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Abstract Hierarchical Multinomial Marginal Models (HMMM) are intro-
duced and the use of the package hmmm in order to specify, estimate and
testing HMMDM models is briefly explained. This paper is intended to be an
introduction both to the theory of HMMM models and to the main features
of the package hmmm.

1 Introduction

Hierarchical Multinomial Marginal Models, (HMMM), allows logits of lo-
cal, baseline, global or recursive type to be considered for each variable of
a multi-way contingency table. Furthermore higher dimension interactions
can be defined in correspondence to different marginal probability functions
coherently with the type of logits associated to each variable. The specifi-
cation of a HMMM depends on the definitions of complete and hierarchical
family of interaction sets and of generalized marginal interactions. Bar-
tolucci, Colombi and Forcina (2007) showed that the generalized marginal
interactions associated to a complete and hierarchical family of interaction
sets are a parameterization of the joint probabilities of a multi-way contin-
gency table. HMMM models are special cases of Lang’s (2005) HLP models
and the Lang’s asymptotic results apply also to this context. The hmmm
R-package, that has been developed by the authors of this paper, can be
used to specify and estimate HMMM models under equality and inequal-
ity constraints. The package is based on an extension of the Lang (2005)
procedure mph.fit. The main extensions are about the specification of very
general HMMM models in a friendly way and about the inference on pa-
rameters under inequality constraints. A procedure to simulate the p-values
of the chi-bar distribution, needed to test inequalities, is also implemented.
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The package hmmm can also be used to estimate the more general models
MPH and HLP of Lang (2004, 2005) under inequality constraints.

HMMM models are defined in section two. In section three the use of the
package hmmm is introduced and some simple examples of HMMM models
are given. Section four describes HMMM models and the use of the package
hmmm when covariates are present.

2 Multi-way contingency tables

We now consider the joint probability function of ¢ ordinal categorical vari-
ables Aj,..., Ay, where A; has categories in A; = {a;i;,i; = 1,2,...,7;}.
For ordinal variables the numbering of the categories is assumed to be co-
herent with their order. The set of variables that defines a given marginal
distribution will be denoted by the set M of indices of the corresponding
variables. M will be called marginal set and the distribution associated with
it will be called M-marginal distribution. @ = {1,...,q} will refer to the
joint distribution and the vector of the r = [[{ r; joint probabilities will be
denoted by 7. Given a vector = (z1,%2,...,%4)" of ¢ components &, will
denote the vector with components x; : j € M. 1 will denote a vector of
ones when the dimension is clear from the context and 14 a vector of ones
of dimension equal to the cardinality of M.

2.1 Generalized marginal interactions

We now extend the Bartolucci, Colombi and Forcina (2007) definition of
interaction parameters in order to include recursive or nested logits and log-
odds ratios (o.r.), (Cazzaro and Colombi, 2006b, 2007) together with the
well known types of logits: local, baseline, global, continuation and reverse-
continuation and the types of log-odds ratios discussed by Douglas et al.
(1990).

Given r; — 1 pairs Bj(m;,0), B;j(m;,1), m; =1,2,...,r; — 1, of disjoint
subsets of A;, the logits, defined on a marginal distribution, are the log-
P(A;€Bj(my,1))

P(A;€B;(m;,0))

The sets B;(m;,0) are equal to {a;m, } for local logits and to {a;;; : i; =
1,...,m;} for global logits, m; = 1,2, s r; —1; similarly, the sets B;(m;, 1)
are equal to {a;(m;4+1)} for local logits and to {aj;, : i; = m; +1,...,7;}
for global logits, m; = 1,2,...,7; — 1. To consider explicitly baseline logits
define the sets B;(m;,0) to be equal to {a;1} and the sets B;(m;,1) to be
equal to {a;(m;41)} for any m; <r;.

For recursive or nested logits the sets Bj(m;,0) = Bj(a;i,(m,),0) and
Bj(mj, 1) = Bj(aji,(m,), 1), of categories of a Coherent Complete Hierarchy
of Sets are defined as described in the Appendix for any m; < r;.

Continuation and reverse-continuation logits are special cases of recur-
sive or nested logits (Cazzaro and Colombi, 2007).

probability odds: In
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Given a logit type for the categorical variable A; and a logit type for the
categorical variable A, a family of generalized o.r., defined on a bivariate
distribution, is composed by the standard odds ratios computed in the fol-
lowing (r1 —1)(r2 — 1) two by two tables Ty, m,, m1 = 1,2,...,71 —1,mg =
1,2,.,m0 — 1t

Table 1 2 x 2 table where a generalized o.r. is defined.

(Tonrs | 0 | 1 |
0 pT‘(Al (S B1(TTL1,0),A2 S BQ(TTLQ,O)) pT(A1 S B1(m1,0),A2 € Bz(mz, 1))
1 pr(A; € B1(m1, 1), Az € Bz(mz,o)) pr(A; € B1(m1, 1), A2 € Ba(ma, 1))

When the same logit type is used for A; and for A, a family of sym-
metric odds ratios is defined, otherwise a family of asymmetric odds ratios
is defined. A family of odds ratios is denoted by the name of the logit
type used for A; and by the name of the logit type used for As (local-
global o.r., local-continuation o.r., global-continuation o.r., global-local o.r.,
continuation-local o.r., continuation-global o.r., etc.). If the same logit type
is used for both variables the name is not repeated (local o.r., global o.r.,
continuation o.r., etc.). Recursive and local-recursive odds ratios have been
introduced by Cazzaro and Colombi (2006b, 2007) who used them to de-
fine new types of monotone dependence hypotheses. The logits defined on
marginal distributions and the odds ratios defined on bivariate distributions,
just introduced, are special cases of the generalized marginal interactions in-
troduced by Bartolucci, Colombi and Forcina (2007).

