
Package ‘hmmm’
October 17, 2007

Version 1.0.26

Date 2007-04-21

Title hierarchical multinomial marginal models

Author Roberto Colombi, Manuela Cazzaro

Maintainer Colombi Roberto <Colombi@unibg.it>

Description Functions to specify and fit hierarchical multinomial marginal models (HMMM),
multinomial poisson homogeneous models (MPH) and homogeneous linear predictor models
(HLP) for contingency tables. Inequality constraints on the parameters are allowed and can be
tested.

Depends quadprog, MASS

License GPL Version 2 or later.

R topics documented:
Marg.fct . 2
block.fct . 2
chibar.P . 3
chibar . 4
chibar.summary . 6
create.U . 7
create.WCMAT . 8
create.XMAT . 10
hmmm.CoxTest . 13
hmmm.chibar.P . 14
hmmm.chibar . 15
hmmm.mlfit . 17
hmmm.model . 19
hmmm.model.summary . 23
loglin.model . 26
marg.list . 27
mph.fit . 28
mph.summary . 31
mphineq.fit . 33
pop . 36
rmult . 37

1

2 block.fct

Index 38

Marg.fct function to create marginalizing matrix

Description

Suppose that y = y_ijk, where i=1,...,k1, j=1,...,k2, k=1,...k3, and the farther to the right the subscript
the faster it changes (i.e. subscripts are in lexicographical order). This function creates an M
(marginalizing) matrix such that My is the vector of marginal frequencies.

Usage

Marg.fct(margindex, levs)

Arguments

margindex Collection of indices that will NOT be summed over (e.g. margindex=c(1,3)
will give M13, see below.)

levs Collection of levels (e.g. levs = c(3,3,5) means that k1=k2=3, k3=5).

Value

The marginalizing matrix.

Author(s)

Joseph B. Lang, Dept. of Stat. and Act. Sci., Univ. of Iowa (6/19/99, last update: 3/30/04).

Examples

M1 <- Marg.fct(1,c(3,3,3,3))
M2 <- Marg.fct(2,c(3,3,3,3))
M3 <- Marg.fct(3,c(3,3,3,3))
M4 <- Marg.fct(4,c(3,3,3,3))
M <- rbind(M1,M2,M3,M4)

block.fct direct sum function

Description

Function to create a block diagonal matrix

Usage

block.fct(...)

chibar.P 3

Arguments

... Matrices of the direct sum

Value

Direct sum of matrices.

Author(s)

Joseph B. Lang, Dept. of Stat. and Act. Sci., Univ. of Iowa (6/16/99, last update: 3/30/04).

Examples

A <- factor(gl(4,4))
B <- factor(gl(4,1,16))
Ascore <- c(A)
Bscore <- c(B)
agree <- c(diag(1,4))

XA1 <- model.matrix(~A + B + Ascore*Bscore - Ascore-Bscore + agree)
XA2 <- XA1
X <- block.fct(XA1,XA2,diag(8))

chibar.P Function to simulate chi-bar P values

Description

This function simulates the weights and the P values of a chi-bar distribution for tests of type A
and type B (Silvapulle and Sen, 2005) on inequality constraints on the parameters of HMMM, HLP,
HPM models.

Usage

chibar.P(m, Z, ZF, d.fct = 0,
h.fct = 0, test0 = 0, test1 = 0,

repli = 0, derdt.fct = 0, derht.fct = 0)

Arguments

m Extimated expected counts.
Z Population matrix - see the help of mphineq.fit.
ZF Sample matrix - see the help of mphineq.fit.
d.fct Inequality constraints function - see the help of mphineq.fit.
h.fct Equality constraints function - see the help of mphineq.fit.
test0 Test statistics of type A - see Silvapulle and Sen, 2005.
test1 Test statistics of type B - see Silvapulle and Sen, 2005.
repli Simulations number.
derdt.fct Derivatives of inequality constraints - see the help of mphineq.fit.
derht.fct Derivatives of equality constraints - see the help of mphineq.fit.

4 chibar

Details

The method "Simulation 2" described in Silvapulle and Sen, 2005, pg. 79 is used.

Value

A list with the test statistics of type A and B (Silvapulle and Sen, 2005, pg. 61) and their simulated
P values.

Note

The function is not recommended, use chibar.

Author(s)

Roberto Colombi, Colombi@unibg.it.

References

Silvapulle M.J., Sen P.K., Constrained statistical inference, Wiley, New Jersey (2005).

See Also

chibar, hmmm.chibar, chibar.summary

chibar simulation of chi-bar P values

Description

Function to simulate the weights and the P values of a chi-bar distribution for tests of type A and
type B (Sen-Silvapulle, 2005) on inequality constraints on the parameters of HMMM, HLP, HPM
models.

Usage

chibar(m, Z, ZF, d.fct = 0, h.fct = 0,
test0 = 0, test1 = 0, repli = 0, derdt.fct = 0,
derht.fct = 0)

Arguments

m Extimated expected counts.
Z Population matrix - see the help of mphineq.fit.
ZF Sample matrix - see the help of mphineq.fit.
d.fct Inequality constraints function - see the help of mphineq.fit.
h.fct Equality constraints function - see the help of mphineq.fit.
test0 Test statistics of type A - see Silvapulle and Sen, 2005.
test1 Test statistics of type B - see Silvapulle and Sen, 2005.
repli Simulations number.
derdt.fct Derivatives of inequality constraints - see the help of mphineq.fit.
derht.fct Derivatives of equality constraints - see the help of mphineq.fit.

chibar 5

Details

The method "Simulation 2" described in Silvapulle and Sen, 2005, pg. 79 is used.

Value

A list with the the test statistics of type A and B (Silvapulle and Sen, 2005, pg. 61) and their
simulated P values.

Note

Use chibar.summary to display the output, use hmmm.chibar for HMMM models.

Author(s)

Roberto Colombi, Colombi@unibg.it.

References

Silvapulle M.J., Sen P.K., Constrained statistical inference, Wiley, New Jersey (2005).

See Also

chibar.P, hmmm.chibar,chibar.summary

Examples

y <-
c(56, 13, 7,
6, 4, 10,
1, 5, 15)
y<-matrix(y,9,1)
Z <- ZF <- matrix(1,9,1)
Lprobit.fct <- function(m) {
p <- matrix(m,3,3,byrow=TRUE)/sum(m)
pr <- apply(p,1,sum)
pc <- apply(p,2,sum)
rbind(
qnorm(pr[2]+pr[3]),
qnorm(pr[3]),
qnorm(pc[2]+pc[3]),
qnorm(pc[3]),
log(m)
)
}
dprobit.fct <- function(m) {
p <- matrix(m,3,3,byrow=TRUE)/sum(m)
pr <- apply(p,1,sum)
pc <- apply(p,2,sum)
-qnorm(pc[2]+pc[3])+qnorm(pr[2]+pr[3])

}

Xprobit <-
c(1, 0, 0,
0, 1, 0,
1 ,0 ,1,

6 chibar.summary

0, 1 ,1)

Xprobit <- matrix(Xprobit,4,3,byrow=TRUE)
XHprobit<-Xprobit[,-3]

A <- factor(gl(3,3))
B <- factor(gl(3,1,9))
Xindep <- model.matrix(~A+B)
Xsat <- model.matrix(~A*B)

FIT USING THE SATURATED ASSOCIATION MODEL
#Under ordering of the marginals

X <- block.fct(Xprobit,Xsat)

a <- mphineq.fit(y,Z,ZF,L.fct=Lprobit.fct,X=X,d.fct=dprobit.fct,maxiter=3000)

FIT USING THE SATURATED ASSOCIATION MODEL

b <- mphineq.fit(y,Z,ZF,L.fct=Lprobit.fct,X=X,maxiter=1000)

#X <- block.fct(XHprobit,Xsat)

hprobit.fct<-function(m){
p <- matrix(m,3,3,byrow=TRUE)/sum(m)
pr <- apply(p,1,sum)
pc <- apply(p,2,sum)
-(qnorm(pr[2]+pr[3])-qnorm(pc[2]+pc[3]))
+(qnorm(pr[3])-qnorm(pc[3]))
}
#test for inequalities
#t(create.U(X))

p<-chibar(y,Z=Z,ZF=ZF,d.fct=dprobit.fct,h.fct=hprobit.fct,test1=a$Gsq-b$Gsq,repli=6000)
c(p$testB,p$pvalB)

chibar.summary output summary for chibar and hmmm.chibar functions

Description

Function to print the results for tests of type A and B on inequality constraints and to tabulate the
distribution functions of these two test statistics.

