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Abstract

We propose an extension of the generalized estimating equation approach to multivariate regression
models (Liang & Zeger, 1986) which allows the estimation of dispersion and association parameters in
the covariance matrix partly using estimating equations as in Prentice & Zhao (1991), and partly by
the direct use of consistent estimators. The advantages of this hybrid approach over that of Prentice
& Zhao (1991) are a reduction in the number of fourth moment assumptions that must be made,
and the consequent reduction in numerical complexity. We show that the type of estimation used
for covariance parameters does not affect the asymptotic efficiency of the mean parameter estimates.
The advantages of the hybrid model are illustrated by a simulation study. This work was motivated
by problems in statistical genetics, and we illustrate our approach using a twin study examining
association between the osteocalcin receptor and various osteoporisis related traits.
Keywords: GEE, GEE2, association mapping,

1 Introduction

There is great interest in statistical genetics in the investigation of association between marker loci, that
is genes of known location and observable genotype, and traits of interest, particularly those related to
human disease (see eg Clayton (2001), Zhao (2000), Schulze & McMahon (2002)), but also in plant and
animal breeding (eg Jansen and Stam (1994), Zeng (1994), Knott & Haley (2000), Lange & Whittaker
2001). Analysis of univariate responses is usually based on the appropriate generalized linear model, but it
is common to observe correlated multivariate responses, which cannot be handled easily unless multivari-
ate normality is reasonable since for multivariate non-normal traits the likelihood function is in general
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difficult to specify. This suggests that the generalized estimating equation (GEE) approach developed by
Liang & Zeger (1986) for longitudinal data is an ideal tool for these analyses. However, direct application
of the Liang & Zeger approach is problematic, since it is often unrealistic to assume the same dispersion
parameters and link functions for all components of the response. We could use the extension of GEE to
multivariate data due to Prentice & Zhao (1991), but here other difficulties arise. Firstly, the approach
is computationally slow. Secondly, while in the original GEE-approach for longitudinal data analysis the
researcher had to specify only the first two moment assumptions and to choose consistent estimators for
the single dispersion parameter and the association parameters of the correlation matrix, the problem of
estimating several dispersion parameters and more complex association structures involved in multivariate
data analysis necessitates the introduction of an additional set of estimating equations for the covariance
parameters (Prentice & Zhao, 1991). These estimating equations require fourth moment assumptions.
Fourth moment assumptions may be feasible in some applications (Prentice & Zhao, 1991), particularly
for special cases e.g. correlated binary data (Lipsitz, Laird & Harrington, 1991), but in many situations
the researcher may find it difficult to make reasonable assumptions, especially when multivariate data is
given with different distributions in each dimension. Furthermore, the use of sophisticated assumptions
for second and higher moments is controversial: for example, McCullagh (1992) argued that many data
sets would be too small to allow proper estimation of the parameters in such sophisticated assumptions,
and that more extensive data sets would be liable to be plagued by outliers, to which estimates would be
very sensitive.

In this paper we propose a new approach which allows the estimation of an arbitrary subset of
the covariance-parameters directly by consistent estimators, thus removing the need to estimate all
covariance-parameters through the estimating equation. This substantially reduces the numerical com-
plexity of the estimation procedure and, more importantly, allows the researcher to choose when to make
fourth moment assumptions. As we will show, the standard theory for the asymptotic distribution of
GEE-estimators remains valid for this new, ‘hybrid’ approach. It follows that the asymptotic efficiency
of the mean-parameter estimates is not influenced by the type of estimation used for the covariance
parameters and so estimating the mean parameters by the hybrid approach is asymptotically as efficient
as estimating them by a pure GEE-approach. However, the asymptotic distribution of the covariance-
parameter estimates obtained by the consistent estimators is not provided by the GEE-theory. Thus,
covariance parameters may not be estimated as efficiently as is possible using GEE with correctly specified
fourth moment assumptions.

Taking this to its logical conclusion, it is of course possible to dispense with the fourth moment
assumptions entirely. As we will show, such an approach is much less numerically complex than the
Prentice & Zhao (1991) approach, and will generally be appropriate where the primary interest is in the
mean rather than the covariance parameters. However, when complex covariance structures are assumed
and consistent moment-based estimators are hard to derive, the advantages of our approach become
redundant and the approaches by Shults & Chaganty (1998) and by Chaganty & Shults (1998) might be
considered.

We begin by establishing notation and motivating further our new approach. The estimating equation
for our extended model is given, and after a discussion of the relationship with existing work we derive
the large sample properties of the resulting estimates. The numerical complexity of our approach is
then considered. Application of the proposed methodology is illustrated with a simulation study and by
analysis of a study into association between the osteocalcin receptor and the bone disease osteoporisis.
We note that, while motivated by problems in statistical genetics, the hybrid GEE-method has potential
applications in many areas of statistics.

2



2 Notation

To establish notation, assume that we observe m outcome variables on n subjects and that the outcome
variables from different subjects are independent. The jth outcome variable on the ith subject is denoted
by Yij . Let the vector of random variables Yi = (Yi1, . . . , Yim)T be the outcome vector and Xi the m× p
matrix of covariate values for the ith subject. For the jth outcome variable the first moment assumption
is written as

µij = E (Yij |Xi ) = hj (Pj Xi β) (2.1)

where Pj ∈ R1×m is the projection matrix on the jth dimension, hj is the link function for the jth
outcome variable and β a vector of regression coefficients. For simplicity of exposition, we do not allow
the number of observations per subject to vary between subjects, though our results could be extend to
this more general situation. The specification of β in multivariate model is illustrated in data simulation
section and in the data analysis. Further illustrations can be found in Lange & Whittaker (2001) and
Lange et al (2002).

