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Abstract

Quantile regression is an alternative to OLS-regression. In quantile regression, the sum of

absolute deviations or the L1-norm is minimized whereas the sum of squared deviations or the

L2-norm is minimized in OLS-regression. Quantile regression has the advantage over OLS-

regression of being more robust to outlying observations. Furthermore, quantile regression

provides information complementing the information provided by OLS-regression. In this

study, a non-parametric approach to quantile regression is presented which constrains the

estimated quantile function to be monotone increasing. In particular, P-splines with an

additional asymmetric penalty enforcing monotonicity are used within a L1-framework. This

can be translated into a linear programming problem, which will be solved using an interior

point algorithm. As an illustration, the presented approach will be applied to estimate

quantile growth curves and to estimate quantile antibody levels as a function of age.

Keywords: Growth curves, Interior point, L1-norm, Monotonicity, P-splines, Quantile

regression
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1 Introduction

In quantile regression as introduced by Koenker and Bassett (1978), conditional quantile

functions are estimated by minimizing a (weighted) sum of absolute deviations or the L1-

norm. The latter can be considered as an alternative to classical least squares regression.

Here, conditional mean functions are estimated by minimizing the sum of squared deviations

or the L2-norm. Compared to conditional mean functions, conditional quantile functions

have the important advantage of being more robust to outlying observations in the response

variable. Furthermore, a full range of different quantile functions can be fitted to the data,

complementing the conditional mean function, and as such, providing a nuanced picture

of the stochastic relationship between variables. Nevertheless and in spite of its multiple

merits, quantile regression is far less used than classical least squares regression. Similarly,

most non-parametric methods are adopted within a least squares framework. However, some

authors, among others, Chaudhuri (1991), Welsh (1996) and Koenker (1994) investigated the

applicability of non-parametric quantile regression. Eilers (2000) adopted L1-estimation to

P-splines regression models with the latter models being introduced within a L2-setting in

a target article by Eilers and Marx (1996). In the present paper, L1-estimation of P-splines

regression models with monotonicity restrictions is explored (for L2-estimation, see Bollaerts

et al., 2005).

The presented method can be naturally used in many application settings. For exam-

ple, consider the estimation of pediatric growth curves, more specifically, the estimation of

the lower and upper quantile reference growth curves for children’s height and weight as a

function of age. Note that, in this case, it is more plausible to assume that children’s height

(weight) is a monotone increasing function of age without presupposing any parametric rela-

tionship rather than assuming for instance a kwadratic or logarithmic function. As a second

example, consider the estimation of longitudinal wage trends, which are commonly assumed

to be monotonely increasing. In this respect, it is interesting to investigate whether wage

discrimination is decreasing respectively increasing (that is, whether wage trends within dif-

ferent income categories are converging respectively diverging). Clearly, many applications

of quantile regression with monotonicity restrictions exist.

The remainder of this paper is organised as follows: In Section 2, unconstrained respec-

tively monotonicity constrained quantile regression is introduced. In Section 3, computational

issues are discussed. In Section 4, the presented method is applied to estimate growth curves
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regarding height and weight of boys. For this application, different number of basis functions

are used and the corresponding estimated curves compared. In Section 5, an application on

the estimation of Varicella-Zoster Virus antibody levels is given. For this application, a com-

parison is made between non-parametric quantile regression with and without monotonicity

constraints. Finally, some concluding remarks and suggestions for further research are given

in Section 6.

2 Method

2.1 Quantile regression using P-splines

In a target article, Eilers and Marx (1996) introduced P-splines regression for one-dimensional

data within a least squares framework. This is essentially least squares regression with an

excessive number of univariate B-splines (De Boor, 1978; Dierckx, 1993) and a additional dis-

crete penalty to correct for overfitting. In the following, univariate B-splines are introduced.

Then, we discuss regression with B-splines first before discussing regression with P-splines.

Each time, both least squares and quantile regression are discussed.