In order to introduce the generalized marginal interactions we define the
marginal probabilities:

pm(moa; ha) = P(A; € Bj(my, hy), Vj € M),

where m ¢ is a row vector of integers m;, m; < rj, j € M, and hyy
is a row vector whose elements, h;, j € M, are equal to zero or to one.
These marginal probabilities are probabilities of a table where the vari-
ables Aj, Vj € M, have been dichotomized according to the categories
Bj(m;,0) and Bj(m;,1) and where the variables A;, Vj ¢ M, have been
marginalized. Note that different m, denote different tables while differ-
ent hpq denote different probabilities within the same table. In general
Bj(m;,0)UB;(m;,1) C Aj, thus the probabilities of the previous tables do
not always sum to one. This aspect is irrelevant to what follows.

The generalized marginal interactions nz,pm(mz) are standard baseline
log-linear interactions defined in the previous marginalized and aggregated
tables. Any generalized marginal interaction is defined by the interaction
set 7 of the variables involved, by the M-marginal distribution where it
is defined and by the logit type assigned to each variable of M. Moreover
every interaction is computed in the marginalized-aggregated table where
the variables A;, Vj € M\Z, which are not involved in the interaction,
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belongs to B;(1,0) U B;(1,1). This means that the conditioning variables
Aj, Vi € M\T are fixed at the reference set B;(1,0) which is the singleton
{aj1} in the case of global, local, baseline and continuation logits.

A more formal definition of the generalized marginal interactions is:

nzm(mz) = Z (—1)P\%llog p s (maz, L z; Ok, 1) (1)
KCT

The choice of the reference category B;(1,0) for the conditioning vari-
ables belonging to M\Z is convenient but may be arbitrary. For a discussion
of the relations between generalized marginal interactions that treat the
variables in M\Z in a different way see Bartolucci, Colombi and Forcina
(2007, sections 2.1, 2.2) who showed that only when all the variables in
MA\Z have logits of local (baseline) type, the parameters defined by fixing
the conditioning variables to a different reference category are linearly re-
lated to the ones defined by (1). It follows that only when all the variables
in M\Z have logits of local (baseline) type, linear constraints on the inter-
actions (1) may be written as linear constraints on parameters defined by
choosing a different reference category.

Note that the kind of dichotomy implied by the type of logits adopted
for each variable should carry over when defining higher order interactions
within the same marginal distribution, but not necessarily between different
marginal distributions.

To exemplify the previous definitions and the associated notation con-
sider the marginal set M = {1,2, 3,4} where global logits are assigned to
the first two variables and local logits are assigned to the last two variables.
If Ay and A, have three categories the interactions 9y 23,11 2,343 (M1 ,2})
are the four log-global logits that are standard log-odds ratios computed
in the following 2 x 2 tables (for simplicity we omit the reference to the
marginal set within the table):

Table 2 Tables where the interactions 7y »y.(1 2.3 43 (70{1,2}) are defined.

As = az1, As = an

Ay
a1 a12,0a13 a11,a12 a13
Az an p(1111;0000) | p(1111;1000) az1 p(2111;0000) | p(2111;1000)
as2,a23 | p(1111;0100) | p(1111;1100) az2,a23 | p(2111;0100) | p(2111;1100)
Ay
a11 ai12,0a13 a11,a12 a13
Az a21,a22 | p(1211;0000) | p(1211;1000) az1,a22 | p(2211;0000) | p(2211;1000)
a23 p(1211;0100) | p(1211;1100) as3 p(2211;0100) | p(2211;1100)

In the tables of the first column can also be defined the two log-global
logits: 7y9y,41,2,3,4}(My2}) and in the tables of the first row the two log-
global logits 71},1,2,3,4) (M{1}) can be defined.
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If A3, A4 are dicothomous the third order interactions 1 5 3,112,343 (M {1,2,3})
are differences between the logs of the global o.r. of the previous tables and
the logs of the global odds ratios computed in the corresponding table where
A3 = ago, Ay = aq1. These tables are reported below.

Table 3 Tables needed for the interactions 17y 5 33,112,343 (M {1,2,3})-

Az = azz, Ay = an

Ay
a1 a12,0a13 a1, ai2 a13
Az an p(1121;0000) | p(1121;1000) a1 p(2121;0000) | p(2121;1000)
as2,a23 | p(1121;0100) | p(1121;1100) a2,a23 | p(2121;0100) | p(2111;1100)
Ay
a11 ai2,0a13 a11,ai2 ai13
Az az1,a2 | p(1221;0000) | p(1221;1000) az1,a22 | p(2221;0000) | p(2221;1000)
az3 p(1221;0100) | p(1221;1100) az3 p(2221;0100) | p(2221;1100)

The interactions 1y 31.41,2.3,4) (M 1,3}) are two log-global-local odds ra-
tios that are the standard log-odds ratios computed using the four proba-
bilities which are located in the first row of the two N-E tables (resp. N-W)
of Table 2 and Table 3.