We consider as a motivating example for our second moment assumptions a study examining the
relationship between genotype at the osteocalcin microsatellite marker D1S3737 and a number of traits
related to the metabolic bone disease osteoporosis in 1366 female dizygotic twins (Andrew et al, 2001),
analysed in more detail in section 8. Note that we expect correlation between the osteoporosis traits,
both within individuals and, because of shared polygenic and environmental factors, between members of
the same twin pair, so that an ’individual’ here is a twin pair. Our key response variable is bone mineral
density (BMD) measured at four sites in the spine. It is difficult to specify even second moment assump-
tions for these traits, and third or fourth order assumptions would be highly speculative. Furthermore, it
is the mean parameters that are of primary interest. We therefore choose a simple correlation structure
for these traits, with the corresponding association parameters estimated using moment based estimators;
for instance in section 8 we assume an exchangeable correlation structure for both BMD measurements
on a single individual and between BMD at the same site in members of the same twin pair.

For other responses, reasonable fourth moment assumptions may be possible, and hence association
parameters could be estimated using GEE as in Prentice & Zhao (1991) if desired. In the twins data, for
instance, heel ultrasound measurements BUA (broadband ultrasound attenuation) and VOS (velocity of
ultrasound), summarised as binary variables where 1 indicates exceedence of the thresholds 76.0 dB/MHz
and 1660 m/s respectively, could be modelled as in Lipsitz, Laird & Harrington (1991). However, as
above, it will be difficult to make the moment assumptions required to estimate parameters describing the
covariance of BMD measurements with these ultrasound measurements, so we would choose to estimate
these parameters using moment based estimators.

This example suggests the following model. We split the outcome variables for each subject into(
Yi1, . . . , Yim(con)

)
, m(con) < m, with covariance matrix Vi(11), within which covariance parameters will

be estimated via moment based estimators, and
(
Yi(m(con)+1), . . . , Yim

)
with covariance matrix Vi(22)

within which covariance parameters will be estimated via GEE as in Prentice & Zhao (1991). Param-
eters describing the covariance structure between

(
Yi1, . . . , Yim(con)

)
and

(
Yi(m(con)+1), . . . , Yim

)
will be

estimated using moment based estimators. We indicate covariance parameters estimated by GEE and
moment based estimation by α(GEE) and α(con) respectively. This would suggest a second moment
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assumption of the form

V ar (Yi |Xi ) = Vi

(
α(GEE), α(con)

)

=

(
Vi(11)

(
α(con)

)
Vi(12)

(
α(GEE),α(con)

)

Vi(12)

(
α(GEE), α(con)

)T
Vi(22)

(
α(GEE), α(con)

)
)

In fact we generalize this structure in two ways. Firstly, we divide α(con) into two subsets (α(con)
1 , α

(con)
2 ),

so that we can allow the estimators of α
(con)
2 to depend on estimates of α

(con)
1 . Thus we model the

variance of
(
Yi1, . . . , Yim(con)

)
as

Vi(11)

(
α

(con)
1 , α

(con)
2

)
=

(
α

(con)
1

) 1
2

A
1
2
i R(α(con)

2 ) A
1
2
i

(
α

(con)
1

) 1
2 ∈ Rm(con)×m(con) (2.2)

where for j = 1, . . . ,m(con), Vj (.) is the variance function and φj the dispersion parameter for the
jth outcome variable, Ai = diag(V1(µi1), . . . , Vm(con)(µim(con))) is the diagonal matrix of the variance

functions, α
(con)
1 = diag(φ1, . . . , φm(con)) the diagonal matrix of dispersion parameters and R(α(con)

2 )

a m(con) × m(con) ”working” correlation matrix dependent on the parameter vector α
(con)
2 . Typically,

R(α(con)
2 ) might be assumed to have a simple structure, e.g. exchangeable or unstructured. Note that

the estimation of α
(con)
1 and α

(con)
2 is facilitated by allowing these parameters to be estimated in two

stages: first α
(con)
1 is estimated, then the Pearson residuals are calculated and used to estimate α

(con)
2 .

Secondly, we allow Vi(12),Vi(21) and Vi(22) to depend both on parameters estimated via GEE and via
moment based estimation. Putting all this together, α

(con)
1 contains the covariance parameters whose

consistent estimates depend on Y and the GEE estimates of mean parameters, while α
(con)
2 includes the

parameters whose consistent estimates depend additionally on the estimates of α
(con)
1 . Writing α(GEE)

for association parameters estimated via GEE, we can then formally define the second moment of the
hybrid approach by the ”working” variance matrix Vi

(
α(GEE), α

(con)
1 ,α

(con)
2

)

V ar (Yi |Xi ) = Vi

(
α(GEE), α

(con)
1 ,α

(con)
2

)
(2.3)

=


 Vi(11)

(
α

(con)
1 ,α

(con)
2

)
Vi(12)

(
α(GEE)α

(con)
1 , α

(con)
2

)

Vi(12)

(
α(GEE), α

(con)
1 ,α

(con)
2

)T

Vi(22)

(
α(GEE), α

(con)
1 ,α

(con)
2

)



3 Estimating equation

We now define the generalized estimating equation for the extended multivariate GEE-model specified
by moment assumptions (2.1) and (2.3). We write the elements of the ”working” variance matrix
Vi

(
α(GEE), α

(con)
1 , α

(con)
2

)
= (σist)s,t=1,...,m that are dependent on the association parameter α(GEE)

as a column vector, so that

σT
i

(
α(GEE)

)
= {. . . , σist, . . .} ∈ Rl

with d σist

d α(GEE) 6= 0 ∈ Rdim(α(GEE)) and l ≤ 1
2

{
m(m + 1)−m(con)(m(con) + 1)

}
.

Similarly, the elements of the ”working” variance matrix Vi

(
α(GEE), α

(con)
1 , α

(con)
2

)
that depend on
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α
(con)
1 or/and α

(con)
2 , but not on α(GEE) are written as the column vector

σT
i

(
α

(con)
1 ,α

(con)
2

)
= {. . . , σis′t′ , . . .} ∈ Rm(m+1)/2−l

with d σis′t′

d
n
α

(con)
1 ,α

(con)
2

oT 6= 0 ∈ R
h
dim

�
α

(con)
1

�
+ dim

�
α

(con)
2

�i
and d σis′t′

d α(GEE) = 0 ∈ Rdim(α(GEE)).

