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Preface
Dear Participants,

First of all, I would like to welcome you to the 32nd International Workshop on
Statistical Modelling (IWSM 2017) in the Netherlands, and I wish you a very
pleasant stay in Groningen. With around 200,000 inhabitants Groningen is the
7th largest town in the Netherlands, and Groningen has two large universities:
The Hanzehogeschool for Applied Sciences (about 20,000 students) and the Ri-
jksuniversiteit Groningen (RUG) with about 30,000 students. The venue of the
IWSM 2017 is the Academy Building of RUG and located in the town center of
Groningen.

Before you lies one of the two proceedings volumes of IWSM 2017. It is a unique
feature within the statistical community that all speakers at this workshop also
provide an extended abstract of their talk. This not only provides the participants
with a compact written account of interesting contributions, but it also improves
the quality of the talks.

Like every year, there was a huge amount of excellent paper submissions, and
it was a really challenging task to select from 138 abstracts 56 (41%) for oral
presentations. Each paper had to be reviewed and scored by three members of
the scientific programme committee. This was a very time-consuming task for the
reviewers, and for their valuable efforts I thank all members of the scientific com-
mittee: Ernst Wit (RUG), Marijtje van Duijn (RUG), Kenan Matawie (IWSM
2005), Arnošt Komárek (IWSM 2012), Vito Muggeo (IWSM 2013), Thomas
Kneib (IWSM 2014), Helga Wagner (IWSM 2015), Jean-François Dupuy (IWSM
2016), Simon Wood (IWSM 2017), Paul Eilers, John Hinde, Dirk Husmeier, Sonja
Greven, Edwin van den Heuvel, Jörg Rahnenführer and Korbinian Strimmer.

Some of the abstracts that could not be selected for oral presentation have been
given the opportunity to be presented on a poster. On Tuesday (17:15-19:30h)
there will be a poster presentation where everybody is invited to meet the re-
searchers and to discuss their ongoing work one-on-one. It will be taken care of
drinks and some ‘fingerfood’ in order not to be distracted by a thirsty throat
or a hungry belly. Although it would have been possible to extend the number
of presentations, it is an important feature of the IWSM workshops that there
are no parallel sessions. This means that each presentation, whether by a PhD
student or by a famous statistician, are awarded the same amount of attention.
This means that the IWSM is a very coherent meeting, whereby the emphasis lies
precisely on the word: ‘meeting’. It is a place where junior and senior researchers
mix and mingle.

Not coincidently, also this year you will get ample opportunities to meet your
fellow participants. On Sunday evening, after the excellent short course by Tom
Snijders and before the official start of the conference on Monday, there was
already the informal welcome drink gathering in the Pool Restaurant of the Stu-
dent Hotel. On Monday evening, there will be the official welcome reception in
the Spiegelzaal of the Academy Building. On Tuesday, the Pizza & Beer Poster
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session in the Academia Restaurant of the Academy Building will encourage lively
scientific interactions. On Wednesday, after the excursions, we will reconvene al-
together in the Ni Hao restaurant (Gedempte Kattendiep 122). On Thursday
evening, if you are hungry again, there will be the official conference dinner in
‘t Feithhuis (Martinikerkhof 10). Even the conference dinner will be kept quite
informal, as the emphasis should be on meeting your fellow participants. It would
be great if, long after this conference is over, you could look back on IWSM 2017
and say: ‘Groningen was the place where I met ’em all! ’.

I thank the Statistical Modelling Society for trusting in my proposal and for giv-
ing me this great opportunity to chair IWSM 2017. Many colleagues from RUG
helped me planing and realizing this workshop. I would like to thank all members
of my Local Organizing Committee, in particular, Ernst Wit, Ineke Schelhaas,
Martijn Wieling, Casper Albers, Wendy Post, Marijtje van Duijn and Hans Burg-
erhof for their contributions. Also Mariska Pater and Sharon de Puijselaar from
the Groningen Congres Bureau have helped me tremendously.

My special acknowledgements go to all sponsors of the IWSM 2017. Without
those sponsorships certain things could not have been realized and the programme
would certainly have been much sparser. A list of the sponsors of IWSM 2017
can be found on the last pages of this volume.