Usage

chibar.summary(P, plotflag = 0, step = 0.01, lsup = 0)

Arguments

P Output from chibar or hmmm.chibar.

create.U 7

plotflag If 0 only P-values are printed, if 2 the survival functions for type A and type B
tests are also tabulated and finally if 3 are also plotted (in red: type B, in black:
type A).

step Distance between points at which the distribution functions are evaluated.

lsup Distribution functions are evaluated in the interval 0 - lsup.

Value

Tabulation of the chi-bar distribution functions of the type A and B test statistics.

Author(s)

Roberto Colombi, Colombi@unibg.it.

References

Silvapulle M.J., Sen P.K., Constrained statistical inference, Wiley, New Jersey (2005).

See Also

hmmm.chibar, chibar

create.U function to create a matrix with column space equal to the null space
of X

Description

This function creates a full-column rank matrix, U, with column space equal to the orthogonal
complement of the column space of X. That is, U has column space equal to the null space of the
transpose of X.

Usage

create.U(X)

Arguments

X Matrix of full column rank.

Value

Matrix that has column space equal to the null space of the transpose of X.

Author(s)

Joseph B. Lang, Dept. of Stat. and Act. Sci., Univ. of Iowa (6/19/99, last update: 3/30/04).

8 create.WCMAT

Examples

X <- c(
1, 1 ,1 ,1,
1, 1 ,0 ,0,
1 ,0, 1 ,0,
1 ,0 ,0, 0)

X <- matrix(X,4,4,byrow=TRUE)
X.indep <- X[,-4]

U <- create.U(X.indep)

create.WCMAT function to create a design matrix X for models of independence in
subtables

Description

This function computes the X matrix corresponding to models of conditional independence (Cox
Wermuth, 1998) or of Lumpability (Colombi Giordano, 2007)

Usage

create.WCMAT(modelfull, Selection, Subsets = NULL,
replace = TRUE,xmerge=NULL)

Arguments

modelfull a model defined by hmmm.model

Selection a list of lists like "list(NULL,list(1,0,c(1,3),c(1,2,3)),NULL)". There must be
a sublist for every marginal set in modelfull. The sublist is NULL when in
the corresponding marginal distribution no interactions are set to zero. 0 for a
variable implies that the interactions involving this variable are not constrained
In every non NULL sublist there are as many integer objects as variables in
modelfull. Every integer object of a sublist contains indices of the interactions
set to zero in the marginal corresponding to the sublist. More precisely in a
marginal the interactions are set to zero when the indeces belong to the cartesian
product of the numeric objects in the sublist. See the the details below.

Subsets a list of logical objects like list(c(F,F,F),c(F,T,F,T),c(F,F,T,F,T,F,T,T)) There must
be a logical object for every marginal set in modellfull. In the logical objects F
correspond to interactions not to be constrained and T to interactions that must
be set to zero according the list Selection See the details below .

replace if TRUE a hmmm.model object is created otherwise a list is returned that con-
tains the design matrix X and the positions of the interactions constrained to
zero in the vector of all parameters of modelfull.

xmerge an additional integer object for the positions of further interactions set to zero

create.WCMAT 9

Details

To the variables i1,i2,.,ij...,ik of a marginal set M are associated sets of indices S(i1),S(i2),...,S(ij),...,S(ik).
A generalized marginal interaction defined by the interaction set I and the marginal set M is con-
strained to zero when its indices belong to the cartesian product of the S(ij) ,for all ij in M. The
interaction defined in M that must be constrained according the previous rule are specified by the
argument Subsets. Using xmerge further interactions can be set to zero by reporting their positions
in the vector off all parameters of modelfull.

Value

a hmmm.model or a design matrix X together with the positions of the interactions set to zero

Author(s)

Roberto Colombi Colombi@unibg.it

References

Wermuth, Cox (1998): On the application of Conditional Independence to Ordinal Data Interne-
tional statistical Review, 66,181-199

Cazzaro M.,Colombi R., Giordano S., (2007):Testing Markov Chain Lumpability, Proceedings of
the 22st IWSM, Barcelona

See Also

hmmm.model,create.XMAT

Examples

marginal34<-list(marg=c(3,4),types=c("marg","marg","l","l"))
marginal134<-list(marg=c(1,3,4),types=c("r","marg","l","l"))
marginal1234<-list(marg=c(1,2,3,4),types=c("r","r","l","l"))
marginali<-list(marginal34,marginal134,marginal1234)

models<-hmmm.model(marg=marginali,lev=c(4,4,4,4),
strata=1,
cocacontr=list(matrix(c
(1,1,0,0,
0,0,1,0,
1,0,0,0,
0,0,1,1,
0,0,0,1,
0,1,0,0

)
,6,4,byrow=TRUE),
matrix(c
(1,1,0,0,
0,0,1,0,
1,0,0,0,
0,0,1,1,
0,0,0,1,
0,1,0,0

)
,6,4,byrow=TRUE)
)

10 create.XMAT

)

descr<-hmmm.model.summary(models)

Selvec<-list(NULL,list(1,0,c(1,3),c(1,2,3)),NULL)
Sub<-list(c(FALSE,FALSE,FALSE),c(FALSE,TRUE,TRUE,TRUE),c(FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE))
MoNEW3<-create.WCMAT(models,Selvec,Subsets=Sub,replace=FALSE)

Selvecc<-list(NULL,list(1,0,c(1,3),c(1,2,3)),list(1,c(1,2,3),c(1,3),c(1,2,3)))
scc<-list(c(FALSE,FALSE,FALSE),c(FALSE,TRUE,FALSE,TRUE),c(FALSE,FALSE,TRUE,FALSE,TRUE,FALSE,TRUE,TRUE))

MoNEW4<-create.WCMAT(models,Selvecc,Subsets=scc,replace=FALSE)
Selve<-list(NULL,list(c(1,2,3),0,c(1,2,3),c(1,2,3)),NULL)
Sub<-list(c(FALSE,FALSE,FALSE),c(FALSE,FALSE,TRUE,TRUE),c(FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE))
MoNEW2<-create.WCMAT(models,Selve,Subsets=Sub,replace=FALSE)
MoNEW2$del
MoNEW3$del
MoNEW4$del

create.XMAT design matrix for an hmmm model

Description

Function to specify the matrix X of the linear predictor C*lnM*m=X*beta for a hmmm model

Usage

create.XMAT(modello, Formula = NULL,
strata = 1, fnames = NULL, cocacontr = NULL,
ncocacontr = NULL, replace = TRUE)

Arguments

modello Object created by hmmm.model.

Formula List of model formula enclosed in ""; one formula for every marginal interaction.

strata Number of categories of the factors that describe the strata.

fnames Names of the factors that describe the strata.

cocacontr List that describes the contrasts for every factor.

ncocacontr Number of contrasts for every factor if NULL the maximum number is used.

replace If TRUE X a new model object is produced if FALSE only the matrix X is
returned.

Details

The list of model-formula must be like: list(" 1+f_0*area*age-f_0:area:age-area:age", " 1+f_0*area*age-
f_0:area:age-area:age", " 1+f_0+area+age") where f_0 is a conventional name used to identify the
factors that are associated to every marginal interaction type and where area and ag are the names
of the factors that describe the strata.

create.XMAT 11

For example in the case of logits defined in two marginals and a set of odds ratios the first two
formula state for every marginal an additive effect of the covariates specific for every logit and the
third formula states an additive effect common to every o.r.

The list of contrasts must be like list("contr.poly",matrix(c(-1,-1,1,1),4,1)), in other words it can be
formed with matrices and standard R contrast specifications. If not supplied contr.treatment is used
for every factor.

Use the formula "zero" to constrain to zero all the interactions of a given type.