The corresponding vectors of empirical covariances are written as sT
i

(
α(GEE)

)
= {. . . , sist, . . .} ∈ Rl

and sT
i

(
α

(con)
1 ,α

(con)
2

)
= {. . . , sis′t′ , . . .} ∈ Rm(m+1)/2−lrespectively. We assume that the ”working”

variance matrix of the empirical covariances si

(
α(GEE)

)
and si

(
α

(con)
1 , α

(con)
2

)
has block-diagonal

structure with the off-diagonal matrix equal to 0, i.e.

V ar

[{
si

(
α(GEE)

)
, si

(
α

(con)
1 , α

(con)
2

)}T
]

= (3.4)

=

(
V ar

{
si

(
α(GEE)

)}
0

0 V ar
{
si

(
α

(con)
1 , α

(con)
2

)}
)

This partitioning of the ”working” variance matrix for the empirical covariances si

(
α(GEE)

)
and si

(
α

(con)
1 , α

(con)
2

)

into two independent blocks is natural, because we have assumed that the association parameters α
(con)
1

and α
(con)
2 represent parameters that are either of low interest or for which it was difficult to state

a second moment assumption. Any non-zero choice for the off-diagonal matrix would contradict these
assumptions. An important consequence of the partitioning of the ”working” variance matrix in equa-
tion (3.4) is a substantial reduction of the dimension of the estimating equation. While in the mul-
tivariate approach of Prentice & Zhao (1991) all residuals, yi − µi, si

(
α(GEE)

) − σi

(
α(GEE)

)
and

si

(
α

(con)
1 , α

(con)
2

)
−σi

(
α

(con)
1 ,α

(con)
2

)
, appear in the estimating equation, here the estimating equa-

tion will contain only the residuals that depend on β and α(GEE): yi−µi and si

(
α(GEE)

)−σi

(
α(GEE)

)
.

The implications of this for the numerical complexity of the estimation procedure will be discussed in the
section 6.

Including parameters describing the association structure of the ”working” variance matrix for the em-
pirical covariances si

(
α(GEE)

)
in α

(con)
1 and α

(con)
2 , writing Wi

(
α

(con)
1 , α

(con)
2

)
= V ar

{
si

(
α(GEE)

)}

and putting

Di =
(

dµi/dβ 0
0 dσi

(
α(GEE)

)
/dα(GEE)

)

Ṽi =


Vi

(
α(GEE), α

(con)
1 ,α

(con)
2

)
0

0 Wi

(
α

(con)
1 ,α

(con)
2

)



fi =
(

yi − µi

si

(
α(GEE)

) − σi

(
α(GEE)

)
)

we now define the generalized estimating equation to be
n∑

i=1

Ui

(
β,α(GEE),α

(con)
1 , α

(con)
2

)
= 0 (3.5)
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where Ui

(
β, α(GEE), α

(con)
1 ,α

(con)
2

)
= DT

i Ṽ−1
i fi. We assume that α̂

(con)
1 (Y, β) a n

1
2 -consistent

estimator of α
(con)
1 when β and α(GEE) are known and that α̂

(con)
2

(
Y, β,α(GEE),α

(con)
1

)
is a n

1
2 -

consistent estimator of α
(con)
2 when β, α(GEE) and α

(con)
1 are known. Then the GEE-estimator(

β̂G, α̂
(GEE)
G

)T

is defined as the solution of

Ui

[
β, α(GEE), α̂

(con)
1

(
β,α(GEE)

)
, α̂

(con)
2

{
β,α(GEE), α̂

(con)
1 (β)

}]
= 0. (3.6)

4 Relationship to previous work

Since the parameters in the ”working” variance matrix Vi are estimated partly by additional dimensions
in the estimating equation (3.6) and partly by two stages of moment based estimation, this estimating
equation can be viewed as a hybrid between the original GEE for longitudinal data analysis by Liang &
Zeger (1986) and its multivariate extension by Prentice & Zhao (1991). However, it is also an extension
and generalization of both approaches.

In Prentice & Zhao (1991) the vector of association parameters of the ”working” variance matrix
is estimated by consistent estimators in a single step. In the hybrid approach we estimate α

(con)
1 and

α
(con)
2 in two stages by consistent moment-based estimators. In the first stage we estimate the parameter

vector α
(con)
1 , where for example we may have α

(con)
1 =

(
φ1, . . . , φm(con)

)
. In the second step we use the

estimates of α
(con)
1 to obtain consistent estimates for α

(con)
2 .

This is in correspondence with the original GEE approach by Liang & Zeger (1986). However, since
Liang & Zeger (1986) focused on longitudinal data analysis, they considered variance structures with only
one single scalar dispersion parameter, ie α

(con)
1 = φ and V ar(Y ) = φV (µ). Hence the scalar dispersion

parameter vanishes in the estimating equation. Therefore, in Liang & Zeger (1986), the estimating
equation and consequently the GEE-estimator do not depend directly on the consistent estimation of the
scalar dispersion parameter α

(con)
1 = φ.

In contrast, the current approach allows the entire matrix Vi to depend on a vector of association
parameters α

(con)
1 . As a consequence, provided α

(con)
1 is of dimension 2 or more, it does not vanish in the

estimating equation (3.6) and thus the estimating equation (3.6) and the corresponding GEE-estimator
depend directly on the consistent estimate of α

(con)
1 . The proof of the asymptotic properties of the

GEE-estimator by Liang & Zeger (1986), and consequently its multivariate extension by Prentice & Zhao
(1991), do not cover this dependence of the estimating equations on two groups of consistent estimates,
with the estimates of the second group dependent on the estimates of the first. It is therefore necessary to
derive the asymptotic properties of the GEE-estimator defined as the solution of the estimating equation
(3.6). This will be done in Theorem (5.1).

Note that this two step estimation greatly facilitates the application of the estimating equation ap-
proach to multivariate nonnormal data. For example, take α

(con)
1 to be the dispersion parameters(

φ1, . . . , φm(con)

)
and suppose α

(con)
2 contains all the relevent correlation parameters. There are many

situations where we might find it difficult to derive directly consistent moment based estimators for all
relevant association parameters, but it is easy to estimate the dispersion parameters,

(
φ1, . . . , φm(con)

)
,

which allows us to compute the Pearson residuals and then estimate α
(con)
2 by consistent estimators. For

relatively simple association structures, eg exchangeable, unstructured, block structures, etc., potential
estimators for α

(con)
2 are discussed in Liang & Zeger (1986). When time series are analyzed and autore-

gressive correlation structures are assumed consistent estimators for α
(con)
2 can be found in Brockwell
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& Davis (1991). For more sophisticated correlation structures Zeger (1988) illustrated how methods of
moments can used to derive consistent estimators for α

(con)
2 .