Last but not least, I would like to thank all authors for the excellent scientific
contributions, and I hope that every participant of IWSM 2017 will have a great
and especially research-stimulating week in Groningen,

Marco Grzegorczyk
Groningen, 16 June 2017
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Nonparametric inference in hidden Markov
and related models

Roland Langrock

1 Department of Business Administration and Economics, Bielefeld University,
Germany

E-mail for correspondence: roland.langrock@uni-bielefeld.de

Abstract: Hidden Markov models (HMMs) have been successfully applied in var-
ious disciplines, including biology, speech recognition, economics/finance, clima-
tology, psychology and medicine. They combine immense flexibility with relative
mathematical simplicity and computational tractability, and as a consequence
have become increasingly popular as general-purpose models for time series data.
In this talk, I will first introduce the basic HMM machinery and showcase the
practical application of HMMs using intuitive examples. I will then demonstrate
how the HMM machinery can be combined with penalized splines to allow for
flexible nonparametric inference in general-purpose HMM-type classes of mod-
els. The focus of the presentation will lie on practical aspects of nonparametric
modelling in these frameworks, with the methods being illustrated in economic
and ecological real data examples, featuring, inter alia, the famous wild haggis
animal, blue whales and the well-known Lydia Pinkham sales data.

Keywords: Animal behaviour; Markov-switching regression; P-splines

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).



Functional Data Analysis, Spatial Data
Analysis and Partial Differential Equations:
A fruitful union

Laura M. Sangalli

1 MOX - Dipartimento di Matematica, Politecnico di Milano, Italy

E-mail for correspondence: laura.sangalli@polimi.it

Abstract: I will discuss an innovative class of regularized regression models
for the analysis of spatially distributed data, that merges advanced statistical
and numerical analysis techniques. Based on these regression models, I will then
present a principal component analysis method that can handle functional signals
distributed over complex domains.

Keywords: Penalized regression; functional principal component analysis; data
distributed over two-dimensional manifold domains; finite elements.

1 Spatial regression with differential regularization

I will present a novel class of models for the analysis of spatially (or space-time)
distributed data, based on the idea of regression with differential regularizations.
The models merge statistical methodology, specifically from functional data anal-
ysis, and advanced numerical analysis techniques. Thanks to the combination of
potentialities from these different scientific areas, the proposed method has impor-
tant advantages with respect to classical spatial data analysis techniques. Spatial
regression with differential regularizations is able to efficiently deal with data dis-
tributed over irregularly shaped domains, with complex boundaries, strong con-
cavities and interior holes [Sangalli et al. (2013)]. Moreover, it can comply with
specific conditions at the boundaries of the problem domain [Sangalli et al. (2013),
Azzimonti et al. (2014, 2015)], which is fundamental in many applications to ob-
tain meaningful estimates. The proposed models have the capacity to incorporate
problem-specific priori information about the spatial structure of the phenomenon
under study, formalized in terms of a governing partial differential equation [Azz-
imonti et al. (2014, 2015)]; this very flexible modeling of space-variation allows

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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to naturally account for anisotropy and non-stationarity. Space-varying covari-
ate information is accounted for via a semiparametric framework. The models
can also be extended to space-time data [Bernardi et al. (2017)]. Furthermore,
spatial regression with differential regularizations can deal with data scattered
over non-planar domains, specifically over two-dimensional Riemannian manifold
domains, including surface domains with non-trivial geometries [Ettinger et al.
(2016), Dassi et al. (2015), Wilhelm et al. (2016)]. This has fascinating appli-
cations in the earth-sciences, life-sciences and engineering. The use of advanced
numerical analysis techniques, and in particular of the finite element method or
of isogeometric analysis, makes the models computationally very efficient. The
models are implemented in the R package fdaPDE [Lila et al. (2016)].

2 Smooth principal component analysis for functional
signals over complex domains

Based on the regularized regression models outlined above, I will present a reg-
ularized method for principal component analysis of functional signals observed
over two-dimensional Riemannian manifold domains [Lila et al. (2016)]. This
will be illustrated with an application in the neurosciences, studying neuronal
connectivity on the cerebral cortex, starting from functional magnetic resonance
imaging scans on about 500 healthy volunteers.

FIGURE 1. Study of high-dimensional neuroimaging signals (data
available from The Human Connectome Project Consortium,
www.humanconnectomeproject.org). Left: Triangulated surface approxi-
mating the left hemisphere of a cerebral cortex. Right: functional connectivity
map obtained from fMRI signal. Figure adapted from Lila et al. (2016).