Value

X matrix or a marginal model object (see the argument replace).

Author(s)

Roberto Colombi, Colombi@unibg.it.

See Also

hmmm.model, hmmm.model.summary

Examples

remove(list=ls())
library(hmmm)

##
Example from:
Cazzaro M., Colombi R., A new family of interactions
for modelling contingency tables, (2006), submitted.
##

#===
MODELLING the effect of COVARIATES on RECURSIVE INTERACTIONS
#===

TABLE 3 - section 7.5:
four way contingency table --> TYPE x TIME, given AGE and HOUR,
accidents occured to workers.

RESPONSE VARIABLES:
#variable n. 1-TYPE of the injury --> 3 categories:
U=uncertain, A=avoidable, NA=not avoidable;
variable n. 2-TIME to recover --> 4 categories, number of working days lost:
0 |- 7, 7 |- 21, 21 |- 60, >= 60;

COVARIATES:
#variable n.3 AGE of the worker --> 3 categories:
<= 25, 26 - 44, >= 45;
variable n.4 solar HOUR --> 2 categories, part of the day in which the accident occured:
M=morning, A=afternoon.
the lower the variable number is the faster the variable sub-scripit

changes in the vectorized contingency table
y <- c(
21, 9, 0, 10, 9, 0, 5, 1, 1, 2, 0, 1,
78, 51, 1, 46, 28, 5, 15, 21, 10, 10, 4, 12,
27, 16, 1, 25, 19, 2, 13, 16, 8, 1, 7, 11,

12 create.XMAT

35, 14, 1, 10, 7, 1, 3, 2, 3, 2, 1, 1,
104, 40, 1, 46, 40, 4, 21, 16, 8, 13, 8, 8,
39, 23, 1, 29, 14, 2, 17, 12, 8, 6, 10, 16)

univariate marginals
logit type:
l --> local, g --> global,
c --> cont., rc --> reverse cont.,
r --> recursive
marg1<-list(marg=c(1),types=c("c","marg"))
marg2<-list(marg=c(2),types=c("marg","c"))

bivariate marginals
marg12<-list(marg=c(1,2),types=c("c","c"))

marginals<-list(marg1,marg2,marg12)

definition of the model
models<-hmmm.model(marg=marginals,lev=c(3,4),
strata=6
)

descr<-hmmm.model.summary(models,printflag=TRUE)

estimation of the models

REFERENCE model
al<-list(
"~f_0*AGE*HOUR",
"~f_0*AGE*HOUR",
"~f_0+AGE+HOUR+f_0:AGE+f_0:HOUR")

modelref<-create.XMAT(models,Formula=al,strata=c(3,2),
fnames=c("AGE","HOUR"))

model of uncostrained marginal and covariate (AGE, HOUR) additive effect on
the o.r. between TYPE and TIME
al<-list(
"~f_0*AGE*HOUR",
"~f_0*AGE*HOUR",
"~f_0+AGE+HOUR+f_0:AGE+f_0:HOUR"
)

model1<-create.XMAT(models,Formula=al,strata=c(3,2),
fnames=c("AGE","HOUR"))

model of covariate (AGE, HOUR) additive effect on the marginal logits
of the response variables (TYPE, TIME) and on the o.r. between TYPE and TIME
al<-list(
"~f_0+AGE+HOUR+f_0:AGE+f_0:HOUR",
"~f_0+AGE+HOUR+f_0:AGE+f_0:HOUR",

hmmm.CoxTest 13

"~f_0+AGE+HOUR+f_0:AGE+f_0:HOUR")

model2<-create.XMAT(models,Formula=al,strata=c(3,2),
fnames=c("AGE","HOUR"))

model of covariate (AGE, HOUR) additive effect on the marginal logits
of the response variables (TYPE, TIME) and constant association between TYPE and TIME
al<-list(
"~f_0+AGE+HOUR+f_0:AGE+f_0:HOUR",
"~f_0+AGE+HOUR+f_0:AGE+f_0:HOUR",
"~f_0")

model3<-create.XMAT(models,Formula=al,strata=c(3,2),
fnames=c("AGE","HOUR"))

model of stochastic independence between TYPE and TIME
in each sub-table identified by the levels of the covariates AGE and HOUR
alind<-list(
"~1+f_0+AGE+HOUR+f_0:AGE+f_0:HOUR",
"~1+f_0+AGE+HOUR+f_0:AGE+f_0:HOUR",
"zero")

modelind<-create.XMAT(models,Formula=alind,strata=c(3,2),
fnames=c("AGE","HOUR"))

hmmm.CoxTest Cox Test for non-nested hmmm models

Description

This function computes the Cox Test the Gourieroux Monfort score test and the Vuong testfor non
nested hypotheses. P values are also provided

Inequalities are not allowed

Usage

hmmm.CoxTest(modelA, modelB, fitA, fitB=NULL, pseudtrue = FALSE,
pseudtrue.w=FALSE,score.test=FALSE, maxit = 1000, y.eps = 0)

Arguments

modelA null hmmm.model

modelB non nested alternative hmmm.model

fitA modelA fitted

fitB modelB fitted, if NULL only the score test is computed

pseudtrue if TRUE pseudotrue values for modelB are estimated if FALSE ML estimates in
fitB are used

14 hmmm.chibar.P

pseudtrue.w if FALSE pseudotrue values for modelB are not used in the denominator of the
Cox statistics

score.test if TRUE the Gourieroux, Monfort, Trognon score test for non nested hypotheses
is also computed

maxit max number of iterations to compute estimates of pseudo true values

y.eps see hmmm.mlfit

Value

A list with components CoxTest VuongTest and ScoreTest. The Cox test,the score test and the
p values are returned together with the LR statistics of model A and model B. The vuongTest is
returned with the p value

...

Author(s)

Colombi@unibg.it

References

C. Gourieroux, A. Monfort (1989): Statistics and Econometric Models

hmmm.chibar.P chi-bar P values for hmmm models

Description

Function to simulate the weights and the P values of a chi-bar distribution. The function arguments
must be objects created by hmmm.mlfit and hmmm.model.

Usage

hmmm.chibar.P(model, nullfit, disfit, satfit, repli = 6000)

Arguments

model The model created by hmmm.model.

nullfit The estimated model with inequalities turned into equalities.

disfit The estimated model with inequalities.

satfit The estimated model without inequalities.

repli Number of simulations.

Details

The method "Simulation 2" described in Silvapulle snd Sen, 2005, pg. 79 is used.

Value

A list with the test statistics of type A and B (Silvapulle and Sen, 2005, pg. 61) and their simulated
P values.

hmmm.chibar 15

Note

The function is not recommended, use hmmm.chibar.

Author(s)

Roberto Colombi, Colombi@unibg.it.

References

Silvapulle M.J., Sen P.K., Constrained statistical inference, Wiley, New Jersey (2005).

See Also

chibar, hmmm.chibar, chibar.summary

hmmm.chibar chi-bar P values for hmmm models

Description

Function to simulate the weights and the P values of a chi-bar distribution. The function arguments
must be objects created by hmmm.mlfit and hmmm.model.

Usage

hmmm.chibar(model, nullfit, disfit, satfit, repli = 6000)

Arguments

model The model created by hmmm.model.

nullfit The estimated model with inequalities turned into equalities.

disfit The estimated model with inequalities.

satfit The estimated model without inequalities.

repli Number of simulations.

Details

The method "Simulation 2" described in Silvapulle and Sen, 2005, pg. 79 is used.

Value

A list with the test statistics of type A and B (Silvapulle and Sen, 2005, pg. 61) and their simulated
P values.

Note

Use chibar.summary to display the output.

Author(s)

Roberto Colombi, Colombi@unibg.it.

16 hmmm.chibar

References

Silvapulle M.J., Sen P.K., Constrained statistical inference, Wiley, New Jersey (2005).