Of course, we could avoid the additional dependence on α̂
(con)
1 noted above by including the asso-

ciation parameters α
(con)
1 with α(GEE) and estimating both α

(con)
1 with α(GEE) via the estimating

equation. However, there are good reasons for not doing this. Firstly, if we include α
(con)
1 in the es-

timating equation, we have to specify all fourth moment assumptions, and all empirical variances and
covariances will have to be included in the estimating equation. A reduction of the dimension of the esti-
mating equation and consequently of its numerical complexity will therefore not be possible. Secondly, we
may prefer moment based estimates for α

(con)
1 to the estimating equation estimates. For example, when

we have i.i.d. normally distributed data and we estimate α
(con)
1 = φ via the estimating equation, the

GEE-estimate for φ is given by 1
nm

∑
(yij − µij)

2; we might prefer to estimate φ by 1
nm−p

∑
(yij − µij)

2.
When the primary interest of the data analysis is the estimation of the mean parameters, Prentice

& Zhao (1991) proposed to simplify their approach by assuming a diagonal structure for Wi. This
simplification can be seen as special case of the hybrid model with dim

{
(si

(
α(GEE)

)}
= o(m). and

therefore the above results on the asymptotic efficiency and numerical complexity of the hybrid model
apply also to the simplified approach by Prentice & Zhao (1991).

5 Large sample properties

Here we derive the large sample property of the hybrid GEE-estimates defined by equation (3.6).

Theorem 5.1. Under mild regularity conditions and given that:

• α̂
(con)
2 is n

1
2 -consistent given β, α(GEE) and α

(con)
1

• α̂
(con)
1 is n

1
2 -consistent given β and α(GEE)

•
∥∥∥∂α̂

(con)
2

(
β,α

(con)
1

)
/ ∂α

(con)
1

∥∥∥ ≤ H(Y, β) which is Om(con)(1),

then n
1
2

(
β̂G − β

)
and n

1
2

(
α̂

(GEE)
G −α(GEE)

)
are asymptotically multivariate Gaussian with mean

zero and covariance matrix Vβ̂G and Vα̂G given by

Vβ̂G = lim
n→∞

n




(
n∑

i=1

DT
i(11)V

−1
i Di(11)

)−1

(5.7)

×
{

n∑

i=1

DT
i(11)V

−1
i Cov (Yi)V−1

i Di(11)

} (
n∑

i=1

DT
i(11)V

−1
i Di(11)

)−1



Vα̂G = lim
n→∞

n




(
n∑

i=1

DT
i(22)W

−1
i Di(22)

)−1

(5.8)

×
{

n∑

i=1

DT
i(22)W

−1
i Cov (si)W−1

i Di(22)

}(
n∑

i=1

DT
i(22)W

−1
i Di(22)

)−1
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with Di(11) = dµi/dβ and Di(22) = dσi/dα(GEE)

The proof is based on Liang & Zeger (1986) and Prentice & Zhao (1991) and is sketched in Appendix I.
As in Liang & Zeger (1986) and Prentice & Zhao (1991), the consistency and the asymptotic normality

of β̂G and Vβ̂G depend only on the correct specification of the mean and not on the correct specification
of the association structure in equation (2.3). Therefore the estimator β̂G remains robust against miss-

specification of the variance structure and its standard errors Vβ̂G can be estimated consistently by (5.8)
regardless of the correct specification of the variance assumption, Vi = V ar (Yi|Xi). Corresponding
results hold for α̂

(GEE)
G .

Consequently the asymptotic distribution of the GEE-estimator β̂G depends neither on the precision
of the GEE-estimate for the covariance parameter vector α(GEE) nor on the precision of the consistent
moment-based estimators for the covariance parameters α

(con)
1 and α

(con)
2 . The asymptotic efficiency

of the GEE-estimator β̂G is not affected by whether GEE-estimation or moment estimation is used
to estimate the parameters in the variance matrix Vi. Thus when our main interest is in the mean
parameter β, so that the variance matrix is primarily specified to increase the efficiency of estimation of
β, consistent moment based estimators should be used in preference to GEE estimation where possible
as this minimizes the number of fourth moment assumptions required. Use of moment based estimators
has the additional advantage of decreasing the computational complexity considerably, as we show below.

As in Liang & Zeger (1986) and Prentice & Zhao (1991) we compute β̂G and α̂
(GEE)
G by iterating

between a modified Fisher scoring for β and α(GEE) and moment estimation of α
(con)
1 and α

(con)
2 .

Given the current estimate for α̂
(con)
1 and α̂

(con)
2 in the kth. iteration step we obtain the next estimates

for β and α(GEE) by the following iteration step:

β̂k+1 = β̂k +

{
n∑

i=1

DT
i(11)

(
β̂k

)
V−1

i

(
β̂k, α̂(GEE)

i

)
Di(11)

(
β̂k

)}−1

(5.9)

×
[

n∑

i=1

DT
i(11)

(
β̂k

)
V−1

i

(
β̂k, α̂(GEE)

i

){
Yi − µi(β̂k)

}]

α̂(GEE)
k+1 = α̂(GEE)

k +

{
n∑

i=1

DT
i(22)

(
θ̂k

)
W−1

i

(
θ̂k

)
Di(22)

(
θ̂k

)}−1

(5.10)

×
[

n∑

i=1

DT
i(22)

(
θ̂k

)
W−1

i

(
θ̂k

){
si

(
θ̂k

)
− σi(θ̂k)

}]

where Vi

(
β, α(GEE)

)
= Vi

[
θ, α̂

(con)
1 (θ) , α̂

(con)
2

{
θ, α̂

(con)
1 (θ)

}
, α̂

(con)
1 (θ)

]
,

Wi (θ) = Wi

[
θ, α̂

(con)
1 (θ), α̂(con)

2

{
θ, α̂

(con)
1 (θi)

}]
and θT =

{
βT ,

(
α(GEE)

)T
}

Here we have, in comparison with the standard GEE-approach, an additional direct dependence of
β̂k+1 on the parameter estimates α̂

(con)
1 and an additional indirect dependence of α̂(GEE)

k+1 on α̂
(con)
1 .