The interactions 1y, 3y,(1,2,3,4) (M{2,3}) are two log-global-local odds ra-
tios that are the standard log-odds ratios computed using the four proba-
bilities which are located in the first column of the two N-E tables (resp.
S-E) of Table 2 and Table 3.

Similar remarks hold for the interactions:

M{1,4}:{1,2,3,4} (m{1,4})a M{2,4}:{1,2,3,4} (m{2,4}), M41,2,4};{1,2,3,4} (m{1,2,4})~

To compute the previous interactions and the fourth order interactions
M{1,2,3,4}:{1,2,3,4} (M {1,2,3.4}) Which are contrasts of four log-global odds ra-
tios, also the eight tables where A; = a4o are needed. We leave to the
reader the task to find out that interactions mq 3 4y,(1,2,3,43 ("M {1,3,4)) and
M{2,3,4}:{1,2,3,4} (myy 3.4y) are differences between the logarithms of two global-
local odds ratios. The remaining three families of interactions involve only
Az and Ay and a sensible choice is to define them in the marginal distribu-
tion of these two variables when we are interested in the dependence of A
and As on Az and A4.

The previous example shows two important facts. First of all gener-
alized marginal interactions are standard log-linear interactions which are
computed in tables obtained by marginalizing with respect to some variables
and by aggregating the categories of some other variables. Secondly every
generalized marginal interaction can be seen as a contrast of well known
types of generalized logits and odds ratios.

Glonek and McCullagh (1995), Colombi and Forcina (2001) showed that
a vector of these interactions has the matricial representation C In(M ). In
the previous formula 7 is the vector of the joint probabilities, C' is a matrix
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of contrasts and M is a matrix of zeros and ones. Cazzaro and Colombi
(2007) extended the previous result in order to include recursive logits and
odds ratios.

2.2 Generalized marginal interactions associated to complete and
hierarchical families of interaction sets

We now examine the problem of allocating the interaction sets Z among the
marginal sets within which they may be defined. Remember that a marginal
distribution is denoted by the set M C Q of indices of the corresponding
variables. Denote by Fj the family of interaction sets defined within the
M-marginal distribution. Let also Py be the family of all non-empty sub-
sets of My.

Given a sequence of marginal sets My,..., Mg, such that My, is not a
subset of My, for every h < k, a family of interaction sets is called complete
and hierarchical if (i) any interaction set is defined in one Mj-marginal
distribution, (ii) 71 = Py and Fr = Pe\Up<p Fa-

The previous definition implies that M = Q, that every interaction set
belongs to only one marginal distribution, that My € Fy, for every k and
that if a set J € Py belongs to Fj then every set of Py that contains J
belongs to F, too.

Generalizing a previous result of Bergsma and Rudas (2002), Bartolucci,
Colombi and Forcina (2007) and Cazzaro and Colombi (2006b, 2007) have
proved that the generalized marginal interactions associated to a complete
and hierarchical family of interactions parameterize the joint distribution
of the ¢ categorical variables. Any model obtained by constraining a set of
generalized marginal interactions associated to a complete and hierarchical
family of interactions is a HMMM model that can be fitted with the hmmm
package.

3 Some Examples and the hmmm package

Many examples of HMMM models subject to inequality constraints, to-
gether with a discussion of the logits types here introduced can be found in
Colombi and Forcina (2001), Bartolucci, Colombi and Forcina (2007) and
Cazzaro and Colombi (2006a, 2006b, 2007). Here we give some other exam-
ples in order to describe the use of the package hmmm. As a first example
consider the seemingly unrelated logit regressions represented by the dashed
edges graph of figure 5.3(a) of Cox and Wermuth (1996) and here reported
in Fig. 1. Under this model the variables A3 and A4 are explanatory for
the variables A; and As, As is independent from Az given A4 and A; is
independent from A, given As.

The model can be parameterized choosing the complete hierarchical
parameterization defined by the marginals M; = {3,4}, My = {1,3,4},
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Ms ={2,3,4}, My ={1,2,3,4}, and the constraints:

0,
0.

77{2,3};{2,374}@{2,3}) =0, 77{2,3,4};{2,374}(i{2,3,4})
77{1,4};{1,3,4}(i{1,4}) =0, 77{1,3,4};{1,3,4}(i{1,3,4})

Fig. 1 Figure 5.3(a) of Cox and Wermuth (1996).

If the four categorical variables are ordinal it is sensible to choose logits
of type global for A3 and A4 within M, and for A; and A within My, M3
and My. As explained in Bartolucci, Colombi and Forcina (2007), who gave
a general description of block recursive models of this type, it is convenient
to use logits of type local for the explanatory variables A3 and A, within
Mz, M3 and ./\/l4.

If the four categorical variables are ordinal the following inequality con-
straints:

77{2,4};{2,3,4}(i{2,4}) <0, 77{1,3};{1,3,4}('5{1,3}) <0,

state that the distributions of A5 conditioned by the explanatory variables
are stochastically decreasing with the categories of A4 and that the condi-
tional distributions of A; are stochastically decreasing with the categories
of Az. The problem of testing linear inequality constraints on marginal pa-
rameters has been discussed by Dardanoni and Forcina (1998), Colombi and
Forcina (2001) and by Bartolucci, Colombi and Forcina (2007).

