑
r=s

d(r) =
k∑
r=1

w(r)d(r).

k∑
s=1

k∑
l=s

l∑
r=s

d(r) =
k∑
s=1

k∑
l=s

l∑
r=s

d(r)

︷ ︸︸ ︷
s = 1

︷ ︸︸ ︷
l = 1

︷ ︸︸ ︷
r = 1, . . . , 1 d(1)

l = 2 r = 1, 2 d(1) + d(2)
l = 3 r = 1, 2, 3 d(1) + d(2) + d(3)
...

...
...

...
...

l = k r = 1, . . . , k d(1) + d(2) + d(3) + . . . + d(k)
s = 2 l = 2 r = 2 d(2)

l = 3 r = 2, 3 d(2) + d(3)
...

...
...

...
l = k r = 2, . . . , k d(2) + d(3) + . . . + d(k)

s = 3 l = 3 r = 3 d(3)
...

...
...

l = k r = 3, . . . , k d(3) + . . . + d(k)

...
...

...
s = k l = k r = k d(k)

k
te
rm

s

2(
k-
1)

te
rm

s

3(
k-
2)

te
rm

s

k
te
rm

s

= k · d(1) + 2 · (k − 1) · d(3) + 3 · (k − 2) · d(3) + . . .+ k · d(k)

=
k∑
r=1

r · (k − r + 1) · d(r) =
k∑
r=1

w(r)d(r).

If the ordering of the solution is not bijective as there are fused categories, the number of

categories k has to be reduced accordingly and the procedure is the same as described above.
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