We can take the above approach to its limit by estimating all covariance parameters using moment
based estimators. Then we need only to make qualitative second moment assumptions, e.g. to assume
an unstructured, exchangeable or band-correlation covariance matrix. This gives the following ”ad-hoc”
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model for nonnormal, multivariate data sets. Given the observation vector yi = (yi1, . . . , yim) the mean
assumption is

µij = E (Yij |Xi ) = hi (Pi Xi β) (5.11)

and the second moment assumption

V ar (Yi |Xi ) = Vi

(
α

(con)
1 , α

(con)
2

)
(5.12)

= Φ
1
2 A

1
2
i R(α(con)

2 ) A
1
2
i Φ

1
2 ∈ Rm(con)×m(con)

where α
(con)
1 = Φ =

(
φ1, . . . , φm(con)

)
, R(α) is a ”simple” correlation matrix, for which α can be

estimated directly by consistent estimators using the scaled residuals. The assumption of a ”simple” cor-
relation matrix should not be too restrictive, since for many types of correlation matrixes these consistent
estimators are known. Further note that the model proposed in the equations (5.11) and (5.12) is not
covered by the longitudinal GEE-model proposed by Liang & Zeger (1986), because of the additional
dependence of the estimating equation on the consistent estimator of α

(con)
1 = Φ.

6 Numerical Complexity

We have presented a hybrid GEE-approach for multivariate data which allows us to estimate an arbitrary
part of the covariance-parameters using an additional estimating equation for the empirical covariances,
while estimating the remaining covariance parameters using consistent estimators. Theorem (5.1) shows
that the asymptotic distribution of the GEE-estimates for the mean-parameters is unaffected by the
method used to estimate the covariance parameters. However, the more covariance parameters are
estimated using consistent estimators the fewer fourth moment estimators are required, and the lower
the numerical complexity of the estimation procedure is, as the following theorem shows.

Theorem 6.1 (Relative Numerical Complexity). With

dim
{
si

(
α(GEE)

)}
= o (mc) where c = 0, 1, 2

and denoting the numerical complexity of iteration step (5.9) and (5.10) for the standard GEE-approach
for multivariate data (where all association parameters are estimated by the estimating equation) by CGEE

and for the hybrid-approach by Chybrid, then the relative numerical complexity comparing the standard
multivariate GEE-approach with the hybrid-approach is given by

CGEE/Chybrid = O
{

mmin(6−3c,3)
}

(6.13)

If additionally dim
{
si

(
α(GEE)

)}
= κm2 + O (m) with κ ∈ (0, 0.5) and dim

(
α(GEE)

)
= O (m) then

lim
m→∞

(CGEE/Chybrid) = (2κ)−3 (6.14)

The proof is given in appendix II. To demonstrate the practical implications of theorem (6.1) we consider
two hypothetical examples. First assume that we observe for each individual M time series of count data
with a constant length of 4 observations. The association structure within each time series is assumed to

9



be the same (e.g. AR(2)), but the parameter vector of the association structure may have different values
for each series. The association structure between the time series is modeled by band-correlation matrixes.
While the association structure within time series is one of the points of interest, the association structure
between the time series is of no intrinsic interest and is only considered to improve the efficiency of the
GEE-estimates for the mean-parameters. We will therefore use consistent estimators for the relevant
covariance parameters in the hybrid approach. Then with m = 4M and dim {si (α(GEE))} = O (m)
the relative numerical complexity CGEE/Chybrid increases with O

(
m3

)
. When we analyse data sets with

many observations per individual or when we have to consider a large number of models this substantially
lower numerical complexity of the hybrid approach can be an important advantage.

Consider now the reversed situation. We observe for each individual 4 time series with length M .
Again the association structure within all time series is considered to be the same (e.g. AR(2)), but the
parameter vector of the association structure may have different values for each time series and is to be
estimated by the estimating equation, while the between-association structure has nuisance character.
With m = 4M it easy to see that dim (α(GEE)) = O (m) and dim {si (α(GEE))} = m2/8 + O (m).
Therefore the relative numerical complexity CGEE/Chybrid is approximately (2/8)−3 = 64 for sufficiently
large m. Here the difference between the two approaches is not as dramatic as for the previous example,
but is still substantial.

In practice we have found moment based estimation of covariance parameters to have much better
numerical properties than estimation by including these parameters in the GEE. Great care needs to be
taken with the Prentice & Zhao (1991) approach, and in our experience this leads to actual differences in
computing time exceeding that predicted by our theoretical results. These theoretical results are therefore
best taken as representing lower bounds for the differences between the approaches.

Finally, note that the model in which all covariance parameters are estimated using moment based
estimators which we discussed above has numerical complexity equivalent to the original GEE-approach
for longitudinal data by Liang & Zeger (1986) and O(n−3)-times the complexity of the GEE-model for
multivariate data proposed by Prentice & Zhao (1991).