We now illustrate how to specify and estimate the previous model using
the package hmmm. First of all the marginal sets within which the inter-
actions are allocated must be defined. Every marginal set must be defined
by a list with the two components marg, types. The first component marg
describes the marginal set and the second component types describes the
logit types that are used to build up the interactions marg. So in the case of
four variables marg = ¢(3,4) describes the marginal bivariate distribution
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of Az, Ay and types=c(“marg”, “marg”,“g” ,“g”) says that variables Ay, Ay
are marginalized and that global logits are used for the remaining two vari-
ables. Use “g”, “1”, “c”, “rc” for global logits, local logits, continuation
and reverse continuation logits respectively. For recursive logits (“r”) and
base-line logits (“b”) see the next sub-section. Finally the HMMM model
is specified by the statement hmmm.model(marg,lev) where maryg is the list
of all the marginal sets previously defined and lev contains the number of
categories of the variables.

library(hmmm)
marg34 < —list(marg = ¢(3,4), types = c(“marg”, “marg”, “g”, “g”))
margl3d < —list(marg = ¢(1, 3,4), types = c(“g”, “marg”, “1”, “1”))
marg234 < —list(marg = c(2,3,4), types = c(“marg”, “g”, “I”, “1))
margl234 < —list(marg = ¢(1,2,3,4), types = c¢(“g”, “g”, “I", “1"))
marglist < —list(marg34, margl34, marg234, marg1234)

my.model < —hmmm.model(marg = marglist,lev = ¢(3,3,2,4))

A more convenient way to define the list marglist is given by the function
marg.list that is the first six statements can be replaced by:

library(hmmm)
marglist < —c(“m—-m—g—g",“g—m—-1-0,“m—g—1-0",%“g—g—1-1")

marglist < —marg.list(marglist, mflag = “m”)

The statement d < —hmmm.model.summary(my.model) produces the fol-
lowing output.

inter. marg. logit npar start end

3 34 g 1 1 1
4 34 g 3 2 4
34 34 gg 3 5 7
1 134 g 2 8 9
13 134 gl 2 10 11
14 134 gl 6 12 17
134 134 gll 6 18 23

2 234 g 2 24 25
23 234 gl 2 26 27
24 234 gl 6 28 33

234 234 gll 6 34 39

12 1234 gg 4 40 43
123 1234 gel 4 44 47
124 1234 ggl 12 48 59

1234 1234  ggll 12 60 71
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In the first column the interactions are reported, the second column de-
scribes the marginal distribution where the interactions are defined. For
every interaction type the third column describes the logit type used for ev-
ery variable in the interaction set and the fourth column reports the number
of parameters. The last two columns give the position of the parameters in
the vector where all the 71 interactions are arranged. The previous model is
a saturated model. Note that within a marginal distribution are defined all
the interactions, between the variables in the marginal set, that have not
been defined within previous marginal distributions.

The function marg.list can be used only in this case that is when within
a marginal distribution are defined all the interactions that have not been
defined within previous marginal distributions and in particular it cannot
be used to define inequalities as in the case of the following statements. This
is so because in this case a list of interactions (int) must be supplied in the
definition of a marginal set.

The equality constraints described at the beginning of the section state
that the parameters in the positions: 12,13,14,15,16,17,18,19,20,21,22,23,
26,27,34,35,36,37,38,39, are null.

The following statements define a model with the inequality and equality
constraints defined in the first part of this section.

marg234ineq < —
list(marg = ¢(2,3,4),int = list(c(2,4)), types = c(“marg”, “g”, “I”, “1”))
margl34dineq
< =list(marg = ¢(1,3,4),int = list(c(1,3)), types = c(“g”, “marg”, 17, “1”))
ineq < —list(marg234ineq, margl3dineq)
sel < —c(12: 23,26 : 27,34 : 39)
XX < —diag(1,71)
XX < —XX|[,—sel]
model.constr < —
hmmm.model(marg = marglist, lev = ¢(3,3,2,4),
dismarg = ineq, X = XX, D = diag(—1,8))

Note that in the previous statement the matrix X X defining the equality
constraints is assigned to the argument X and the list ineq of the interac-
tions subject to inequality constraints is assigned to the argument dismaryg.
The argument D is used to turn the eight inequalities from non-negativity
constraints (the default) to non-positivity constraints.

The R function hmmm.model creates also the R functions needed to
compute the Link function, that is the vector n = C'ln(M) of the gen-
eralized marginal interactions, and its derivative with respect to the vector
7 of the joint probabilities. The R functions that compute the equality and
inequality constraints and their derivatives with respect to the joint prob-
abilities are also created. These R functions are required to compute the
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M.L. estimates of the parameters of the HMMM model and to solve many
inferential problems.

To show how the previous model can be estimated on real data, we ana-
lyze the Madsen data (Madsen, 1976) concerning rental property residents
who are classified according to the following categorical variables: Influence
on apartment management (variable 1), Satisfaction (variable 2), Contact
with other residents (variable 3), and Housing type (variable 4). The eight
contingency tables concerning the joint distributions of Influence and Sat-
isfaction, for every level of Contact and Housing, are given in Table 4.

Table 4 Madsen data.

