
Appendix: Connection with the GSVD

We provide the derivation of a LongPEER estimate using the GSVD. This can be
viewed as an extension of the estimation discussed by Randolph et al. (2012) in two
ways: we allow for a general covariance matrix V (for y) and we extend the penalty
operator to apply across multiply-defined domains, L0, . . . ,LD.

After some algebra, the generalized ridge estimate in equation (3.3) for γ can be
expressed as

γ̂ = −A1X
>V−1y + A2W

>V−1y

where

A>1 = (X>V−1X)−1X>V−1W[W>V−1W + L>L−W>V−1X(X>V−1X)−1X>V−1W]−1

A2 = W>V−1W + L>L−W>V−1X(X>V−1X)−1X>V−1W

When X = 0 (a situation without any scalar predictors) or X>V−1W = 0 the
generalized ridge estimation of γ can be put into a PEER estimation framework in
terms of GS vectors, as discussed below.

With X = 0 or X>V−1W = 0, the γ̂ reduces to [W>V−1W+L>L]−1W>V−1y.
Moreover, in this case generalized ridge estimate of β becomes [X>V−1X]−1X>V−1y.
Now, if we transform W̃ := V−1/2W and ỹ := V−1/2y, we can rewrite L as

L = λ0 blockdiag

{
L0,

λ1
λ0

L1, · · · ,
λD
λ0

LD

}
= λ0L

s

Here, Ls can be interpreted as a scaled L where scaling is done for all the tuning
parameters associated with the ‘longitudinal’ part of the regression function with
respect to the ‘baseline’ tuning parameter.

Set p̃ = (D+1)p, let m denote the number of rows in L and set c = dim[Null(L)].
Further, assume that n• ≤ m ≤ p̃ ≤ m+n• and the rank of the (n•+m)× p̃ matrix
[W̃> (Ls)>]> is p̃. The following describes the GSVD of the pair (W̃,Ls): there
exist orthogonal matrices U and V , a nonsingular G and diagonal matrices S and M
such that

W̃ = USG−1 S = [0 S] S = blockdiag{S1, Ip̃−m}

Ls = VMG−1 M = [M 0] M = blockdiag{Ip̃−n• , M1}

Submatrices S1 and M1 have ` = n• +m− p̃ diagonal entries ordered as

0 < σ1 ≤ σ2 ≤ · · · ≤ σ` < 1
0 > µ1 ≥ µ2 ≥ · · · ≥ µ` > 1

where, σ2
k + µ2

k = 1, k = 1, . . . , `

Here, the columns {gk} of G are the GS vectors determined by the GSVD of the pair
(W̃,Ls). Denote the columns of U and V by uk and vk, respectively. Now, it can be
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shown that [W>V−1W+L>L]−1W>V−1 = [W>V−1W+λ20(L
s)>Ls]−1W>V−1 =

G(S>S + λ20M>M)−1G> W̃>V−1/2 and consequently, γ̂ can be expressed as

γ̂ = G(S>S + λ20M>M)−1S>U>ỹ =

p̃−c∑
k=p̃−n•+1

σ2
k

σ2
k + λ20µ

2
k

1

σk
u>k ỹgk +

p̃∑
k=p̃−c+1

u>k ỹgk

Further, the bias and variance can be expressed as

Bias[γ̂] = (I−W#W)γ = G(S>S + λ20M>M)−1(λ20M>M)G−1

=
∑p̃−n•

k=1 gkg̃
>
k γ +

∑p̃−c
k=p̃−n•+1

λ20µ
2
k

σ2
k+λ

2
0µ

2
k
gkg̃

>
k γ

V ar[γ̂] = W#V(W#)> = G(S>S + λ20M>M)−1S>S(S>S + λ20M>M)−1G>

=
∑p̃−c

k=p̃−n•+1

σ2
k

(σ2
k+λ

2
0µ

2
k)

2gkg
>
k +

∑p̃
k=p̃−c+1 gkg

>
k

where, W# = [W>V−1W + L>L]−1W>V−1 and g̃k denotes the kth column of
G−T = (G−1)> = (G>)−1. Further, we can express bias as [W>V−1W+L>L]−1L>Lγ
which means γ̂ will be unbiased only when γ ∈ Null(L).

For estimates obtained using this technique, the bias and variance can be ex-
pressed in terms of generalized singular vectors, provided the assumption of X>V−1W =
0 applies. In this case, one can show that β̂ is simply the generalized least squares
estimate from the linear model y = Xβ+ε∗, and γ̂ is the generalized ridge estimate
from y = Wγ+ε∗ with penalty L. That is, β is estimated as if Wγ were not present, and γ
is estimated as if Xβ were not present.
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