Univariate B-splines are piecewise polynomial functions with local support. A B-spline

of degree q consists of q +1 polynomial pieces of degree q joined smoothly (i.e., differentiable
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Figure 1: Single B-splines of first and third degree.
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in order q− 1) at q points ti (called interior knots) between boundaries tmin and tmax (called

exterior knots) and with a positive value between these boundaries and a value of zero outside

these boundaries. In Figure 1a, an example of a B-spline of the first degree is given; it is

clear that this B-spline consists of two linear pieces joined at one interior knot. Figure 1b

gives an example of a B-spline of the third degree (which is the most commonly used degree

in B-splines regression); this B-spline consists of four cubic pieces joined smoothly at three

interior knots.

In order to use B-splines for non-parametric regression, a basis of r overlapping B-splines

is constructed, which is such that

∀x :
r∑

j=1

Bj(x, q) = 1 (2.1)

with Bj(x, q) denoting a B-spline of degree q with left most knot j. In Figure 2a, one can

see an example of a basis of B-splines of the third degree. Then, the B-splines of a B-splines

basis act as predictors in spline regression. With, for m observations (xi, yi),

ŷ(α)i
=

r∑

j=1

αjBj(xi, q), i=1,. . .m (2.2)

and with αj being the coefficient of the corresponding B-spline. The vector α is commonly

estimated using the L2-norm or

S2 =
m∑

i=1

(yi − ŷ(α)i
)2 (2.3)

0.5

1

X

(a) B-splines basis

X

Y

(b) spline regression

Figure 2: Spline regression with B-splines of third degree.
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with the conditional mean function being the minimand. However, following Koenker and

Bassett (1978), one might also consider estimating α by minimizing the asymmetric L1-norm

defined as

S1 =
m∑

i=1

ρθ(yi − ŷ(α)i
) (2.4)

with ρθ being the check function

ρθ(τ) =





θτ if τ ≥ 0

(θ − 1)τ otherwise

This loss function has the conditional quantile θ as minimand.

A major problem in B-splines regression, irrespective of the norm used, is the choice of

the optimal number of B-splines. An insufficient number of B-splines leads to underfitting,

whereas too many B-splines leads to overfitting. To regularize smoothness, Eilers and Marx

(1996) propose to use an excessive number of equally spaced B-splines with, in order to correct

for overfitting, a smoothness penalty based on differences of the coefficients of adjacent B-

splines. They call this approach P-splines regression. The corresponding loss functions based

on the L2-norm and the asymmetric L1-norm are respectively equal to

S2 =
m∑

i=1

(yi − ŷ(α)i
)2 + λ

r∑

j=d+1

(4dαj)2 (2.5)

and

S1 =
m∑

i=1

ρθ(yi − ŷ(α)i
) + λ

r∑

j=d+1

|4dαj | (2.6)

with4dαj being the dth order differences, that is4dαj = 41(4d−1αj) with 41αj = αj − αj−1

and with λ being a user-defined smoothness parameter, which can be optimized using for in-

stance cross-validation. Mostly, a penalty on second order differences is used. However, lower

or higher order penalties can be used equally well with a penalty on first order differences

yielding a piecewise linear fit whereas penalties on higher order differences yield more smooth

fits. In general, if λ → inf, then, for a regression with a smoothness penalty on dth order

differences, the fitted function will approach a polynomial of degree n− 1.
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2.2 Quantile regression with monotonicity restrictions using P-splines

The P-splines approach discussed so far can be easily adapted in order to impose monotonicity.

This can be done by adding an additional asymmetric penalty on the first order differences.

Indeed, the first order derivative of a B-splines function with equally spaced knots equals

f ′(α, x) =
∂f(α, x)

∂x
=

∂

∂x

r∑

j=1

αjBj(x, q) = h−1
r+1∑

j=1

41αjBj(x, q − 1) (2.7)

with h denoting the distance between two adjacent knots (De Boor, 1978). Then, since q, h

and Bj(x, q−1) are all positive by definition, restricting 41αj to be positive (resp. negative)

is a sufficient condition for f ′(α, x) to be positive (resp. negative). Hence, the L2 loss function

imposing monotonicity reads as

S2 =
m∑

i=1

(yi − ŷ(α)i
)2 + λ

r∑

j=3

(42αj)2 + κ
r∑

j=2

w(αj)(41αj)2 (2.8)

with

w(αj) =





0 if 41αj ≥ 0 (resp. 41αj ≤ 0)