CONTACT Low High

SATISFACTION Low Medium High | Low Medium High
HOUSING INFLUENCE

Tower Low 21 21 28 14 19 37
Blocks Medium 34 22 36 17 23 40
High 10 11 36 3 5 23
Apart- Low 61 23 17 78 46 43
ments Medium 43 35 40 48 45 86
High 26 18 54 15 25 62
Atrium Low 13 9 10 20 23 20
houses Medium 8 8 12 10 22 24
High 6 7 9 7 10 21
Terraced Low 18 6 7 57 23 13
Houses Medium 15 13 13 31 21 13
High 7 5 11 5 6 13

Let y be the vector of the sample frequencies arranged in such a way
that the modality index i; of the j — th variable, 7 = 1,2,3 runs faster
than the indexes to its right. The model can be estimated by the following
statements:

mod. fit < —hmmm.ml fit(y, model.constr,noineq = FALSFE)
descr fit < —
hmmm.model.summary(model.constr, mod. fit)

mph.summary(mod. fit)

The statements mph.summary and hmmm.model.summary give different
summaries of the estimated model; hmmm.model.summary is specific to
HMMDM models and gives detailed informations on the interactions used, the
marginal distribution and the stratum to which they belong together with
their point estimates. The Lang’s function mph.summary is more general
and can be used also for MPH models.
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If noineq = FALSE is omitted or replaced by noineq = TRUFE in
hmmm.mlfit the inequality constraints are ignored and the model is esti-
mated only under the equality constraints:

mod. fit.noineq < —hmmm.ml fit(y, model.constr,noineq = TRUE)

To estimate the model where inequalities are turned into equalities the
following statements must be used:

sel < —¢(10: 23,26 : 39)
XXX < —diag(1,71)
XXX < —XXX[,—sel]
model.notneq < —
hmmm.model(marg = marg.list,lev = ¢(3,3,2,4), dismarg = ineq, X = X X X)

mod. fit.null < —hmmm.ml fit(y, model .noineq)

To obtain the log-likelihood ratio statistics and the simulated p-values of

the chi-bar square distribution to test mod.fit.noineq against mod.fit (test
type B, Silvapulle and Sen, 2005) and to test mod.fit against the model
mod.fit.null where the inequalities are turned into equalities (test type A,
Silvapulle and Sen, 2005), the following statements must be used:

p < —chibar(model = model.constr, null fit = mod. fit.null,
disfit = mod.fit, satfit = mod. fit.noineq)

chibar.summary(p)

The statement chibar.summary(p) gives the output of Table 5.

Table 5 Chi-bar simulated p-values.

test p-value
testA  69.754 0
testB 8.06 0.104

As the likelihood ratio statistics to test the model mod.fit.noineq against
the saturated model is G2 = 40.22, (df = 20) and as testB is not significa-
tive, the model mod.fit can be retained. The model previously introduced
states that Influence is independent from Housing type given Contact and
that Satisfaction is independent from Contact given Housing type. The
inequalities state that the distribution of Influence given high contact is
stochastically smaller than the one given low contact and that the distribu-
tion of Satisfaction given Housing type becomes stochastically smaller when
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we move from the top of the table to the bottom. This is quite surprising
because it means that in better houses residents are generally less satisfied
and that residents with low contact generally think to have good influence

more easily than the ones with high contact.
Finally we observe that when the marginal sets are not specified hmmm.model

adopts the Glonek and McCullagh (1995) parameterizations with interac-
tions of type local as shown in the following example:
library(hmmm)
model < —hmmm.model(lev = ¢(3,3,2,4))

d < —hmmm.model.summary(model)

The statement d < —hmmm.model.summary(model) now produces the
following output:

inter. marg. logit npar start end

1 1 1 2 1 2
2 2 1 2 3 4
3 3 1 1 5 5
4 4 1 3 6 8
12 12 11 4 9 12
13 13 1 2 13 14
23 23 1 2 15 16
14 14 1 6 17 22
24 24 1 6 23 28
34 34 1l 3 29 31
123 123 111 4 32 35
124 124 11 12 36 47
134 134 11 6 48 93
234 234 11 6 54 99
1234 1234 1111 12 60 71

In the Glonek and McCullagh (1995) parameterizations all the possible
marginal distribution sets are considered and in every marginal distribution
the only interaction set which is defined is the marginal set itself.

When a saturated log-linear model is required the statement

lgnmod < —loglin.model(c(3,3,2,4))

can be used. The statement d < —hmmm.model.summary(lgnmod) pro-
duces an output with the same interactions given in the previous output
which now are of baseline type and are all defined in the joint distribu-
tions. The function loglin.model can also be used to specify non-saturated
hierarchical log-linear models, if the list of the maximal interaction sets of
non-null interactions is assigned to the argument int. As an alternative the
list of the minimal interaction sets of null interactions can be specified. Fi-
nally local interactions can be used instead of the baseline ones which are

the default.
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3.1 Models with recursive and baseline logits

[15%))