Acknowledgments: This talk is based on joint works with John A.D. Aston,
Laura Azzimonti, Mara Bernardi, Bree Ettinger, Michelle Carey, Eardi Lila, Fabio
Nobile, Simona Perotto, Jim Ramsay, Piercesare Secchi.
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Abstract: We present an alternative approach to variable selection that does
not select a single “best” model but attempts to find a collection of models
that is “good enough”. We call models adequate if they are not significantly
worse than the true model. The collection of all adequate models is spanned by
a smaller collection of minimal adequate models: the smallest of the adequate
models. These minimal adequate models give great insight in model selection
uncertainty as well as in collinearity, and are therefore a very practical model
building tool. We illustrate the approach with several classical data sets.

Keywords: Model selection; Closed testing; Model misspecification.

1 Variable selection

The goal of variable selection methods in regression is to discard a subset of the
covariates without reducing the predictive potential of the remaining variables.
Typical variable selection methods find a single “best” model according to a
chosen criterion, e.g. AIC or BIC. Variable selection is done to reduce overfit but
also for reasons of interpretation. Selected variables are interpreted as important,
and discarded variables as irrelevant. Different criteria and different methods,
however, can yield very different selected models. Especially when collinearity is
present, variable selection methods tend to differ greatly both in which variables
are selected and how many.

Clearly, there is uncertainty about the selected model. If we see the single selected
model as a point estimate of the true model, then we can say that typical variable
selection methods neglect to give standard errors or confidence intervals around
the statements they make. Interpreting the selected model in terms of important

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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and irrelevant variables is like interpreting point estimates without an associated
measure of uncertainty.

We present a different approach to variable selection that, in contrast, emphasizes
the uncertainty in the variable selection process. We adopt a hypothesis testing
framework to construct a confidence interval around the true model. Thus, we
select not a single model, but a range of models. A model is in the confidence
interval if its likelihood is not significantly worse than that of the true model. By
construction, the confidence interval contains the true model with probability at
least 1− α.

Our work builds upon work laid out by Mallows (1973), Aitkon (1974) and
Spjotvoll (1977). We show that their work can be seen as a special case of closed
testing, which allows their results to be extended outside the scope of linear
models e.g. to generalized linear models.

2 Minimal adequate models

The construction of the confidence intervals will be such that if a model is in
the confidence set all supersets of the model are also in the confidence set. The
confidence set is therefore spanned by its smallest members, the minimal adequate
models.

The minimal adequate models give great insight in the reliability of inferential
statements made as a result of variable selection methods. They can be used to
distinguish between variables that must always be selected by a variable selection
method and variables that can take each other’s roles in the model because they
contain the same information, e.g. because of collinearity.

For example, two minimal adequate models can be {A,B} and {A,C,D}. In this
case covariate A is necessary for any adequate model, but the role of B can be
taken over by the combination of C and D, which together contain the same
information. A user may have a preference for model {A,B} because it is more
sparse or for {A,C,D} because it may have a better fit or be more interpretable.
In either case the presence of the other minimal adequate model functions as a
protection against overinterpretation of the selected model.

3 Model misspecification

A confidence interval for the true model supposes the existence of the true model,
which in turn implies that the full model is true. Since this is quite a strong
assumption, we will investigate how to relax it. We do this by refining the null
hypothesis to be tested for each model: instead of testing whether the reduced
model is as good as the true model, we test whether it is as good as the full
model. We show that this hypothesis can be conservatively tested even when the
full model is not the true model.
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4 Application

The use of minimal adequate models will be illustrated with several classical
regression data sets, such as Hald’s cement data and the famous prostate cancer
data set (Hastie et al. 2001).
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Abstract: We consider here methods to analyze interval-censored survival times.
Interval censoring occurs when it is only known that the event happened in-
between two examinations. Well-known examples of an interval-censored time
are the time until HIV, AIDS, the emergence of a tooth, etc. Most often interval
censoring is not appropriately addressed in a statistical analysis and dealt with
by methods that handle right censoring of data, e.g. by replacing the interval
by the mid-point. Despite several published results it is still too often believed
that ignoring the interval-censored character of the data has a minimal impact
on the results and conclusions of the statistical analysis. In this contribution we
summarize the literature on interval censoring largely from a practical point of
view under the frequentist and a Bayesian paradigm. It will be also discussed
when it is important to take interval censoring into account.

Keywords: Bayesian inference; Interval censoring; Survival analysis.