1 otherwise

being asymmetric weights and with κ being a user-defined constraint parameter by which

the strength of the constraint can be fine-tuned. In particular, for κ = 0, monotonicity

is not imposed whereas for κ → ∞ violations against monotonicity are negligible. The

corresponding asymmetric L1 loss function imposing monotonicity equals

S1 =
m∑

i=1

ρθ(yi − ŷ(α)i
) + λ

r∑

j=d+1

|4dαj |+ κ
r∑

j=2

ρω(41αj) (2.9)

with ρω being defined as

ρω(τ) =





ωτ if τ ≥ 0 (resp. τ ≤ 0)

(ω − 1)τ otherwise

and with ω → 1.
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3 Computation

Solving an L1-regression problem relies on reformulating the corresponding loss function as a

linear programming problem. Consider the loss function regarding quantile regression with B-

splines as defined in (2.4). Reformulating this loss function as a linear programming problem

gives

min! θ

m∑

i=1

ui + (1− θ)
m∑

i=1

vi

s.t.
m∑

i=1

ŷ(α)i
+ ui − vi = yi (3.1)

with ui ≥ 0 and vi ≥ 0. For unconstrained quantile regression with B-splines in combination

with a smoothness penalty (shortly, P-splines), the loss function is defined in (2.9). In this

case, the linear programming problem equals

min! θ
m∑

i=1

ui + (1− θ)
m∑

i=1

vi + λ
r∑

j=d+1

sj + λ
r∑

j=d+1

tj

s.t.
m∑

i=1

ŷ(α)i
+ ui − vi = yi

and
r∑

j=d+1

(4dαj) + sj − tj = 0 (3.2)

with ui ≥ 0, vi ≥ 0, sj ≥ 0 and tj ≥ 0 (Eilers, 2000). Further extensions are needed for quan-

tile regression using B-splines, a smoothness penalty and a penalty enforcing monotoncity, of

which de loss function is defined in (6). In this case, the linear programming problem is

min! θ
m∑

i=1

ui + (1− θ)
m∑

i=1

vi + λ
r∑

j=d+1

sj + λ
r∑

j=d+1

tj + κω
r∑

j=2

pj + κ(1− ω)
r∑

j=2

qj

s.t.
m∑

i=1

ŷ(α)i
+ ui − vi = yi

and
r∑

j=d+1

(4dαj) + sj − tj = 0

and
r∑

j=2

(41αj) + pj − qj = 0

(3.3)

with ui ≥ 0, vi ≥ 0, sj ≥ 0, tj ≥ 0, pj ≥ 0 and qj ≥ 0. In order to solve these L1-related linear

programming problems, we adopt the approach proposed by Portnoy and Koenker (1997).
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They proposed, as an alternative to simplex based methods, interior point optimization in

combination with statistical preprocessing for L1-type of problems. The latter approach

has the advantage over simplex based methods of being computationally less demanding,

especially in large datasets. Portnoy and Koenker (1997) even showed that their approach

is comparably as fast as classical L2-methods of estimation, irrespective of the probem size.

Matlab code to solve L1-type of problems using Portnoy and Koenker’s approach as well as

quantile regression sofware in R can be found on Koenker’s home-page at the University of

Illinois (http://www.econ.uiuc.edu/ roger).
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Table 1 Optimal values for smoothness parameter λ based on Generalized Cross-Validation.

height weight

quantile B = 5 B = 15 B = 25 B = 5 B = 15 B = 25

0.05 0.07 0.21 18.39 0.07 1.93 21.80

0.50 2.82 0.61 27.50 0.02 9.60 68.75

0.95 0.36 4.30 18.42 0.24 7.22 28.26

4 Application: growth curves

In this section, quantiles of growth curves are estimated using P-splines regression with

monotonicity constraints to avoid the estimation of decreasing trends in growth but still al-

low maximal flexibility. The data come from the Belgian Health Interview Survey, conducted

by the National Institute for Statistics (NIS) in 2001. For this application, only data re-

ferring to male respondents aged between 0 and 21 years are considered. The number of

observations equals N = 1295. In order to provide a nuanced picture of growth, isotone