See Also

chibar, chibar.summary

Examples

#==
MODELS with INEQUALITY CONTRAINTS on the o.r.
- MONOTONE DEPENDENCE HYPOTHESES -
#==

TABLE 1 - section 7.1:
two way contingency table --> CUSTOMER SERVICE x TRAINING,
377 customers, users of a machine tool.
(4 categories each, levels of satisfaction:
U=unsatisfied, S=satisfied, RS=really satisfied, ES=extremely satisfied).
library(hmmm)
y <- c(
9, 10, 22, 25,
3, 4, 10, 4,

12, 15, 81, 37,
11, 6, 31, 97)

Z <- ZF <- matrix(1,16,1)

###
LIKELIHOOD RATIO monotone dependence: log-local o.r. >= 0
###

identity design matrix 15 x 15
NB: no constraints on the marginal logits
XX<-block.fct(diag(1,6),diag(1,9))

univariate marginals
logit type:
l --> local, g --> global,
c --> cont., rc --> reverse cont.,
r --> recursive
NB: in this case the univariate marginals can be of any type
as they are not constrained.
marginal1<-list(marg=c(1),int=list(1),types=c("l","marg"))
marginal2<-list(marg=c(2),int=list(2),types=c("marg","l"))

bivariate marginals
marginal12<-list(marg=c(1,2),int=list(c(1,2)),types=c("l","l"))

marginals<-list(marginal1,marginal2,marginal12)

marginal list involved in the INEQUALITIES
dism<-list(marginal12)

definition of the model

hmmm.mlfit 17

models<-hmmm.model(marg=marginals,dismarg=dism,lev=c(4,4),
cocacontr=NULL,strata=1,Z=Z,ZF=ZF,X=XX)

descr<-hmmm.model.summary(models,printflag=TRUE)

estimation of the models

SATURATED model
asat<-hmmm.mlfit(y,models)

descrfitsat<-hmmm.model.summary(models,asat,aname="Saturated model")

model with INEQUALITIES on the log-local o.r., no EQUALITY constraints
on the univariate marginal logits: "Likelihood ratio monotone dependence model"
a <- hmmm.mlfit(y,models,noineq=FALSE)

descrfitdis<-hmmm.model.summary(models,a,aname="Model with inequalities")

model with INEQUALITIES turned into EQUALITIES, no EQUALITY constraints
on the univariate marginal logits: "Stochastic independence model"
XX0<-rbind(diag(1,6),matrix(0,9,6))

models0<-hmmm.model(marg=marginals,lev=c(4,4),
cocacontr=NULL,strata=1,Z=Z,ZF=ZF,X=XX0)

anull <- hmmm.mlfit(y,models0)

descrfitnull<-hmmm.model.summary(models0,anull,aname="Independence model")

HYPOTHESES TESTED:
NB: testA --> H0=(anull model) vs H1=(a model)
testB --> H0=(a model) vs H1=(asat model)

P<-hmmm.chibar(model=models,nullfit=anull,disfit=a,satfit=asat,repli=6000)

chibar.summary(P,plotflag=0)

hmmm.mlfit hmmm.mlfit

Description

Function to estimate a hierarchical multinomial marginal model.

Usage

hmmm.mlfit(y, model, noineq = TRUE, maxit = 1000,
norm.diff.conv = 1e-05, norm.score.conv = 1e-05,
y.eps = 0, iter.orig = 5, chscore.criterion = 2,
m.initial = y, mup = 1, step = 1)

18 hmmm.mlfit

Arguments

y A vectorized sample contingency table.

model An object created by hmmm.model.

noineq If TRUE inequality constraints specified in model are ignored.

maxit Maximum number of interactions.
norm.diff.conv

Convergence criterium value on the parameters.
norm.score.conv

Convergence criterium value on the constraints.

y.eps Non-negative constant to be added to the original counts in y (default: y.eps=0).

iter.orig Not used.
chscore.criterion

If equal to zero convergence informations are printed at every iteration.

m.initial Initial estimate of m (default: m.initial=y).

mup Weight for the constraints penality part of the merit function.

step Interval lenght for the line search.

Details

A sequential quadratic procedure is used to maximize the log-likelihood under inequality and equal-
ity constraints. This function call the procedure mphineq.fit which is a generalization of the proce-
dure mph.fit of Lang (2004).

Value

An object that can be displaied using hmmm.model.summary or mph.summary see the help of these
functions.

Author(s)

Roberto Colombi, Colombi@unibg.it.

References

Lang J.B. (2004): Multinomial Poisson Homogeneous models for contingency tables; The Annals
of Statistics, 32, 340-383.

Bartolucci F., Colombi R., Forcina A. (2007): An extended class of marginal link functions for
modelling contingency tables by equality and inequality constraints, Statistica Sinica, to appear.

See Also

hmmm.model, hmmm.model.summary , mph.summary

Examples

#variables
#1 jobs, three categories
#2 education, three categories
#3 age,two categories
#4 area, four categories

hmmm.model 19

#the lower the variable number is the faster the category sub-script changes in
#the vectorized table

library(hmmm)
y<-
c(413, 3184, 2281 , 1 , 42 , 28 , 0, 12, 5 ,
79, 197, 95, 1, 3, 2, 0, 0, 0, 52,
330, 274, 2, 9 , 12 , 0, 5, 5 , 15, 21,
16, 1, 0 , 2, 0, 1 , 0 , 523, 2945,

1632 , 38, 210, 103, 14, 88, 42, 113, 302 , 81,
7, 11, 2, 2, 3 , 0, 560, 2330, 1365,

49, 139, 81 , 19, 64, 24, 116, 253, 56, 6,
8, 0, 1, 0, 1)

Z<-ZF<-kronecker(diag(1,8),matrix(1,9,1))
marg1<-list(marg=c(2),int=list(2),types=c("marg","c"))
marg12<-list(marg=c(1,2),int=list(c(1),c(1,2)),types=c("g","l"))
marginali<-list(marg1,marg12)
marg12bis<-list(marg=c(1,2),int=list(c(1,2)),types=c("g","l"))
dism=list(marg12bis)

modello<-hmmm.model(marg=marginali,lev=c(3,3),dismarg=dism,
strata=8,Z=Z,ZF=ZF,D=diag(-1,32))
descr<-hmmm.model.summary(modello,printflag=FALSE)
al<-list(
"~1+f_0*area*ag-f_0:area:ag-area:ag",
"~1+f_0*area*ag-f_0:area:ag-area:ag",
"~1+f_0+area*ag"
)

modellosat<-create.XMAT(modello,Formula=al,strata=c(2,4),
fnames=c("ag","area"))

mods<-hmmm.mlfit(y,modellosat,y.eps=0.00001,maxit=2000,mup=1,step=1,
m.initial=y)

moddis<-hmmm.mlfit(y,modellosat,y.eps=0.00001,maxit=1000,mup=1,step=1,
m.initial=mods$m,noineq=FALSE,norm.diff.conv=1e-5)
descrfitsat<-hmmm.model.summary(modellosat,mods,aname="modello saturo")
descrfitdis<-hmmm.model.summary(modellosat,moddis,aname="modello con diseg.")

hmmm.model define an hmmm model

Description

Function to define a hierarchical multinomial marginal model object

20 hmmm.model

Usage

hmmm.model(marg=NULL, dismarg = 0, lev, cocacontr = NULL,
strata = 1, Z=NULL, ZF=Z, X = 0, D = TRUE, E = TRUE)

Arguments

marg A list of the marginal sets and their marginal interactions as described in Colombi,
Bartolucci and Forcina (2007). Every element of marg is a list with elements
marg: the marginal set, int: the interaction set and type which describes the log-
its used for every variable ("g"=global, "l"=local ,"c"=continuation, "rc"=reverse
continuation, "r"=recursive, "b"=baseline, "marg" for the variables not belong-
ing to the marginal set). This list is used to create the link function C*ln(M*m)
and its derivative.

dismarg Similar to marg but used to define inequalities K*ln(A*m)>0. Default 0 if there
are no inequalities.

lev Number of categories of the variables.

cocacontr Needed only for "r" and "b" logits; list of matrices of contrasts for "r" and
"b"logits. Arbitrary (es: 0) for other logits.

strata Number of strata.

Z Zero one matrix describing the strata.

ZF Zero one matrix for strata with fixed nobs.

X Design matrix for C*ln(M*m)=X*beta. Can be defined later or changed only
by using the function create.XMAT.