1 Introduction

In survival studies, right censoring is most prevalent and generally dealt with
appropriately. Occasionally also left censoring occurs, but in randomized con-
trolled trials and epidemiological studies interval censoring occurs frequently.
Left censoring occurs, e.g., in a dental study on emergence of permanent teeth
when a tooth emerged prior to the start of the study. An emergence time is then
interval-censored when it is only known that the tooth emerged in-between two
examinations. Interval censoring also occurs often in HIV/AIDS studies, where
time to HIV seroconversion and AIDS are usually determined at planned vis-
its to the clinical researcher. In fact many developments on interval censoring
find their origin in HIV/AIDS research. Finally, in cancer trials progression free
survival can only be established in the hospital at planned visits. Despite the
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tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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frequent occurrence of interval censoring, this interval censoring is often treated
inappropriately in practice. Note that left and right censoring can be considered
as special cases of interval censoring. Also, in practice most often a mix of the
censoring types is encountered.

Often interval censoring is bypassed with a single imputation technique, with
mid-point imputation being most popular. That is, while the interval-censored
survival time is replaced by the mid-point of the interval, the data are analyzed
using methods for right-censored data. The effect of inappropriately dealing with
interval censoring depends on the size of the intervals, on whether covariates
impact the size of the interval and the type of statistical analysis. In the past,
absence of statistical software was the main reason for avoiding interval censor-
ing. This is not the case anymore nowadays. This is clearly illustrated in the
forthcoming book on interval censoring (Bogaerts, Komárek and Lesaffre, 2017),
hereafter referred to as BKL.

One distinguishes case I interval-censored data, also called current status data.
This occurs in practice when it is only known whether the event has happend
or not at the time of examination. We concentrate in this contribution on case
II interval censoring. Namely, we assume that an independent sample of survival
times T1, . . . , Tn is only observed to lie in intervals bli, uic (i = 1, . . . , n), where
bli means that either li is included or not in the interval and the same for ui. By
allowing li to be zero, interval censoring reduces to left censoring. On the other
hand right censoring is a special case of interval censoring when ui =∞ (in prac-
tice this implies a large value). Further we assume that the censoring mechanism
is independent of the true survival times. We will return to this assumption in
Section 5.

A popular data set in the statistical literature on interval-censored data comes
from a breast cancer study. It consists of the subset of 96 patients who were
treated at the Joint Center for Radiation Therapy in Boston between 1976 and
1980. Forty-six patients were randomized to radiation therapy only regimen, while
48 patients to the radiation therapy and adjuvant chemotherapy regimen. The
intervals represent the time period during which breast retraction occurred. A
graphical representation of the data is shown in Figure 1. Illustrations will also be
taken from the Signal Tandmobielr study, which is a longitudinal dental study
that examined, e.g., the emergence distributions of several permanent teeth.

2 Univariate models

2.1 Frequentist approaches

Let the true survival times T1, . . . , Tn be i.i.d. with survival distribution S(·).
When the survival times are interval-censored with intervals bli, uic (i = 1, . . . , n),
the likelihood to maximize is:

L =

n∏
i=1

{S(li)− S(ui)}, (1)

with S(t) the unknown but true survival distribution. Peto (1973) was the first
to note that the nonparametric maximum likelihood solution of S results in a set
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of intervals {[pj , qj ]}mj=1 with the following properties: outside these intervals, the
estimated survival function is constant. Further, the mass assigned to each of the
intervals is well determined but within each interval there is no information as
to how that mass is assigned. The intervals are called regions of possible mass or
support because the maximum likelihood procedure can only tell in which regions
there is probability of events to occur. Peto (1973) and Turnbull (1976) suggested
a simple reduction algorithm to identify the intervals of possible mass from the
data. Further, Turnbull (1976) suggested the self-consistency algorithm, a ver-
sion of the EM algorithm, to determine the nonparametric maximum likelihood
estimator (NPMLE) of S. Thus, in contrast to the Kaplan-Meier estimator, the
NPMLE of the survival function for interval-censored data has no closed solution
and must be obtained by an iterative algorithm.

Two versions of the NPMLE are given in Figure 2 obtained from the patients
treated with radiotherapy alone in the breast cancer study. The left panel is the
NPMLE of the cumulative distribution function of the time to cosmetic deteri-
oration of the breast. Fourteen regions of possible support were found but only
to eight regions mass > 0 has been attributed. In Table 1, these intervals are
shown. The gray areas indicate that the distribution of probability within the
regions of support is not determined. In the right panel the corresponding esti-
mated survival distribution is given but assuming a linear behavior of Ŝ in the
intervals.

Since the seminal papers of Peto and Turnbull, the classical significance tests in
survival analysis to compare two or more groups (logrank test, Gehan-Wilcoxon
test, Peto-Prentice-Wilcoxon test, etc.) have been extended to interval-censored
observations.