P-splines regression will be used to estimate quantiles of boys’ height and weight as a func-

tion of age. In particular, for both height and weight the conditional quantile functions 0.05,

0.50 and 0.95 are estimated using a basis of 5, 15 and 25 B-splines of third degree. The

optimal values for the smoothness parameters λ are determined using Generalized Cross Val-

idation. The values of the monotonicity parameter κ are chosen as high as 1012 to ensure

that violations against monotonicity are negligible. The variability of the estimated quan-

tile functions f(α̂, x) is assessed by means of pointwise bootstrap confidence intervals. For

each quantile function, B = 1000 bootstrap samples are generated by resampling the original

data (xi, yi) with replacement. For each bootstrap sample, which contains N = 1295 obser-

vations (x∗i , y
∗
i ), the corresponding quantile function is estimated. This leads to B = 1000

different estimates f∗(α̂, x). In order to estimate the 100(1− 2α)% pointwise confidence in-

terval for f(α̂, x), percentile intervals are calculated conditional on X = x. The latter are

defined as [f∗(α̂, x)[(B+1)α]; f∗(α̂, x)[(B+1)(1−α)]] with f∗(α̂, x)[(B+1)α] being the [(B + 1)α]th

order statistic of f∗(α̂, x).

The optimal values for the corresponding smoothness parameters are given in Table 1.
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As can be seen, the larger the number of B-splines used, the higher the optimal value of

the smoothness parameter. Only one exception is observed when estimating the median of

height using a basis of respectively 5 and 15 B-splines which might be due to the fact that

using only 5 B-splines is far from enough. However, it is a general result that the number of

basis functions used (in this case, B-splines) influences smoothness with less basis functions

yielding a smoother fit. Hence, if the number of basis functions used is small, a small weight

of the smoothness penalty λ suffices to yield a smooth result. Second, it can be seen that,

for the data at hand, the optimal value of the smoothness parameter for the median is larger

compared to the ones for quantile 0.05 and 0.95. This might follow from the fact that, for

this data, there is much more variability at quantile 0.05 and 0.95 compared to the median.

In Figure 3 (resp. Figure 4), the isotone quantile functions 0.05, 0.50 and 0.95 of height

(resp. weight) are shown together with their 95% bootstrap confidence intervals for a basis of

5, 15 and 25 B-splines of third degree. Clearly, using a basis of only 5 B-splines is not enough

since large and systematic deviations between the data and the fitted curve are still observed.

The fitted curves for a basis of 15 respectively 25 B-splines, which are very similar, describe

the data well. The latter result illustrates the rationale behind P-splines: take an excessive

number of B-splines and correct for overfitting using the smoothness penalty, for which the

weight can be optimally chosen using for instance Generalized Cross-Validation. Hence,

whenever more than enough B-splines are used, the smoothness penalty will ’automatically’

correct for overfitting, regardless of the number of B-splines used. Second, as indicated by the

width of the confidence intervals, there is more variability in estimating the quantile function

0.95 and 0.05 compared to the median for both height and weight. This result is in accordance

with the previous finding that the optimal value of the smoothness parameter for the median

is larger compared to the ones for quantile 0.05 and 0.95. Finally, comparing Figure 3 and 4,

it can be seen that the curves indicate that height is symmetrically distributed conditional

on age whereas weight is clearly not. Indeed, for weight, the absolute deviation between the

quantile functions 0.95 and 0.50 is larger than the absolute deviation between the quantile

functions 0.05 and 0.50.
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Figure 3: Height: isotone quantiles 0.05, 0.50 and 0.95 as function of age.
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Figure 4: Weight: isotone quantiles 0.05, 0.50 and 0.95 as function of age.
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5 Application: antibody levels