D If is a matrix the inequalities will be D*K*ln(A*m)>0. Useful for changing the
sign of the inequalities or for selecting a subset of K*ln(A*m)>0.

E If E is a matrix and if X = 0 defines the equality contrasts E*C*ln(M*m)=0.

Details

Every element of marg is like:

list(marg=c(1,2),int=list(c(1),c(1,2)),types=c("g","l"))

where marg is the marginal set, int is the list of interaction sets and type describe the logits used for
every variable ("g"=global, "l"=local ,"c"=continuation, "rc"=reverse continuation, "r"=recursive,
"b"=baseline ,"marg" for the variables not belonging to the marginal set). Variables are denoted
by integers, the variable with lower integer must have the modality index that runs faster in the
vectorized contingency table. If the interaction lists int are not given then a complete hierarchical
marginal set of interactions is defined as described in Bartolucci, Colombi and Forcina (2007) and in
Bergsma and Rudas (2002). In this case the order of the marginal sets in the marg list is relevant and
in a marginal distribution are defined all the interactions that are not defined in previous marginal
sets Every marginal set must not be a subset of previous marginal sets. If marg is not specified the
Glonek and McCullagh (1995) Multivariate Logit Model with interactions of type local is used.

Z is of dimension cxK, where c is the number of counts and K is the number of strata or populations.
Thus, the rows correspond to observation numbers and the columns correspond to the strata. A ‘1’
in row i of column j implies that the ith count came from the jth stratum. Note that Z will have
exactly one ‘1’ in each row, and at least one ‘1’ in each column. The population matrix Z which
is a column vector of ‘1’s, implies that all the counts came from the same, and only, stratum. For
HMMM models it is assumed that all the strata have the same number of response levels. If Z is not
entered a population Z matrix corresponding to data entered by strata is defined and ZF=Z.

hmmm.model 21

For non-zero ZF, the columns are a subset of the columns in population matrix Z. If the jth column
of Z is included in ZF, then the jth stratum sample size is considered fixed, otherwise, if the jth
column of Z is NOT included in ZF, the jth stratum sample size is taken to be a realization of a
Poisson random variable. ZF=Z, means that all of the stratum sample sizes are fixed; this is the
(product-)multinomial setting.

When X is omitted it is assumed to be the identity matrix and a saturated model is defined.

The argument cocacontr must be equal to a list of zero-one matrices; one for every variable of
the joint distribution. If the j-th variable has r_j categories, the first r_j-1 rows of the j-th matrix
must describe the indicator functions of the r_j-1 category sets, the probabilities of which are the
numerators of the logits and the remaining r_j-1 rows must describe the indicator functions of the
sets the probabilities of which are the denominators of the logits. These matrices may be arbitrary
(as 0) for variables to which logits "r" and "b" are never assigned. In particular cocacontr=NULL if
logits "b" or "r" are never used.

Value

An object that describes a marginal model that can be estimated by hmmm.mlfit.

Author(s)

Roberto Colombi, Colombi@unibg.it.

References

Bergsma W.P. and Rudas T. (2002): Marginal models for categorical data, The Annals of Statistics,
30, 140-159.

Glonek G.F.V. and McCullagh P. (1995): Multivariate logistic models for Contingency Tables, Jour-
nal of the Royal Statistical Society, B, 57, 533-546.

Lang J.B. (2004): Multinomial Poisson Homogeneous models for contingency tables, The Annals
of Statistics, 32, 340-383.

Bartolucci F., Colombi R., Forcina A. (2000): An extended class of marginal link functions for
modelling contingency tables by equality and inequality constraints, Statistica Sinica, to appear.

See Also

hmmm.mlfit,create.XMAT, hmm.model.summary, mph.summary

Examples

#==
MODEL of STOCHASTIC INDEPENDENCE in SUB-TABLES
#==

TABLE 2 - section 7.4:
two way contingency table --> GROWTH x COMPETITIVENESS,
(114 companies belonging to the manufacturing industry)
GROWTH --> 4 categories, percentage og growth:
L=low, ML=medium/low, MH=medium/high, H=high;
COMPETITIVENESS --> 3 categories, level of competitiveness
L=low, M=medium, H=high.

y <- c(
4, 11, 14, 4,

22 hmmm.model

17, 22, 13, 2,
6, 10, 6, 5)

NB
variable GROWTH --> recursive approach,
the non-minimal sets are: M1=(L,ML,MH,H); M2=(MH,H); M3=(L,ML);
variable COMPETITIVENESS --> continuation approach.

identity design matrix 15 x 15
NB: no constraints on the marginal logits
XX<-diag(1,11)

univariate marginals
logit type:
l --> local, g --> global,
c --> cont., rc --> reverse cont.,
r --> recursive
NB: in this case the univariate marginals can be of any type
as they are not constrained.
marginal1<-list(marg=c(1),types=c("r","marg"))
marginal2<-list(marg=c(2),types=c("marg","c"))

bivariate marginals
marginal12<-list(marg=c(1,2),types=c("r","c"))

marginals<-list(marginal1,marginal2,marginal12)

"COCACONTR" specifications
===========================
NB: 'cocacontr' is needed only for recursive 'r' or baseline 'b' logits.
It is a list of matrices of constrasts for 'r' and 'b' logits; it follows
the natural order of the variables. Arbitrary (for example 0) for
other logits.

For example: variable A with categories a1, a2, a3, a4;
the non-minimal sets M1, M2, M3 could be as follows:
#
_____|M1___
| |
__|M3__ __|M2__
| | | |
a1 a2 a3 a4
#
then 'cocacontr' should be
cocacontr=list(
matrix(c(1,1,0,0,
0,0,1,0,
1,0,0,0,
0,0,1,1,
0,0,0,1,
0,1,0,0),6,4,byrow=TRUE)
,0),
#
as the first 3 rows represent the 'LEFT children' of the node Mm, m=1,2,3
1 1 0 0 --> M1
0 0 1 0 --> M2
1 0 0 0 --> M3

hmmm.model.summary 23

#
and the last 3 rows represent the 'RIGHT children' of the node Mm, m=1,2,3
0 0 1 1 --> M1
0 0 0 1 --> M2
0 1 0 0 --> M3

NB: The marginal logits are builded as follows:
--> eta1 on the M1 node
--> eta2 on the M2 node
--> eta3 on the M3 node

===========================

definition of the model
models<-hmmm.model(marg=marginals,lev=c(4,3),
cocacontr=list(matrix(c
(1,1,0,0,
0,0,1,0,
1,0,0,0,
0,0,1,1,
0,0,0,1,
0,1,0,0

)
,6,4,byrow=TRUE),0
),
strata=1,X=XX)

descr<-hmmm.model.summary(models)
model with all the log-recursive o.r. =0 except for o.r.(1,1),
that is "Model of stochastic independence in sub-tables"
(except for the table referring to the first node of each hierarchy of sets)
XX<-diag(1,11)
XX<-XX[,-c(7,8,9,10,11)]

modelsor<-hmmm.model(marg=marginals,lev=c(4,3),
cocacontr=list(matrix(c
(1,1,0,0,
0,0,1,0,
1,0,0,0,
0,0,1,1,
0,0,0,1,
0,1,0,0

)
,6,4,byrow=TRUE),0
),
strata=1,X=XX)

hmmm.model.summary hmmm model summary

Description

Function to print informations on the interactions of a fitted hierarchical multinomial marginal
model estimated by hmmm.mlfit or a model defined by hmmm.model.

24 hmmm.model.summary

Usage

hmmm.model.summary(modelfull, fitmod = NULL, printflag = TRUE,

aname = "modfit")

Arguments

modelfull A model object created by hmmm.model.

fitmod Model fitted by hmmm.mlfit.

printflag If TRUE the output is printed otherwise returned without printing.

aname Title for the output.

Details

The output changes according if the number of strata is >1 or not and if fitmod is NULL or not.

Value

A matrix containing informations on the marginal interactions and also of their estimates if fitmod
is not NULL.

Author(s)

Roberto Colombi, Colombi@unibg.it.