7 Simulation experiment

Quasi-likelihood regression models for count data with dependent observations have previously been
discussed by Zeger (1988). Here we consider a similar situation related to the twin study for osteoporisis
introduced above and discussed further in the next section. We assume that we observe for each twin two
count variables where the counts for the first twin of the ith family are denoted by Yi1 and Yi2 and for the
second twin of the ith family by Yi3 and Yi4. Further, both twins are exposed to correlated environmental
effects, εi = (εi1, εi2) with

E(εij) = 1, V ar(εi1) = σ2, V ar(εi2) = σ2 and Cov(εi1, ε21) = σ2 r (7.15)

with |r| < 1. Conditional on the environmental effect vector εi, we assume that the environmental effect
is same for both phenotypes of one twin and so the mean and variance of Yi = Yi1, . . . , Yi4 are given by

E(Yij |εi ) = exp
(
xT

ij βj

) (
εi1 1{j≤2} + εi2 1{j>2}

)
= uij , and V ar(Yij |εi ) = uij (7.16)

The marginal moments are then

µij = E (Yij) = exp
(
xT

ij βj

)
, V ar (Yij) = µij + σ2µ2

ij (7.17)
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j 6= j′ : Cov (Yij , Yij′) = µijµij′σ
2
(
1{(j−2.5)(j′−2.5)>0} + r1{(j−2.5)(j′−2.5)<0}

)
(7.18)

where xij is the vector of predictor variables for the jth trait in the ith offspring. Note that the indicator
variable 1{(j−2.5)(j′−2.5)>0} is 1 when j and j′ correspond to the same twin, ie j, j′ = 1, 2 or j, j′ = 3, 4.
r1{(j−2.5)(j′−2.5)<0} describes therefore the correlation between twins. Since σ2 does not vanish in the
estimating equations (variance structure (7.17)), the original GEE-approach by Liang & Zeger (1986) can
only be applied when the ”working” covariance matrix is assumed to be

j 6= j′ : Cov (Yij , Yij′) = µijµij′σ
21{(j−2.5)(j′−2.5)>0}, (7.19)

that is when the association between the pairs of counts is ignored. In contrast, both the multivariate
approach by Prentice & Zhao and the hybrid approach proposed here can cope with the ”working” covari-
ance matrix (7.18). Note that in the notation of the hybrid approach introduced above, σ2 corresponds
to α

(con)
1 and r to α

(con)
2 . As in Zeger (1988), σ2 and r can be estimated in each updating step by

σ̂2 =
1
4

4∑

j=1

∑
i

(yij − µ̂ij)
2 − µ̂ij

∑
i

µ̂2
ij

r̂ =
1
4

∑

(j,j′)∈
n

(1,3),(1,4),
(2,3),(1,4)

o

∑
i

(yij − µ̂ij)(yij′ − µ̂ij′)
∑
i

µ̂ij µ̂ij′

We now compare the efficiency of the above discussed GEE-approaches by simulation. Although the
approach by Prentice & Zhao requires fourth moment assumptions for the above discussed model for
count data and is about O(24) = O(16)-times more numerically complex than the hybrid approach, it
has the same asymptotic efficiency as the hybrid approach. We therefore consider only the efficiency of
the original Liang & Zeger GEE-approach and the hybrid approach. The vector of counts of model (7.16)
are simulated by generating the underlying and unobservable bivariate random variable (εi1, εi2) using a
multivariate normal distribution with (7.15) and then using

E (Yij |εij ) = εij exp
(
x′ijβj

)
= uij var (Yt |εt ) = ut (7.20)

to generate the target count process via a Poisson distribution with λ = uij . The predictor vector
xij = (1, xij1, xij2) contains an intercept and two uncorrelated predictor variables, xij1 and xij2, generated
by normal distributions with mean 0 and standard error 1. The mean parameters are given by β1 =
(6, 0.05, 0.05), β2 = (6, 0.05,−0.05), β3 = (6,−0.05, 0.05) and β4 = (6,−0.05,−0.05). The simulation
experiment was conducted for correlation r = 0.0, 0.3, 0.6, 0.9 and sample sizes 50, 75, 100, 200, 500, 1000.
For each setup 2000 replicates were simulated. Table (1) shows the relative efficiencies of the hybrid
approach and the Liang & Zeger GEE-approach.

As we would expect, Table (1) shows that for moderate correlation (0.0-0.3) only a minor increase in
efficiency can be observed when the hybrid approach is used instead of the original approach by Liang
& Zeger (1986). However, for correlation greater than 0.3 the relative efficiency of the hybrid approach
increases noticeably. It is also important to note that the increase in efficiency is higher for smaller sample
sizes than for large samples.
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8 Data analysis: Osteoporosis study

We consider the data on spine BMD relating to the same analytical problem described in Andrew et al et
al (2001). We denote the responses for the ith twin pair by Yi1, Yi2, . . . Yi8 where Yi1, . . . , Yi4 are BMD at
the sites one to four in the first twin and Yi5, . . . , Yi8 are the corresponding measurements in the second
twin. Ordering of the twins is of course arbitrary. Our objective is to investigate association between
this vector of traits and genotype at the D1S3737 marker, here reduced for the sake of simplicity to the
single explanatory variable xij , which counts the number of transmitted ”9”-alleles, ie xij = 0, 1, 2. We
analyse only the post-menopausal group, since it is here that any genotypic effects would be expected to
become apparent.

Standard practice would be to perform univariate analyses of the BMD response, as in Andrew et al
(2001) or to treat these data as multivariate normal, probably after marginal transformation. However,
even after transformationwe wish to avoid the normality assumption, so a robust multivariate approach
via GEE is preferred here. The BMD are densities, hence we selected an inverse link-function for the
mean. Then the first moment assumption for the first twin is given by

E

(
1

Yij

)
= β0j + βj xi1, j = 1, . . . , 4

and for the second twin by

E

(
1

Yi(j+4)

)
= β0j + βj xi2, j = 1, . . . , 4

with Yij as defined above. Since it is not sensible to make sophisticated assumptions about the correlation
structure between the four phenotypes, and any fourth moment assumptions would be highly dubious,
we analyzed the data set by using the ”ad-hoc” model, equation (5.11) and (5.12).