In this section, quantile functions of Varicella-Zoster virus (VZV) antibody levels are esti-

mated. The data, collected at the Centre for the Evaluation of Vaccination, Antwerp Uni-

versity, contain the antibody levels (October 1999- April 2000) of 1673 sera from a sample of

the Flemish (Belgian) population. (Thiry et al, 2002)

Given the assumption of lifelong immunity, it is reasonable to assume a monotone in-

creasing trend of the mean/median antibody level as a function of age. In particular, the

quantiles 0.05, 0.25, 0.50, 0.75 and 0.95 are estimated as a function of age. For this appli-

cation, the performance of unconstrained and monotonicity constrained quantile regression

using P-splines will be compared graphically. Each time, a B-splines basis of 15 B-splines

is used. Again, the optimal values for the smoothness parameters λ are determined using

Generalized Cross Validation and the values of the monotonicity parameter κ are chosen as

high as 1012. The variability of the estimated quantile functions f(α̂, x) is assessed by means

of pointwise bootstrap confidence intervals as described in Section 4.

The optimal values for the smoothness parameters λ are shown in Table 2. As can be

seen, the optimal value of the smoothness parameter is smaller when imposing the constraint

of monotonicity compared to not imposing the constraint. This makes perfect sense since

imposing constraints by adding an additional penalty is also a way of smoothing.

In Figure 5, the estimated unconstrained and monotonicity constrained quantile functions

are shown together with their corresponding 95% pointwise confidence intervals. Further-

more, when looking at the pointwise confidence intervals, it can be seen that the confidence

Table 2 Optimal values for smoothness parameter λ based on Generalized Cross-Validation.

quantile unconstrained constrained

0.05 0.37 0.33

0.25 10.04 0.32

0.50 20.66 6.59

0.75 10.99 2.8

0.95 37.89 10.27
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intervals are wider for the unconstrained quantiles compared to their corresponding con-

strained quantiles. This is as expected, since as said before, adding an additional penalty

enforcing monotonicity is a way of smoothing. Finally, it can be seen that the confidence

intervals are wider at the boundaries of the range of data. This is as expected as well because

less information is available to estimate the amplitudes of the basis functions located at the

boundaries. This results from the fact that the latter basis functions substantially exceed the

actual range of data. In addition, for the data at hand, there are only few observations for

the very young and very old ages, yielding wide confidence intervals as well.
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Figure 5: VZV antibody levels: unconstrained and monotonicity constrained quantiles 0.05,

0.25, 0.50, 0.75 and 0.95 as function of age.
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6 Discussion

In this paper, monotonicity constrained quantile regression using P-splines is presented. This

non-parametric method allows flexible estimation of quantile curves subject to the constraint

of monotonicity. This method is suited for the estimation of, among others, growth curves.

Indeed, adopting a fully parametric approach would be too restrictive regarding the shape

of the fitted quantile curve. On the other hand, adopting an unconstrained non-parametric

approach would be too flexible in the sense that the latter approaches allow the ’unnatu-

ral’ estimation of decreasing trends in growth. The method proposed in this paper can be

extended in order to (1) impose the constraint of convexity/concavity and to (2) fit data

in two (or more) dimensions. The first extension is achieved by using second order differ-

ences in the constraint penalty. Remember that restricting the first order differences of the

coefficients of a B-splines function to be positive (resp. negative) is a sufficient condition

for the first order derivative of the B-splines function to be positive (resp. negative). By

induction, one can prove that restricting the second order differences to be positive (resp.

negative) is a sufficient condition for the second order derivative of the B-splines function

to be positive (resp. negative), with the latter implying convexity (resp. concavity). The

second extension is achieved by using n-variate B-splines (with a n-variate B-spline being the

tensorproduct of an univariate and a (n− 1)-variate B-spline) in combination with penalties

for each dimension. An extensive discussion of P-splines models for two-dimensional data

within a L2-framework can be found in Bollaerts et al. (2005). Matlab code to fit P-splines

models for two-dimensional data using the L1-norm has been developed as well and can be

obtained from the authors of the current paper.
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