Examples

#==
MODELS with INEQUALITY CONTRAINTS on the o.r.
- DOUBLE MONOTONE DEPENDENCE HYPOTHESES -
#==

TABLE 1 - section 7.3:
two way contingency table --> CUSTOMER SERVICE x TRAINING,
377 customers, users of a machine tool.
(4 categories each, levels of satisfaction:
U=unsatisfied, S=satisfied, RS=really satisfied, ES=extremely satisfied).

y <- c(
9, 10, 22, 25,
3, 4, 10, 4,

12, 15, 81, 37,
11, 6, 31, 97)

Z <- ZF <- matrix(1,16,1)

###
DOUBLE UNIFORM monotone dependence:
log-continuation-local & log-local-continuation o.r. >= 0
###

identity design matrix 15 x 15

hmmm.model.summary 25

NB: no constraints on the marginal logits
XX<-block.fct(diag(1,6),diag(1,9))

univariate marginals
logit type:
l --> local, g --> global,
c --> cont., rc --> reverse cont.,
r --> recursive
NB: in this case the univariate marginals can be of any type
as they are not constrained.
marginal1<-list(marg=c(1),int=list(1),types=c("l","marg"))
marginal2<-list(marg=c(2),int=list(2),types=c("marg","l"))

bivariate marginals
marginal12<-list(marg=c(1,2),int=list(c(1,2)),types=c("l","l"))

marginals<-list(marginal1,marginal2,marginal12)

marginal list involved in the INEQUALITIES
marginal12dis<-list(marg=c(1,2),int=list(c(1,2)),types=c("c","l"))
marginal12bis<-list(marg=c(1,2),int=list(c(1,2)),types=c("l","c"))
dism<-list(marginal12dis,marginal12bis)

D is the matrix that involves the INEQUALITIES
D<-diag(1,18)

deletion of REDUNDANT CONSTRAINTS
NB: it is necessary to know which they are...
D<-D[-c(7,8,9,12,15),]

definition of the model
models<-hmmm.model(marg=marginals,dismarg=dism,lev=c(4,4),
cocacontr=NULL,strata=1,Z=Z,ZF=ZF,X=XX,D=D)

descr<-hmmm.model.summary(models,printflag=TRUE)

estimation of the models

SATURATED model
asat<-hmmm.mlfit(y,models)

descrfitsat<-hmmm.model.summary(models,asat,aname="Saturated model")

model with INEQUALITIES on the log-c-l o.r. and log-l-c o.r., no EQUALITY constraints
on the univariate marginal logits: "Double uniform monotone dependence model"
a <- hmmm.mlfit(y,models,noineq=FALSE)

descrfitdis<-hmmm.model.summary(models,a,aname="Model with inequalities")

model with INEQUALITIES turned into EQUALITIES, no EQUALITY constraints
on the univariate marginal logits: "Stochastic independence model"
XX0<-rbind(diag(1,6),matrix(0,9,6))

models0<-hmmm.model(marg=marginals,lev=c(4,4),
cocacontr=NULL,strata=1,Z=Z,ZF=ZF,X=XX0)

anull <- hmmm.mlfit(y,models0)

26 loglin.model

descrfitnull<-hmmm.model.summary(models0,anull,aname="Independence model")

loglin.model log-linear models specification

Description

This function can be used to specify a hierarchical log-linear model.

Usage

loglin.model(lev, int = NULL, strata = 1, dismarg = 0, type = "b",
D = TRUE, c.gen=TRUE,printflag=TRUE)

Arguments

lev Numbers of categories of the variables.

int Generating class of the log-linear model (must be a list) or list of all the interac-
tions included.

strata Number of strata.

dismarg List of interactions constrained by inequalities - see hmmm.model.

type "b" for baseline logits "l" for local logits.

D See the help of hmmm.model.

c.gen If FALSE int must be the list of the minimal interaction sets to be excluded.

printflag If TRUE informations on the included and excluded interactions are given.

Details

This function performs the same task of hmmm.model but it is easier to use in the case of loglinear
models. The model can be estimated by hmmm.mlfit.

Value

An object that describes a log-linear model that can be estimated by hmmm.mlfit.

Note

If int is not supplied a saturated log-linear model is defined. For log-linear models where the
parameters depend on covariates first define a saturated log-linear model and then use the function
create.XMAT.

Author(s)

Roberto Colombi, Colombi@unibg.it.

References

Agresti A., Categorical data Analysis, (2ed), Wiley, New York (2002).

marg.list 27

See Also

hmmm.model, hmmm.mlfit, hmmm.model.summary, mph.summary

Examples

d<-hmmm.model.summary(loglin.model(c(3,4,2),list(c(1,2),c(1,3),c(2,3))))

m<-loglin.model(lev=c(2,2,2),int=list(c(1,3),c(2,3),c(1,2)),c.gen=FALSE)
m$matrici$X

dm<-hmmm.model.summary(m)

marg.list lists of marginal sets

Description

A friendly way to define the first argument marg of the function hmmm.model that is the list of
marginal sets used to specify an hmmm model.

Usage

marg.list(all.m, sep = "-", mflag = "marg")

Arguments

all.m Must be a character vector, One rows for every marginal set. Every row must be
like: "marg-g-c" - see the details below.

sep The separator used between logits type; default "-".

mflag The symbol used to denote variables that are marginalized. Default "marg".

Details

A row of all.m is a string defining a marginal set and the logits types that must be used to build the
interactions The variables not included in the marginal set are denoted by mflag. The variables in
the marginal set are denoted by a symbol that identifies a logit type ("b" baseline, "g" global, "c"
continuation, "rc" reverse continuation, "r" recursive, "l" local). Symbols are separated by sep.

Value

A list marg that can be used as the first argument in hmmm.model; see the help of this function.

Note

The function marg.list does not create the list of the interactions that must be defined in a marginal
set. So the function hmmm.model will use the hierarchical approach described in the help of this
function. In particular (because of what just said) marg.list cannot be used to define the interactions
subject to inequality constraints. See the help of hmmm.model.

28 mph.fit

Author(s)

Roberto Colombi, Colombi@unibg.it.

See Also

hmmm.model

Examples

library(hmmm)
mm<-c("m-m-g","m-g-m","g-m-m","l-l-l")
marg<-marg.list(mm,mflag="m")
mod<-hmmm.model(marg=marg,lev=c(3,3,3))
model.description<-hmmm.model.summary(mod)

mph.fit mph models estimation

Description

This function computes ML estimates of a mph model by using the AS algorithm

Usage

mph.fit(y, Z, ZF = Z, h.fct = 0, derht.fct = 0,
L.fct = 0, derLt.fct = 0, X = 0, maxiter = 100,
step = 1, norm.diff.conv = 1e-05,
norm.score.conv = 1e-05, y.eps = 0,
iter.orig = 5, chscore.criterion = 2, m.initial = y)

Arguments

y Vector of table counts.

Z Population matrix describing stratification scheme.

ZF Sampling constraint matrix.

h.fct Constraint function. If h.fct is not equal to the constant 0 (the default), it must be
a function of the single variable m, and it must return a column vector, (default:
h.fct=0).

derht.fct Function that computes analytic derivative of h.fct.

L.fct Model link function. L.fct must be a function of the single variable m and must
return a column vector, (default: L.fct=0).

derLt.fct Function that computes analytic derivative of L.cft.

X Design matrix for the link function L(m)=X*beta.

maxiter Maximum number of iterations.

step Step-size value.
norm.diff.conv

Convergence criteria value.

mph.fit 29

norm.score.conv
Convergence criteria value.

y.eps Non-negative constant to be temporarily added to the original counts in y.

iter.orig Iteration at which the original counts will be used, (default: iter.orig=5).

chscore.criterion
The maximum multiplicative change allowed for ratio norm.score.new/norm.score.old
in the iterative updating.

m.initial Initial estimate of m.