For the covariance structure we assume 4 different dispersion parameters for each BMD, ie φj =
φj+4, j = 1, .., 4, and an exchangeable correlation matrix within each twin, where the ”within-subject”
correlation parameter is denoted by αw. Further, the correlation between members of the same twin pair
is also assumed to be exchangeable, with correlation parameter αb. So our ”working” variance-covariance
assumption is given by

V ar(Yij) = φj µ2
ij

Cov(Yij , Yij′) = µijµij′
(
αw1(j−4.5)(j′−4.5)>0 + αb1(j−4.5)(j′−4.5)<0

)

The variance parameters are estimated in a two step procedure. First, for each BMD a dispersion is
fitted by using the residuals, then the dispersion parameters are used to compute the Pearson residuals
and based on them the correlation parameters αw and αb. That is, each updating step φj , j = 1, .., 4, αw

and αb are estimated by

φ̂j =
1
2n

∑

i

{
r2
ij + r2

i(j+4)

}
,

α̂w =
1

12n

∑

i

4∑

j=1

4∑

j′=j+1

{
rijrij′ + ri(j+4)ri(j′+4)

}

α̂b =
1

16n

∑

i

4∑

j=1

8∑

j′=5

rijrij′ ,
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where rij = (yij− µ̂ij)/
√

V (µ̂ij) is the Pearson residual. The results of this analysis are shown in Table 2.
It is important to note that the ”within-subject” correlation αw is estimated to be 0.87. The simulation
study in the previous section showed that the efficiency gain of the hybrid approach over the original
GEE-approach is of practical relevance for such correlations.

A alternative GEE approach for family data is discussed in Lange et al (2002).

9 DISCUSSION

We have extended the work of Liang & Zeger (1986) and Prentice & Zhao (1991) as follows. Instead of a
single link-function h and a single dispersion parameter φ as in Liang & Zeger (1986)), we have allowed
each outcome variable to have a different link functions hj (mean equation (2.1)) and over-dispersion
parameter, e.g. α

(con)
1 = (φ1, . . . , φm(con)) (variance equation (2.3)). In contrast to Prentice & Zhao

(1991), where the parameters of the ”working” variance matrix were estimated by additional dimensions
in the generalized estimating equation, we allow some of the association parameters to be estimated
using moment based estimators via a two stage process where the second moment based estimator,
α̂

(con)
2 , may depend on the estimates of the first, α̂

(con)
1 . These modifications make it possible to model

multivariate non-Gaussian data easily. The standard GEE asymptotic results are shown to hold for this
new approach. The key advantage of the hybrid approach is that we can choose the parameters for which
we are willing to make the fourth moment assumptions required for full GEE estimation. Covariance
parameters for which we are unable or unwilling to make these assumptions can be estimated using
consistent moment based estimators without any loss in the asymptotic efficiency with which the mean
parameters are estimated. This leads to a considerable reduction in computational complexity and to
increased numerical stability: our experience suggests that optimal computational stability is obtained by
estimating as many covariance parameters as possible via moment based estimators rather than including
these parameters in the generalized estimating equation.

The ability of the hybrid approach to model more sophisticated working variance structures than is
allowed by the original Liang & Zeger approach, without the need to make additional fourth moment
assumptions, is illustrated by the simulation study. This can lead to a noticeable increase of efficiency,
especially when the sample size is small. The hybrid approach may thus allow the problems of low
efficiency of GEE estimation often reported for small sample sizes to be avoided.

Software: The Splus function implementing the ’ad-hoc’ method and the data set are available on
the web-page of the Statistical Modelling.
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11 Appendix: Proof of Theorem (5.1)

As above suppose that µi = µi (β) and σi

(
α(GEE)

)
= σi

(
α(GEE), β

)
. Let θT =

{
βT ,

(
α(GEE)

)T
}

and let θ̂
T

=
{

β̂
T
,
(
α̂(GEE)

)T
}

solve the estimating equation of the form (3.6) with weight matrix

Ṽi = Ṽi

[
θ, α̂

(con)
1 (θ) , α̂

(con)
2

{
θ, α̂

(con)
1 (θ)

}]
. Write α∗ (θ) = α̂

(con)
2

{
θ, α̂

(con)
1 (θ)

}
and under

some regularity conditions n
1
2

(
θ̂ − θ

)
can be approximated

by

[
n∑

i=1

− δ

δθ
Ui

{
θ, α̂

(con)
1 (θ) , α∗ (θ)

}
/n

]−1 [
n∑

i=1

Ui

{
θ, α̂

(con)
1 (θ) ,α∗ (θ)

}
/n

1
2

]

where
δ

δθ
Ui

{
θ, α̂

(con)
1 (θ) , α∗ (θ)

}
=

∂

∂θ
Ui

{
θ, α̂

(con)
1 (θ) ,α∗ (θ)

}

+
∂

∂α∗ Ui

{
θ, α̂

(con)
1 (θ) ,α∗ (θ)

} {
∂

∂θ
α∗(θ)

}

+
∂

∂α
(con)
1

Ui

{
θ, α̂

(con)
1 (θ) , α∗ (θ)

} {
∂

∂θ
α̂

(con)
1 (θ)

}

= Ai + BiC + Di E
Let θ be fixed; Taylor expansion gives

n∑
i=1

Ui

{
θ, α̂

(con)
1 (θ) , α∗ (θ)

}

n
1
2

=

n∑
i=1

Ui

(
θ, α

(con)
1 ,α

(con)
2

)

n
1
2

+

n∑
i=1

∂

∂α
(con)
2

Ui

(
θ, α

(con)
1 , α

(con)
2

)

n
n

1
2

{
α∗ (θ)−α

(con)
2

}

+

n∑
i=1

∂

∂α
(con)
1

Ui

(
θ, α

(con)
1 , α

(con)
2

)

n
n

1
2

{
α̂

(con)
1 (θ)−α

(con)
1

}
+ o(1)

= A∗ + B∗ C∗ + D∗E∗ + o(1)

Now, B∗ = o(1) and D∗i = o(1), since ∂Ui

(
θ, α

(con)
1 ,α

(con)
2

)
/∂α

(con)
2 and

∂Ui

(
θ, α

(con)
1 ,α

(con)
2

)
/∂α

(con)
1 are linear function of fi’s whose means are zero, and the conditions of

the theorem give

C∗ = n
1
2

[
α̂

(con)
2

{
θ, α̂

(con)
1 (θ)

}
− α̂

(con)
2

(
θ, α

(con)
1

)
+ α̂

(con)
2

(
θ,α

(con)
1

)
−α

(con)
2

]

= n
1
2


 ∂α̂

(con)
2

∂
(
α

(con)
1

)
(
θ, α

(con)
1

){
α̂

(con)
1 (θ)−α

(con)
1

}
+ α̂

(con)
2

(
θ, α

(con)
1

)
−α

(con)
2

]
+ o(1)

= O(1)
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Consequently with E∗i = O(1), the expression
n∑

i=1

Ui

{
θ, α̂

(con)
1 (θ) , α∗ (θ)

}
/n

1
2 is asymptotically equiv-

alent to A∗, whose asymptotic distribution is multivariate Gaussian with zero mean and covariance
matrix

lim
n→∞

(
n∑

i=1

DT
i Ṽ−1

i cov(Yi) Ṽ−1
i Di/n

)
(11.14)

Finally, it is easy to see that
n∑

i=1

Bi = o(1),
n∑

i=1

Di = o(1), C = O(1), E = O(1) and that
n∑

i=1

Ai/n

converges as n →∞ to −
n∑

i=1

DT
i Ṽ−1

i Di/n. This completes the proof.

