Appendix: Connection with the GSVD

We provide the derivation of a LongPEER estimate using the GSVD. This can be
viewed as an extension of the estimation discussed by Randolph et al. (2012) in two
ways: we allow for a general covariance matrix V (for y) and we extend the penalty
operator to apply across multiply-defined domains, Ly, ..., Lp.

After some algebra, the generalized ridge estimate in equation (3.3) for « can be

expressed as
A=-AX'"Viy+ AW Vly

where
Al = X'TVIX)'XTVIWWIVIW + L'L - W VIIX(XTVIX) ' XTViw] !
A=W V'WH+L'L-W VXXV IX)"'X"V'W

When X = 0 (a situation without any scalar predictors) or XTV"'W = 0 the
generalized ridge estimation of 7 can be put into a PEER estimation framework in
terms of GS vectors, as discussed below.

With X = 0 or XTV'W = 0, the 4 reduces to [W'VIW+L L7 'W'TV-ly
Moreover, in this case generalized ridge estimate of 3 becomes [XTV1X]"1XTV-ly,
Now, if we transform W := V~Y/2W and y := V~2y, we can rewrite L as

A A
L = )\ blockdiag { Lo, 2Ly, - -+ , 22Lp b = AoL*
Ao Ao

Here, L® can be interpreted as a scaled L where scaling is done for all the tuning
parameters associated with the ‘longitudinal’ part of the regression function with
respect to the ‘baseline’ tuning parameter.

Set p = (D+1)p, let m denote the number of rows in L and set ¢ = dim[Null(L)].
Further, assume that n, < m < p < m+n, and the rank of the (n, +m) X p matrix
[WT  (L5)"]7 is . The following describes the GSVD of the pair (W, L?): there
exist orthogonal matrices U and V, a nonsingular G and diagonal matrices S and M
such that

W=USG! S=[0S] S=hblockdiag{S;, I; ..}
L =VMG' M=[M 0] M = blockdiag{I; ., M}
Submatrices S; and M; have ¢ = n, + m — p diagonal entries ordered as

0<o <o <~ <o <1

05 > pp> > pp>1  Vhere o pd=1, k=1,...,/(

Here, the columns {gy} of G are the GS vectors determined by the GSVD of the pair
(W, L?). Denote the columns of & and V by u;, and vy, respectively. Now, it can be



shown that [WTV W + LTL MWV = [WIV W 4 (L) Lo WV =
G(STS + XMTM)7IGT WTV~Y2 and consequently, 4 can be expressed as
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Further, the bias and variance can be expressed as
Bias[d] = I -W*W)y =G(S'S+ A2MTM)—1(A2MTM)Q—1
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where, W# = [WTVI'W + LTL]7'WTV~! and g; denotes the kth column of
G T=(GH" =(G")"L. Further, we can express bias as (W' V- !W+LTL| 'L Ly
which means 4 will be unbiased only when ~ € Null(L).

For estimates obtained using this technique, the bias and variance can be ex-
pressed in terms of generalized singular vectors, provided the assumption of X TV~IW =
0 applies. In this case, one can show that B is simply the generalized least squares
estimate from the linear model y = X5+ €*, and 4 is the generalized ridge estimate
fromy = W~+€* with penalty L. That is, 3 is estimated as if W~ were not present, and =
is estimated as if X3 were not present.
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