Because for a long time Turnbull’s algorithm was not available in statistical soft-
ware, it was standard to show the Kaplan-Meier estimate based on singly imputed
survival times. Alternatively and depending on the application area, also a para-
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FIGURE 1. Breast cancer study. Observed intervals in months for time to breast
retraction of early breast cancer patients per treatment group.
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TABLE 1. Breast cancer study. Regions of possible support and NPMLE equiv-
alence classes for the radiotherapy-only group.

(pj , qj ] (4, 5] (6, 7] (7, 8] (11, 12] (15, 16] (17, 18] (24, 25]
mass 0.046 0.033 0.089 0.071 0 0 0.093

(pj , qj ] (25, 26] (33, 34] (34, 35] (36, 37] (38, 40] (40, 44] (46, 48]
mass 0 0.082 0 0 0.121 0 0.466

metric estimate was computed. In medical applications the most popular choices
are the Weibull and the log-normal distribution. Computations and inference
are simpler in the parametric case relying often on Newton-Raphson type of al-
gorithms and standard asymptotic likelihood theory. In-between nonparametric
and parametric approaches are flexible estimation methods. Numerous techniques
have been proposed that either smooth the hazard, the cumulative hazard or the
survival distribution. Popular in this sense is spline smoothing based on cubic
splines, B-splines or penalized B-splines adapted to interval-censored data. A
smooth solution can also be obtained from, say, a mixture of Gaussian densities
for the survival density. Examples of these approaches with software applications
in R and SAS software can be found in BKL.

2.2 Bayesian approaches

Parametric analysis of interval-censored observations is fairly standard in clas-
sical Bayesian statistical software, such as Win/OpenBUGS or SAS, as long as
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FIGURE 2. NPMLE of the cumulative distribution function (left panel) and
NPMLE of the survival function with the additional assumption of a piecewise
linear survival curve (right panel).
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the chosen survival distribution is supported by the package. More complicated
is to perform a Bayesian nonparametric (BNP) analysis. BNP estimation of a
cumulative distribution function (and thus of the survival distribution) started
with the seminal paper of Ferguson (1973), who introduced the Dirichlet process
(DP) prior. The DP prior D(cS∗) is a prior on the survival distributions S defined
around a guess survival distribution S∗ with variability ruled by a scalar c. Based
on a DP prior, Susarla and Van Ryzin (1976) proposed a nonparametric Bayesian
approach to estimate the survival function for right-censored survival times. Calle
and Gómez (2001) further extended the procedure to interval-censored data. Lim-
iting cases of the posteriors are the Kaplan-Meier for right-censored observations
and Turnbull’s estimate for interval-censored observations. Until recently no gen-
erally available software was available for the BNP approach, this changed with
the R package DPpackage (Jara, 2007). In the supplementary materials of BKL,
some self-written R programs can be found for fitting survival distributions in
a nonparametric way as well as illustrations of the use of DPpackage.

3 Regression models

Of more interest are survival models that allow for covariates, say X1, . . . , Xn.
In that case the likelihood becomes:

L =

n∏
i=1

{S(li |Xi)− S(ui |Xi)}. (2)

While for right-censored data the Cox proportional hazards (PH) model takes a
central position because the partial likelihood approach renders the estimation of
the baseline hazard obsolete, with interval-censored survival times the baseline
hazard/distribution needs to be estimated together with the regression coeffi-
cients. We consider here the PH model and the accelerated failure time (AFT)
model for interval-censored survival times. Again a variety of approaches were
suggested from semiparametric to parametric.

3.1 Frequentist approaches

The likelihood to maximize for the PH model is given by

L(β, S0) =
n∏
i=1

{
S0(li)

exp(X>i β) − S0(ui)
exp(X>i β)

}
, (3)

with β a p-vector of regression parameters and S0(t) the baseline survival func-
tion.

Finkelstein (1986) extended the nonparametric approach of Turnbull to the pro-
portional hazards model with interval-censored data. For this she assumed the
model expressed in (3). Note that likelihood (3) depends only on the baseline haz-
ard through its values at the different observation time points. Let s0 = 0 < s1 <
. . . < sK+1 =∞ denote the ordered distinct time points of all observed time in-
tervals bli, uic (i = 1, . . . , n). Further, let αij = I{sj ∈ bli, uic} (j = 1, . . . ,K+1,
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i = 1, . . . , n). To remove the range restrictions on the parameters for S0, the like-
lihood is parameterized by γk = log[− logS0(sk)] (k = 1, . . . ,K + 1). Note that
because S0(s0) = 1 and S0(sK+1) = 0, γ0 = −∞ and γK+1 = ∞. In terms of β
and γ = (γ1, . . . , γK)> the log-likelihood function `(β, S0) can be written as

`(β,γ) =

n∑
i=1

log

{
K+1∑
k=1

αik
[
e−ζk−1 exp(X>i β) − e−ζk exp(X>i β)

]}
, (4)

where ζk =
∑k
m=0 exp(γm).