Interactions defined by baseline logits (“b”) and recursive logits (“r”) are
not automatically generated. This is so because recursive logits depend on
the Coherent Complete Hierarchy of Sets which is used and baseline logits
depend on the category chosen as the reference one. Note that in section
two we assumed that the reference category was the first one but this is not
necessary and even arbitrary for non ordinal variables. Recursive logits and
odds ratios have been introduced by Cazzaro and Colombi (2006b, 2007)
with special reference to monotone dependence hypotheses and the baseline
logits are the only type of logits that can be used with non-ordinal vari-
ables. To define these interactions the argument cocacontr of the function
hmmm.model must be used. The argument cocacontr must be equal to a
list of zero-one matrices; one for every variable of the joint distribution. The
first r; — 1 rows of the j — th matrix must describe the indicator functions
of the r; — 1 sets B;(m;,0) and the remaining r; — 1 rows must describe
the indicator functions of the sets B;(m;,1). In the list cocacontr matrices,
corresponding to variables to which a “b” or “r” logits is never assigned,
can be defined arbitrarily (a simple 0 will do) and once a matrix is assigned
to a variable A; it will be used in every marginal distribution where A;
do not have “17, “g” “r”, “rc” logits. So the logit type of a variable have
not to be the same across different marginal distribution but the reference
category or the CCHS cannot be changed. This also implies that “b” logits
and “r” logits cannot be assigned to the same variable in different marginal
distributions. In the following example recursive logits are used for A; and
baseline logits are used for As. Both variables are supposed to have four cat-
egories. The non-minimal sets of the coherent complete hierarchy of sets,
used for Aq, are the set of all the four categories, the set of the last two
categories and the set of the first two categories. The reference category of
As is assumed to be the first one.

library(hmmm)
marginall < —list(marg = c¢(1), types = c(“r”, “marg”))
marginal2 < —list(marg = ¢(2), types = c(“marg”, “b”))
marginall2 < —list(marg = ¢(1, 2), types = c(“r”, “b”))
marg.list < —list(marginall, marginal2, marginall2)
model < —hmmm.model(marg = marg.list,dismarg = dism,lev = ¢(4,4),
cocacontr = list(matrix(
¢(1,1,0,0,
1,0,0,0,
0,0,1,0,
0,0,1,1,
0,1,0,0,
0,0,0,1),
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6,4, byrow = TRUE),
matriz(
¢(1,0,0,0,
1,0,0,0
1,0,0,0,
0,1,0,0,
0,0,1,0,
0,0,0,1),

6,4, byrow = TRUFE)))

A saturated model is defined by the previous statements and the statement
d < —hmmm.model.summary(model) now produces the following output.

inter. marg. logit npar start end

1 1 r 3 1 3
2 2 b 3 4 6
12 12 rb 9 7 15

Non-saturated models can be defined as shown in the previous example or
in the following section.

4 Hypotheses testing on equality and inequality constraints in
presence of covariates

When the data comes from s different strata or populations let n,, t =
1,2, ..., s, be the vector where the interactions associated to a complete
hierarchical family of interactions are arranged. The complete hierarchical
family of interactions and the used logit types are supposed to be the same
in all s populations. Let 17 be the vector obtained by staking the n,’s. The
vector 17 may be explicitly written in matrix form as

n = Clog(M), (2)

where the rows of C are contrasts and M is a matrix of zeros and ones which
sums the probabilities to obtain the necessary marginal probabilities. The
definition of these matrices was given by Colombi and Forcina (2001) and
was extended by Cazzaro and Colombi (2006b) in order to include recursive
type interactions.

It is interesting to test equality and inequality constraints on the param-
eter vector  under product multinomial sampling. Constraints defined by
equalities may be useful for testing conditional independencies or additive
effects of covariates in marginal tables or marginal homogeneity hypotheses.
Inequality constraints can be useful for verifying monotone dependence or
positive association hypotheses. A HMMM model is a model of the form:

n=Xp,
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where 3 is a vector of unknown parameters and where the elements of the
matrix X are known functions of the covariates that describe the strata.

HMMM models are special cases of Lang’s (2005) HLP models and
the way of estimating 3 and testing linear equality is discussed in Lang
(2005). The way of testing inequality constraints on 1 is the same as that
described by Colombi and Forcina (2001). We only recall that in presence of
inequality constraints the likelihood ratio test statistics has an asymptotic
chi-bar square distribution. In the next sub-sections the use of the package
hmmm is described.

4.1 Examples

In the following example education (variable 2) with three categories and
jobs (variable 1) with three categories are the dependent variables. Two
explanatory variables age (two levels) and area (four levels) define eight
strata. In the order of the 8 strata the levels of age run faster than the ones
of area. The following statements read the data and define a HMMM model
as in section 2.3. Note that now the argument strata is used in hmmm.model
to specify the number of strata.
library(hmmm)
y < —c(413,3184, 2281, 1,42, 28,0,
12,5,79,197,95,1, 3, 2,
0,0,0,52, 330,274, 2.9,
12,0,5,5,15,21, 16,
1,0,2,0,1,0,523,2945,
1632, 38, 210, 103, 14, 88, 42,
113,302,81,7,11,2,2,3,
0,560, 2330, 1365, 49, 139, 81,
19,64,24,116, 253, 56, 6,
8,0,1,0,1)
y < —matriz(y,72,1)
margl < —list(marg = ¢(2), types = c(“marg”, “c”))
margl2 < —list(marg = ¢(1, 2), types = ¢(“g”, “I”))
marg.list < —list(margl, margl2)
margl2bis < —list(marg = ¢(1,2),int = list(c(1,2)), types = c¢(“g”, “I"))
model < —hmmm.model(marg = marg.list,lev = ¢(3,3),
dismarg = list(margl12bis), strata = 8, D = diag(—1, 32))

The argument dismarg specify that 32 odds ratios (four for every stratum)
are constrained by inequalities. If C'y log(M ) is the vector of interactions
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defined by dismarg and if D=K (the default for the argument D is the
identity matrix) then the inequalities constraints are KCilog(Mim) >
0. So in the previous example the 32 o.r. are constrained to be negative.
Remember that hmmm.model creates the R functions to compute the link
function (2), the inequality (equality) constraints and their Hessians.