Details

This function computes ML estimates, standard errors, and fit statistics for contingency table models
of the general form h(m) = 0 or L(m)=X*beta where m is the vector of expected counts and h (L)
is any sufficiently smooth (continuous second derivatives) constraint function that satisfies non-
restrictive homogeneity conditions. The ML estimates are based on the observed contingency table
counts y, where y can be specified as coming from a wide variety of sampling models; in particular,
y can be a realization of any MP (Multinomial-Poisson) random vector that is characterized by a
population matrix Z and a sampling constraint matrix ZF. The matrix Z specifies the stratification
sampling plan and ZF specifies which strata sample sizes are fixed. Note that ZF’y = n gives the
vector of fixed sample sizes. (Non-fixed sample sizes are assumed to be realizations of Poisson
random variables).

The population matrix Z comprises ‘0’s and ‘1’s and is of dimension cxK, where c is the number of
counts in y and K is the number of strata or populations. Thus, the rows correspond to observation
numbers and the columns correspond to the strata. A ‘1’ in row i of column j implies that the ith
count came from the jth stratum. Note that Z will have exactly one ‘1’ in each row, and at least one
‘1’ in each column. The population matrix Z which is a column vector of ‘1’s, implies that all the
counts came from the same, and only, stratum.

The sampling constraint matrix tells which of the strata sample sizes are fixed. Note: non-fixed
sample sizes are assumed to be realizations of Poisson random variables. (default: ZF=Z, i.e.
"product-multinomial" sampling). For non-zero ZF, the columns are a subset of the columns in
population matrix Z. If the jth column of Z is included in ZF, then the jth stratum sample size is
considered fixed, otherwise, if the jth column of Z is NOT included in ZF, the jth stratum sample
size is taken to be a realization of a Poisson random variable. When ZF=0, all of the stratum sample
sizes are taken to be realizations of Poisson random variables. The default, ZF=Z, means that all of
the stratum sample sizes are fixed; this is the (product-)multinomial setting. Note that ZF’y = n is
the vector of fixed sample sizes.

Value

Output can be displayed using mph.summary.

Note

The function mphineq.fit is more general because it allows also for inequality constraints d(m)>0.
See the help of mphineq.fit for more details.

Author(s)

Joseph B. Lang, Dept. of Statistics and Actuarial Science Univ. of Iowa, Iowa City, IA 52242

30 mph.fit

References

Lang, J.B. (2004):ăMultinomial-Poisson Homogeneous Models for Contingency Tables, The An-
nals of Statistics, 32, 340-383.

Lang, J.B. (2005): Homogeneous Linear Predictor Models for Contingency Tables, JASA, 100,
121-134.

See Also

mphineq, mph.summary, create.U

Examples

y <-
c(56, 13, 7 ,
6, 4, 10,
1 ,5, 15)

Z <- ZF <- matrix(1,9,1)
Lprobit.fct <- function(m) {
p <- matrix(m,3,3,byrow=TRUE)/sum(m)
pr <- apply(p,1,sum)
pc <- apply(p,2,sum)
rbind(
qnorm(pr[2]+pr[3]),
qnorm(pr[3]),
qnorm(pc[2]+pc[3]),
qnorm(pc[3]),
log(m)
)
}

Xprobit <-
c(1, 0, 0,
0 ,1, 0,
1, 0, 1,
0 ,1, 1)

Xprobit <- matrix(Xprobit,4,3,byrow=TRUE)
A <- factor(gl(3,3))
B <- factor(gl(3,1,9))
Xindep <- model.matrix(~A+B)
Xsat <- model.matrix(~A*B)

FIT USING THE SATURATED ASSOCIATION MODEL

X <- block.fct(Xprobit,Xsat)
a <- mph.fit(y,Z,ZF,L.fct=Lprobit.fct,X=X)

mph.summary(a)
TEST WHETHER b(AGE) = 0 (i.e. Test Marginal Homogeneity) vs. b(AGE) > 0 using the Wald statistic Z = bhat(AGE)/ase(bhat(AGE))

a$beta[3]/a$covbeta[3,3]**0.5

1-pnorm(3.046738)

USE THE INDEPENDENCE ASSOCIATION MODEL

mph.summary 31

X <- block.fct(Xprobit,Xindep)
b <- mph.fit(y,Z,ZF,L.fct=Lprobit.fct,X=X)

mph.summary(b)

mph.summary model summary

Description

This function computes and prints a collection of summary statistics of the fitted model.

Usage

mph.summary(mph.out, cell.stats = FALSE, model.info = FALSE)

Arguments

mph.out Output of hmmm.mlfit.

cell.stats Logical variable indicating whether cell specific statistics are to be output, (de-
fault: cell.stats=FALSE).

model.info Logical variable indicating whether model information is to be output, (default:
model.info=FALSE).

Author(s)

Joseph B. Lang, Dept of Statistics and Actuarial Science Univ of Iowa, Iowa City, IA 52242 8/16/01

See Also

hmmm.mlfit, hmmm.model.summary

Examples

#==
MODEL of STOCHASTIC INDEPENDENCE in SUB-TABLES
#==

TABLE 2 - section 7.4:
two way contingency table --> GROWTH x COMPETITIVENESS,
(114 companies belonging to the manufacturing industry)
GROWTH --> 4 categories, percentage og growth:
L=low, ML=medium/low, MH=medium/high, H=high;
COMPETITIVENESS --> 3 categories, level of competitiveness
L=low, M=medium, H=high.

y <- c(
4, 11, 14, 4,

17, 22, 13, 2,
6, 10, 6, 5)

32 mph.summary

NB
variable GROWTH --> recursive approach,
the non-minimal sets are: M1=(L,ML,MH,H); M2=(MH,H); M3=(L,ML);
variable COMPETITIVENESS --> continuation approach.

identity design matrix 15 x 15
NB: no constraints on the marginal logits

univariate marginals
logit type:
l --> local, g --> global,
c --> cont., rc --> reverse cont.,
r --> recursive
NB: in this case the univariate marginals can be of any type
as they are not constrained.
marginal1<-list(marg=c(1),types=c("r","marg"))
marginal2<-list(marg=c(2),types=c("marg","c"))

bivariate marginals
marginal12<-list(marg=c(1,2),types=c("r","c"))

marginals<-list(marginal1,marginal2,marginal12)

"COCACONTR" specifications
===========================
NB: 'cocacontr' is needed only for recursive 'r' or baseline 'b' logits.
It is a list of matrices of constrasts for 'r' and 'b' logits; it follows
the natural order of the variables. Arbitrary (for example 0) for
other logits.

For example: variable A with categories a1, a2, a3, a4;
the non-minimal sets M1, M2, M3 could be as follows:
#
_____|M1___
| |
__|M3__ __|M2__
| | | |
a1 a2 a3 a4
#
then 'cocacontr' should be
cocacontr=list(
matrix(c(1,1,0,0,
0,0,1,0,
1,0,0,0,
0,0,1,1,
0,0,0,1,
0,1,0,0),6,4,byrow=TRUE)
,0),
#
as the first 3 rows represent the 'LEFT children' of the node Mm, m=1,2,3
1 1 0 0 --> M1
0 0 1 0 --> M2
1 0 0 0 --> M3
#
and the last 3 rows represent the 'RIGHT children' of the node Mm, m=1,2,3
0 0 1 1 --> M1

mphineq.fit 33

0 0 0 1 --> M2
0 1 0 0 --> M3

NB: The marginal logits are builded as follows:
--> eta1 on the M1 node
--> eta2 on the M2 node
--> eta3 on the M3 node

===========================

model with all the log-recursive o.r. =0 except for o.r.(1,1),
that is "Model of stochastic independence in sub-tables"
(except for the table referring to the first node of each hierarchy of sets)
XX<-diag(1,11)
XX<-XX[,-c(7,8,9,10,11)]

modelsor<-hmmm.model(marg=marginals,lev=c(4,3),
cocacontr=list(matrix(c
(1,1,0,0,
0,0,1,0,
1,0,0,0,
0,0,1,1,
0,0,0,1,
0,1,0,0

)
,6,4,byrow=TRUE),0
),
strata=1,X=XX)

am<-hmmm.mlfit(y,modelsor)

H0=(am model) vs H1=(amsat model)
mph.summary(am)

mphineq.fit mph and hmmm models fitting under inequality constraints

Description

Function to maximize the loglikelihood of a multinomial poisson model under nonlinear equality
and inequality constraints

Usage

mphineq.fit(y, Z, ZF = Z, h.fct = 0, derht.fct = 0, d.fct = 0,
derdt.fct = 0, L.fct = 0, derLt.fct = 0, X = 0, maxiter = 100,

34 mphineq.fit

step = 1, norm.diff.conv = 1e-05, norm.score.conv = 1e-05,
y.eps = 0, iter.orig = 5, chscore.criterion = 2, m.initial = y,

mup = 1)

Arguments

y Vectorized sample contingency table.