To estimate the mass of the regions of possible support and the regression param-
eters, Finkelstein proposed the Newton-Raphson algorithm. It turned out that
the score equations provide a generalization of the self-consistency algorithm
suggested by Turnbull when β = 0. For the appropriateness of the asymptotic
χ2-distribution for testing β = 0, it is assumed that K does not increase with the
sample size. Farrington’s approach (1996) allows to fit the approach of Finkelstein
with generalized linear model software. He also provided a technique to select a
subset of L < K significant time points sl (l = 1, . . . , L). Other approaches sug-
gested for the PH model are: the piecewise exponential model (available in SAS
procedure ICPHREG) and a variety of smooth approaches some based on spline
smoothing.

Another popular semiparametric approach is to apply the partial likelihood ap-
proach on multiple imputed (MI) data sets. In the MI approach finite interval-
censored survival times are regarded as missing and replaced by a possible survival
time given an assumed model. Standard methodology can then be used to analyze
the (often between 3 and 10) imputed data sets of right-censored survival times.
The results of the multiple analyses are then combined. Pan (2000) proposed two
such multiple imputation schemes assuming a particular distribution within the
regions of support, but no other assumptions are made.

Finally, here again a parametric approach is easiest to handle, but could be too
restrictive in practice.

For the AFT model, the true survival times T1, . . . , Tn are assumed to satisfy

Yi = log(Ti) = X>i β + εi (i = 1, . . . , n), (5)

where εi are independent and identically distributed with density g(e). In case
of interval-censored survival times the likelihood is given by (2) but now with
S(t |X) = S0

{
exp(−X>β) t

}
.

Several distributions have been suggested for g, but there exists no semiparamet-
ric version of the AFT model. While the parametric AFT model is the simplest to
handle it is often too restrictive. More flexible approaches are based on a smooth
error density. One option is the Penalized Gaussian Mixture (PGM) model, which
assumes that the error density is a mixture of a (large) number of Gaussian densi-
ties with fixed means (knots) and with weights that are constrained by a penalty
term to produce a smooth density. This approach has been implemented in the R
package smoothSurv. In Figure 3 the solution from smoothSurv is compared
to the NPMLE for the emergence distribution of tooth 44 from boys.
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3.2 Bayesian approaches

For a long time, the Bayesian PH model could only be fit parametrically to
interval-censored observations making use of the statistical packages Win/OpenBUGS
and later with the SAS procedure MCMC. Unfortunately, a pure semiparamet-
ric approach does not seem to be possible here, but recently at least two flexible
modelling approaches have been proposed and implemented in software. Wang
et al. (2013) proposed a Bayesian PH model with a piecewise constant baseline
hazard via a reversible jump MCMC procedure in combination with data aug-
mentation. Their approach fits a dynamic survival model to the data, thereby
providing a check for the PH assumption. The method is implemented in the
R package dynsurv. The recently developed R package ICBayes is based on
fitting the baseline hazard in a smooth manner using integrated I-splines, see Lin
et al. (2015). To this end the relationship of the PH model with a latent non-
homogeneous Poisson process was used in combination with data augmentation.

The parametric Bayesian AFT model can be fitted with BUGS-like and SAS soft-
ware in very much the same manner as the PH model. We are only aware of
the R package bayesSurv to fit a smooth AFT model in a Bayesian way. The
package is based on the reversible jump MCMC technique, but also a PGM as
an error distribution can be fitted. With the package DPpackage practitioners
have several programs at their disposal for fitting Bayesian AFT models in a
semiparametric manner. In the package a Mixture of Dirichlet process prior is
used to fit an AFT model for interval-censored observations, which is the basis
for the R function DPsurvint. This function was applied to examine the depen-
dence of the emergence distribution of a permanent tooth (tooth 44) on gender
of a child and the history of caries status of the predecessor deciduous tooth
84 expressed by its dichotomized DMF score (DMF=1, caries on the deciduous
tooth, 0 otherwise). Figure 4 shows the posterior predictive survival function for
the different gender and DMF combinations.
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ĥ(
t)

6 7 8 9 10 11 12 13

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival function

Age (years)

P
ro

po
rt

io
n 

no
t y

et
 e

m
er

ge
d

FIGURE 3. Signal Tandmobielr study (boys). Estimated survival function com-
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using the penalized Gaussian mixture with R package smoothSurv.