12 Proof of Theorem (6.1)

Equation (6.13): Note that, since multiplications are much more computationally demanding operations
than additions, we will consider here only multiplications ( Deuflhard & Hohmann (1993)). Including
additions would not cause any major changes to the proof given below, but would complicate the notation.
We denote the numerical complexity of a matrix operation by C (.). α(GEE), α

(con)
1 and α

(con)
2 are the

parameters describing the covariance matrix Vi and it holds that

dim
(
α(GEE)

)
= O (ma) for a = 0, 1, 2

dim

[{(
α(GEE)

)T
,
(
α

(con)
1

)T

,
(
α

(con)
2

)T
}T

]
= o

(
mb

)
for b = 0, 1, 2

While inequality a ≤ b follows directly from the definition of a and b, the inequality a ≤ c is implicated
by the assumption that the inverse of DT

i(22)W
−1
i Di(22) does exist (iteration step (5.10)) and therefore

the rank of Di(22) has to be dim
(
α(GEE)

)
. The three most numerically complex operations in iteration

step (5.10) are the computation of the inverse of Wi and the two matrix multiplication’s, DT
i(22) × W−1

i

and
(
DT

i(22)W
−1
i

)
× Di(22). Suppose now that we conduct iteration step (5.10) for the hybrid approach.

Since Wi is a dim
{
s
(
α(GEE)

)} × dim
{
s
(
α(GEE)

)}
matrix, the number of multiplication’s involved

in the calculation of its inverse increases with O
([

dim
{
s
(
α(GEE)

)}]3)
(Press et al., 1991). Note the

cubic order of numerical complexity does not depend on the numerical procedure that is used to compute
the inverse of a matrix. Even, when instead of the Gauss procedure the Cholesky decomposition, which
exploits the symmetry of the matrix, is used for the computation of the inverse, the complexity order
of computing the inverse still remains 3rd. order (Hämmerlin & Hoffmann (1992)). So the numerical
complexity of the inverse operation for Wi in the iteration step (5.10) can be written as C (

W−1
i

)
=

O
(
m3c

)
. It is easy to see that for the two matrix products the numerical complexity in iteration step

(5.10) is C
(
DT

i(22) × W−1
i

)
= O

(
ma+2c

)
and C

{(
DT

i(22)W
−1
i

)
×Di(22)

}
= O

(
m2a+c

)
, so that the

total numerical complexity of iteration step (5.10) is given by

C (”iteration step (5.10)”) = O
{
n max

(
m3c,ma+2c,m2a+c

)}
= O

(
n m3c

)
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Since, assuming that dim(β) does not depend on n, the numerical complexity of iteration step (5.9)
increases with O(n m3) and the rate of growth for the number of the multiplications necessary to calculate
all possible second moments yijyij′ for the consistent moment-based estimators is only O(n m2), the total
numerical complexity of the hybrid-approach can be expressed by

Chybrid = O
{

n mmax(3c,3)
}

The calculation of the total complexity of the standard GEE-approach for multivariate data is done
analogously. Since all parameters of the variance matrix Vi are now estimated by the estimating equa-
tions, the ”working” variance matrix Wi of all empirical covariances is a (m(m + 1)/2)× (m(m + 1)/2)
matrix. So the numerical complexities for inverting matrix Wi and two previously considered matrix-
multiplication’s in iteration step (5.10) are C (

W−1
i

)
= O

(
m6

)
, C

(
DT

i(22) × W−1
i

)
= O

(
mb+4

)
and

C
{(

DT
i(22)W

−1
i

)
×Di(22)

}
= O

(
m2b+2

)
, giving a total numerical complexity for iteration step (5.10)

of

C (”iteration step (5.10)”) = O
{
n max

(
m6,mb+4,m2a+2

)}
= O

(
n m6

)

and the total numerical complexity of the multivariate GEE-approach can be expressed by

CGEE = O
{
n m6

}

Therefore the relative numerical complexity is

CGEE/Chybrid = O
{

mmin(6−3c,3)
}

Equation (6.14): Since dim
(
α(GEE)

)
is O(m), the numerical complexity of iteration step (5.10) and

also of the total estimation procedure is determined by the inversion of the matrix Wi. So the total
complexities of the standard multivariate GEE-approach and the hybrid approach can be expressed by

CGEE = ω
(
m2/2

)3
+ O

(
m5

)

Chybrid = ω
(
κ m2

)3
+ O

(
m5

)

with ω ∈ R>0 Thus equation (6.14) follows directly.
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Table 1. Average relative efficiency between the hybird approach and the original GEE-approach by Liang
& Zeger (1986)

Sample Correlation r
Size 0.0 0.3 0.6 0.9

50 1.01 1.03 1.11 1.30
75 1.00 1.02 1.08 1.27
100 1.01 1.01 1.07 1.19
200 1.00 1.03 1.05 1.23
500 1.02 1.01 1.05 1.11
1000 1.00 1.01 1.04 1.12
inf 1.00 1.01 1.04 1.10

Table 2. Multivariate ”ad-hoc” GEE-analysis of osteoporisis realted traits

parameter estimate std. error p-value φj α

β1 0.042 0.019 0.029 0.19 αw = 0.88
β2 0.037 0.016 0.019 0.18 αb = 0.27
β3 0.036 0.015 0.013 0.17
β4 0.032 0.014 0.023 0.17
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