The parameters of model are not subject to equality constraints because
by default the matrix X is the identity matrix. The following statement cre-
ateX.mat builds the design matrix X starting from a list of three model for-
mula (one for the marginal logits of variable 2, one for the logits of variable 1
and one for the odds ratios). The function createX.mat creates the R func-
tions needed to compute the equality constraints function U’C log(Mr)
and its Hessian. Note that U is a matrix such that U'X = 0. The first
argument of createX.mat must have been created by hmmm.model.

The following list al of model formula defines an additive effect of the co-
variates on the logits. For the odds ratios interaction between the covariates
is allowed but main effects and interaction effects are common to all four
odds ratios in a stratum. In the following statement f_0 is a conventional
factor name that must be used to define specific or generic effects of the
covariates on the interactions. For example “f_0 4 area + age” applied to
the logits states additive (generic) effects that are common to all logits and
“f0:area+ fO: age’ additive effects which are specific to every logit.
The formula “f_0-+areaxage” applied to the odds ratios states generic and
non-additive effects of the covariates.

al < —list(” 1+ f_0*areaxage — 0 : area : age — area : age”,
"1+ fOxareaxage— f0:area:age —area:age’,” 1+ f_0+ area * age”)
modelsat < —create. X M AT (model, Formula = al, strata = ¢(2,4),

YW

fnames = c¢(“age”, “area”))

The following statements define the model where inequalities are turned
into equalities. The formula “zero” applied to the odds ratios states that
all the odds ratios are null.

al < =list(“ 14+ f_0*area*age — f0:area: age — area : age”,
“1+ fOxareaxage— f0:area:age — area : age”, “zero”)
modelnull < —

create. X M AT (model, Formula = al, strata = ¢(2,4),

7w

fnames = c¢(“age”, “area”))

The following statements estimate the reference model modelsat without
inequality constraints, under the hypothesis that all the o.r. are negative
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and under the hypothesis of stochastic independence within every stratum
(inequalities are turned into equalities). Finally the model with negative
association is tested against the model without inequalities and the model of
stochastic independence is tested against the model of negative association
by hmmm.chibar:

mods < —hmmm.ml fit(y, modelsat)
mod0 < —hmmm.ml fit(y, modelnull)
moddis < —hmmm.ml fit(y, modelsat, noineq = FALSE)
P < —hmmm.chibar(model = modelsat, null fit = mod0,
disfit = moddis, sat fit = mods)

The statement ddis< —hmmm.model.summary(modellosat,moddis) gives
the output of Table 6 where the estimates of the generalized marginal in-
teractions classified by type and strata are reported.

Table 6 Estimates of the generalized interactions of moddis (Likelihood ratio
statistics=59.71, df=33).

inter. marg. logit MLE_1 MLE_2 MLE_3 MLE_4 MLE_5 MLE_6 MLE_7 MLE_8
2 2 c -4.16935  -4.774285 -2.916174 -3.521108 -2.335015 -2.939949 -2.438111 -3.043046
2 2 c -1.468873  -2.20091  -0.787007 -1.519044 -0.882648 -1.614685 -0.929127 -1.661163
1 12 g 2.557718  1.532542  2.366263  1.341087  2.185841 1.160666 1.89829 0.873114
1 12 g -0.447417  -1.277674 -0.291748  -1.122005 -0.759915 -1.590172 -0.760161 -1.590419
12 12 gl -0.02426 -0.02426 -0.02426 -0.02426  -0.062032  -0.517051 -0.207142 -0.550114
12 12 gl 0 0 0 0 -0.037772  -0.492792  -0.182882  -0.525854
12 12 gl 0 0 0 0 -0.037772  -0.492792 -0.182882  -0.525854
12 12 gl -0.108454  -0.108454 -0.108454 -0.108454 -0.146227 -0.601246 -0.291337  -0.634308

The variances of these estimates together with the estimate of the param-
eters vector 3 are given by mph.summary. The output of chibar.summary(P)
is reported in Table 7. It is about the tests on the inequality constraints that
is of the test of mod0 against moddis (Type A) and on the test of moddis
against mods (Type B).

Table 7 Chi-bar simulated p-values.

test p-value
testA  13.106 0.031
testB 3.005 0.773

According to the values of the Likelihood ratio statistics=59.71 (df=33)
and of the Type B test, the proposed model for the joint distribution of
education and jobs cannot be rejected.