Lesaffre et al. 17

4 Multivariate models

When several outcomes are measured on a subject who is examined at regular
time intervals, we obtain multivariate interval-censored observations. With mul-
tivariate outcomes, it is natural to ask for the association between the outcomes.
Most of developments have been done for the bivariate case, i.e., when there are
two related survival times T1 and T2 measured in an interval censored manner.
A special case of bivariate interval-censored data are doubly interval-censored
times. In that case the T1 measures the onset of the time-at-risk and T2 ≥ T1

measures the time of the event, and again both T1 and T2 are interval-censored.

4.1 Frequentist approaches

Betensky and Finkelstein (1999a) generalized Peto’s and Turnbull’s argument to
bivariate interval censored data. That is, information on the bivariate nonpara-
metric survival function is limited to a number of rectangles bearing (possibly)
non-zero mass, again called the regions of possible support. The trigger to develop
the bivariate NPMLE of S for interval-censored observations, was the computa-
tion of the association between the two true survival times. However, it turned
out that the bivariate NPMLE is not a good basis for this because too dependent
on the amount right censoring in the data, see Betensky and Finkelstein (1999b).

The absence of statistical software for fitting a rich class of (multi/bi)variate
models (for interval-censored data), restricts the use of parametric modelling for
multivariate responses. Instead one could use copula models, which disentan-
gle the specification of the association structure and the marginal distributions.
The three popular copulas: the Clayton copula, the Gaussian copula and the
Plackett copula have been extended to bivariate interval-censored survival times
and are implemented in the function fit.copula from the R package icensBKL
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(will accompany the BKL book). Even more flexible are the bivariate smoothing
techniques, such as the bivariate PGM model implemented in the SAS macro
%smooth. This macro produced Figure 5 that shows a smooth approximation
of the distribution of the true emergence times of the contralateral (left and
right) maxillary first premolars (teeth 14 and 24) for boys, collected in the Signal
Tandmobielr study. One can observe that the two emergence times are highly
correlated.

For survival outcomes the association measures Spearman’s rank correlation,
Kendall’s tau and the global and local cross-ratio are in use. These measures
can be estimated by plugging in sample values in the population versions of the
associations. This can be done for parametric models, but when based on the
PGM approach a goodness-of-fit check for the parametric models is obtained.

To graphically explore the association structure of multivariate observations one
can use a biplot. On a biplot the original p-dimensional outcome is projected onto
2 (or 3) dimensions displaying individuals as points and variables as vectors. If the
2-dimensional plot captures most of the original variability, then the projections of
the points on the vectors provide useful visual information on the characteristics
of (groups of) individuals. The biplot has been extended to multivariate interval-
censored observations (Cecere et al., 2013) and implemented in the function IC-
Biplot of the package icensBKL.

Hierarchical models, called frailty models in the survival context, provide yet
another way to model multivariate interval-censored outcomes. Conditional on
a random intercept, the outcomes are then assumed independent. This class of
models has been also extended to the interval-censored case. Again various illus-
trations of methodologies and software can be found in BKL.
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4.2 Bayesian approaches

Parametric frailty models can be fit with standard Bayesian software such Win/OpenBUGS
and the SAS procedure MCMC. More challenging is to fit multivariate models
for interval-censored data in a semiparametric manner. A few approaches have
been suggested to fit the frailty distribution in a flexible manner. The approach
of Komárek and Lesaffre (2007) builds on the penalized Gaussian mixture idea.
Let (Ti1, . . . , Tini)

> be independent random vectors representing times-to-event
of the i-th cluster which are observed as intervals blil, uilc and Xil be the covari-
ate vector for the lth observation in the ith cluster (i = 1, . . . , n; , l = 1, . . . , ni).
In the random-effects AFT model, the (i, l)-th event time is expressed as

log(Til) = X>il β + bi + εil (i = 1, . . . , n; l = 1, . . . , ni), (6)

where εil are (univariately) i.i.d. random errors with a density gε and b1, . . . , bn
are cluster-specific i.i.d. random-effects with a density gb. The approach then
consists in expressing either of densities gε and gb as a univariate PGM. The
approach was implemented in the R package bayesSurv and illustrated with
data from the Signal Tandmobielr study. More specifically the software was used
to examine the impact of caries (now or in the past) of deciduous teeth and their
successors. Another option is to use the package DPpackage, which provides
functions that allow for a multivariate semiparametric approach.