Z Population matrix. The population matrix Z comprises ‘0’s and ‘1’s and is of
dimension cxK, where c is the number of counts in y and K is the number of
strata or populations. Thus, the rows correspond to observation numbers and
the columns correspond to the strata. A ‘1’ in row i of column j implies that
the ith count cames from the jth stratum. Note that Z will have exactly one
‘1’ in each row, and at least one ‘1’ in each column. The population matrix Z
= matrix(1,length(y),1), which is a column vector of ‘1’s, implies that all the
counts came from the same, and only, stratum.

ZF Sample constraints matrix. For non-zero ZF, the columns are a subset of the
columns in population matrix Z. If the jth column of Z is included in ZF, then
the jth stratum sample size is considered fixed, otherwise, if the jth column of
Z is NOT included in ZF, the jth stratum sample size is taken to be a realization
of a Poisson random variable. When ZF=0, all of the stratum sample sizes are
taken to be realizations of Poisson random variables. The default, ZF=Z, means
that all of the stratum sample sizes are fixed; this is the (product-)multinomial
setting. Note that ZF’y = n is the vector of fixed sample sizes.

h.fct Function h(m) of equality constraints. This function of m must return a vector.

derht.fct Derivative of h(m) if not supplied numerical derivative are used.

d.fct Function for inequality constraints d(m)>0. This function of m must return a
vector.

derdt.fct Derivative of d(m) if not supplied numerical derivative are used.

L.fct Link function for the linear model L(m)=X*beta.

derLt.fct Derivative of L(m) if not supplied numerical derivative are used.

X Model matrix for L(m)=X*beta.

maxiter Maximum number of iterations.

step Interval lenght for the linear search.

norm.diff.conv
Convergence crirerium for parameters.

norm.score.conv
Convergence criterium for constraints.

y.eps Non-negative constant to be temporarily added to the original counts in y, (de-
fault: y.eps=0).

iter.orig Not used.
chscore.criterion

If zero convergence information are printed at every iteration.

m.initial Initial estimate of m.

mup Weight for the constraint part of the merit function.

mphineq.fit 35

Details

Adapted from mph.fit of Joseph B. Lang, Dept of Statistics and Actuarial Science Univ of Iowa,
Iowa City, IA 52242 8/16/01, in order to include inequality constraints.

In particular the AS algorithm has been replaced by a sequential quadratic algorithm which is equiv-
alent to AS when inequalities are not present.

The R functions quadprog and optimize have been used to implement the sequential quadratic al-
gorithm.

More precisely the AS updating formulas are replaced by an equality-inequality constrained quadratic
programming problem. The mph.fit step halving linear search is replaced by an optimal step lenght
search performed by optimize.

Value

Use mph.summary to display the output.

Author(s)

Roberto Colombi, Colombi@unibg.it.

References

Lang J.B. (2004):ăMultinomial-Poisson Homogeneous Models for Contingency Tables, The Annals
of Statistics, 32, 340-383.

Lang J.B. (2005): Homogeneous Linear Predictor Models for Contingency Tables, JASA, 100,
121-134.

See Also

hmmm.mlfit, create.XMAT, hmm.model.summary, mph.summary

Examples

y <-
c(56, 13, 7,
6, 4, 10,
1, 5, 15)

Z <- ZF <- matrix(1,9,1)
Lprobit.fct <- function(m) {
p <- matrix(m,3,3,byrow=TRUE)/sum(m)
pr <- apply(p,1,sum)
pc <- apply(p,2,sum)
rbind(
qnorm(pr[2]+pr[3]),
qnorm(pr[3]),
qnorm(pc[2]+pc[3]),
qnorm(pc[3]),
log(m)
)
}
dprobit.fct <- function(m) {
p <- matrix(m,3,3,byrow=TRUE)/sum(m)
pr <- apply(p,1,sum)
pc <- apply(p,2,sum)

36 pop

rbind(
-qnorm(pc[2]+pc[3])+qnorm(pr[2]+pr[3]),
-qnorm(pc[3])+qnorm(pr[3])
)
}

Xprobit <-
c(1, 0, 0,
0, 1, 0,
1, 0, 1,
0, 1, 1)

Xprobit <- matrix(Xprobit,4,3,byrow=TRUE)
A <- factor(gl(3,3))
B <- factor(gl(3,1,9))
Xindep <- model.matrix(~A+B)
Xsat <- model.matrix(~A*B)

FIT USING THE SATURATED ASSOCIATION MODEL

X <- block.fct(Xprobit,Xsat)
a <- mphineq.fit(y,Z,ZF,L.fct=Lprobit.fct,X=X,d.fct=dprobit.fct,maxiter=1000)

mph.summary(a)
TEST WHETHER b(AGE) = 0 (i.e. Test Marginal Homogeneity) vs. b(AGE) > 0 using the Wald statistic Z = bhat(AGE)/ase(bhat(AGE))

a$beta[3]/a$covbeta[3,3]**0.5

1-pnorm(3.046738)

USE THE INDEPENDENCE ASSOCIATION MODEL

X <- block.fct(Xprobit,Xindep)
b <- mphineq.fit(y,Z,ZF,L.fct=Lprobit.fct,X=X,d.fct=dprobit.fct,maxiter=1000)

mph.summary(b)

pop population matrix Z

Description

This function creates a population (Z) matrix corresponding to data entered by strata. It is assumed
that all the strata have the same number of response levels.

Usage

pop(npop, nlev)

Arguments

npop Number of populations or strata.

nlev Number of response levels per stratum.

rmult 37

Value

Population matrix of dimension (npop*nlev X npop).

Author(s)

Joseph B. Lang

rmult function to create a matrix of multinomial realizations.

Description

A matrix of multinomial realizations is simulated. There will be N columns, each column contains
a realization of a multinomial(n,p) random vector.

Usage

rmult(N = 1, n, p)

Arguments

N Replication number.

n Integer parameter of the multinomial.

p Multinomial probabilities.

Value

A matrix with N columns, each column contains a realization of a multinomial(n,p) random vector.

Author(s)

Joseph B. Lang Dept of Stat and Act Sci Univ of Iowa

Index

∗Topic datagen
rmult, 37

∗Topic distribution
chibar.summary, 6

∗Topic htest
chibar, 4
chibar.P, 3
chibar.summary, 6
hmmm.chibar, 15
hmmm.chibar.P, 14
hmmm.CoxTest, 13

∗Topic math
block.fct, 2
create.U, 7
Marg.fct, 1
pop, 36

∗Topic models
create.WCMAT, 8
create.XMAT, 10
hmmm.mlfit, 17
hmmm.model, 19
hmmm.model.summary, 23
loglin.model, 26
marg.list, 27
mph.fit, 28
mph.summary, 31
mphineq.fit, 33

block.fct, 2

chibar, 4
chibar.P, 3
chibar.summary, 6
create.U, 7
create.WCMAT, 8
create.XMAT, 10

hmmm.chibar, 15
hmmm.chibar.P, 14
hmmm.CoxTest, 13
hmmm.mlfit, 17
hmmm.model, 19
hmmm.model.summary, 23

loglin.model, 26

Marg.fct, 1
marg.list, 27
mph.fit, 28
mph.summary, 31
mphineq.fit, 33

pop, 36

rmult, 37

38

	Marg.fct
	block.fct
	chibar.P
	chibar
	chibar.summary
	create.U
	create.WCMAT
	create.XMAT
	hmmm.CoxTest
	hmmm.chibar.P
	hmmm.chibar
	hmmm.mlfit
	hmmm.model
	hmmm.model.summary
	loglin.model
	marg.list
	mph.fit
	mph.summary
	mphineq.fit
	pop
	rmult
	Index