Going back to the Madsen data of Table 4 let us assume that Housing
type is a covariate that defines four sub-populations or strata. In this case we
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have to model the joint distribution of Influence (variable 1), Satisfaction
(variable 2) and Contact (variable 3) within each of the four housing types.
We choose to define the logits within the marginal distributions while the
other interactions are defined within the joint distributions. Global logits
are assigned to Influence and Satisfaction, while the choice of the logit type
is irrelevant for the dicothomous variable Contact. Moreover null third order
interactions are assumed within every stratum and the second order inter-
actions are assumed to be equal across the strata. Only the marginal logits
are allowed to depend on the housing type but the effect of Housing type
is assumed to be of generic form. We are also interested in testing for posi-
tive association between Influence and Satisfaction conditionally to Contact
and Housing type and between Contact and Satisfaction conditionally on
Influence and Housing type. The model is defined and estimated with and
without inequalities by the following statements:

marg < —c(“g—m—m’,“m—g—m",“m—m—10,% —g—17)
marg < —marg.list(marg, mflag = “m”)
ineq < —list(marg = ¢(1,2,3),int = list(c(1,2),¢(2,3)),
types = c(*g", “g”, “1"))
model < —hmmm.model(marg = marg,lev = ¢(3,3,2),

strata = 4, dismarg = list(ineq), D = diag(1,24))

al < —list(* —1+ fo+ Ho”,* — 1+ fo+ Ho",* —1+ Ho",
« 71+f0”a“ 71+f0”,“ 71+f07’,
“zero”)

modelsat < —create. X M AT (model, Formula = al,
strata = 4, fnames = ¢(” Ho"))
mod < —hmmm.ml fit(y, modelsat)
descr < —hmmm.model.summary(modelsat, mod, T)

modineq < —hmmm.ml fit(y, modelsat, noineq = FALSE)

The following statements estimate the previous model with inequalities
turned into equalities and perform type A and type B tests on the inequal-
ities:

al < —list(* =1+ fo+Ho",“ —1+ fo+Ho"”,“ —1+ Ho”,
“zero”, ¢ — 1+ fo”, “zero”, “zero”)
modelsat < —create. X M AT (model, Formula = al,
strata = ¢(4), fnames = ¢(”Ho”))
mod0 < —hmmm.ml fit(y, modelsat)
P < —hmmm.chibar(model = model,

null fit = mod0, dis fit = modineq, sat fit = mod)
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The output of hmmm.model.summary(modelsat,mod, T) is given in Table 8.

Table 8 Estimates of the generalized interactions of mod (Likelihood ratio statis-
tics=55.84, df=46).

inter. marg. logit MLE_1 MLE_2 MLE_3 MLE_4

1 1 g 0.572172 0.62986 0.491943  0.184951
1 1 g -1.138108  -1.08042  -1.218337 -1.525329
2 2 g 1.125874  0.651487  0.829899  0.065262
2 2 g 0.003234 -0.471152  -0.29274  -1.057377
3 3 1 -0.192824  0.350023  0.645332  0.646015

12 123 gg 0.798405  0.798405  0.798405  0.798405
12 123 gg 0.912703  0.912703  0.912703  0.912703
12 123 gg 0.827487  0.827487  0.827487  0.827487
12 123 gg 0.996916  0.996916  0.996916  0.996916
13 123 gl -0.376978  -0.376978 -0.376978 -0.376978
13 123 gl -0.517317  -0.517317 -0.517317 -0.517317
23 123 gl 0.395319  0.395319  0.395319  0.395319
23 123 gl 0.24272 0.24272 0.24272 0.24272

123 123 ggl 0 0 0 0
123 123 ggl 0 0 0 0
123 123 ggl 0 0 0 0
123 123 ggl 0 0 0 0

The output given by statement chibar.summary(P) is given in Table 9.
From Table 9 we see that testB is null because the interactions 12 and 13
are already positive in the model that has been estimated disregarding the
inequality constraints. It is also interesting to note that the interactions 13
are negative.

Table 9 Chi-bar simulated p-values.

test p-value
testA  1.171145e+02 0
testB 0 1

This confirm the findings of the previous section but here the association
between Influence and Contact is conditioned by Housing type and Satisfac-
tion, while in the previous section it was conditioned only by Housing type.
The generic effects (baseline) of Housing type on the logits of Satisfaction,
which can be printed by mph.summary, are -0.474386535 for apartments,
-0.295974576 for atrium houses and -1.060611663 for terraced houses. This,
with the exception of atrium houses, confirms the findings of the previous
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section. How to obtain a formal test on this form of monotone dependence
is an exercise left to the reader.

5 Estimating MPH and HLP models under inequality constraints

The package hmmm can also be used to estimate more general MPH, HLP
models (Lang 2004, 2005) under inequality and equality constraints. To this
purpose the function mphineq and chibar must be directly used and no func-
tions like hmmm.model, hmmm.mlfit, hmmm.chibar to specify, estimate and
test these models are available.

Appendix: Coherent Complete Hierarchy of Sets

By Coherent Complete Hierarchy of Sets (CCHS) G(A) a family of non-
empty subsets of A = {aq,as,...,a,} is intended. It is characterized by the
following properties:

— Aeg(A);

—{a;} €G(A),i=1,2,...,7;

—if P,Q € G(A) then PNQ € {P,Q,0};

— if M,, is a non-minimal set (or node), according to the inclusion order,

of G(A) then:

M,, = B(ai(m),O) @] B(ai(m), 1),
B(aim),0) € G(A), Blaiwmy,1) € G(A),
i(m) = sup{i : a; € B(a;m),0)},
i(m) 41 =inf{i : a; € B(aitmy, 1)},

m=12,...,r—1.

Note that the last property defines a bijective mapping between the sets
M, and the first r — 1 elements of A. Furthermore, from the same property
it follows that each set M,, contains contiguous categories.

A CCHS is completely described by its non minimal sets. The numbering
of the non-minimal sets M, is assumed such that

m>n= (M,D>M, V sup{i:a; € M,} <inf{i:a; € M,}).
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