5 Discussion

The list of statistical approaches extended to deal with interval-censored data is
endless. In fact, each statistical approach developed for fully observed or right-
censored data can be extended to interval-censored data. Additional topics that
have been investigated with interval-censored data: competing risks, multi-state
models, interval-censored covariates, etc. We also omitted here the discussion of
doubly interval-censored observations, important for HIV/AIDS research.

Finally, the majority of the developments (if not all) have been done under the as-
sumption of non-informative independent censoring. This assumption is violated
when the censoring intervals are associated with the actual and unobserved time-
to-event. This may happen more often in practice than assumed, and may affect
the conclusions considerably. Developments that deal with informative censoring
are therefore desirable.

To conclude, there is no reason anymore to bypass interval censoring since there
is ample software available for a great variety of problems.
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Abstract: The initial stage of language comprehension is a multi-label classi-
fication problem. Listeners or readers, presented with an utterance, need to dis-
criminate between the intended words and the tens of thousands of other words
they know. We propose to address this problem by pairing a network trained with
the learning rule of Rescorla and Wagner (1972) with a second network trained
independently with the learning rule of Widrow and Hoff (1960). The first net-
work has to recover from sublexical input features the meanings encoded in the
language signal, resulting in a vector of activations over all meanings. The second
network takes this vector as input and further reduces uncertainty about the in-
tended meanings. Classification performance for a lexicon with 52,000 entries is
good. The model also correctly predicts several aspects of human language com-
prehension. By rejecting the traditional linguistic assumption that language is a
(de)compositional system, and by instead espousing a discriminative approach
(Ramscar, 2013), a more parsimonious yet highly effective functional characteri-
zation of the initial stage of language comprehension is obtained.
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Table 1 presents 10 simple sentences. When reading these sentences, the letters
and their combinations succeed in bringing to the fore a small number meanings
while dismissing thousands of others as irrelevant. Sentences present the reader
with a multi-label classification problem.

We address this problem as follows. First, we represent the orthographic input by
means of letter trigrams. For the first sentence, these are #Ma Mar ary ry# y#p

#pa pas ass sse sed ed# d#a #aw awa way ay# (the #

symbol represents the space character). Letter trigrams provide a much richer
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representation of the visual input than do orthographic words. For the data in
Table 1, there are n = 104 distinct letter trigrams, to which we refer as cues.

The second column lists the lexical meanings (lexomes) that are the targets of
classification. Lexomes are pointers to locations in a high-dimensional semantic
vector space (defined below). Note that past-tense word forms such as passed
(regular) and ate (irregular) are coupled with the lexomes pass and eat as well
as with past tense (past). Likewise, the two word forms apple and pie are coupled
with one lexome applepie, and the three expressions with the word forms kicked
the bucket, passed away, and died, are all linked with the same lexome die.

TABLE 1. Sentences, lexomes in the message, and frequency of occurrence (F ).
The total number of learning events is k = 771.

Sentence Lexomes in the message F

1 Mary passed away mary die past 40
2 Bill kicked the ball bill kick past def ball 100
3 John kicked the ball away john kick past def ball away 120
4 Mary died mary die past 300
5 Mary bought clothes mary buy past clothes

for the ball for danceparty 20
6 Ann bought a ball ann buy past indef ball 45
7 John filled the bucket john fill past def bucket 100
8 John kicked the bucket john die past 10
9 Bill ate the apple pie bill eat def applepie 3
10 Ann tasted an apple ann taste past indef apple 33

Is it possible to discriminate between the targeted lexomes given the letter tri-
grams in the sentences? We will show that considerable headway can be made by
an error-driven incremental multi-label classifier that comprises two simple net-
works, each with only an input layer and an output layer. In what follows, we first
provide a formal definition of the algorithm, and illustrate it for the sentences in
Table 1. We then turn to a more realistic example in which lexomes targeted in
around a million of utterances have to be discriminated from some 52,000 other
lexomes.

1 An algorithm for multiple label classification

The problem of incremental learning of multi-label classification is defined by a
sequence of events at which a set of features (henceforth cues) are present and
generate predictions about classes (henceforth outcomes), only some of which are
actually present in the learning event. The mismatch between predicted outcomes
and the outcomes actually present in a learning event provides the error driving
learning.

From a total of n distinct cues and m possible outcomes, only small subsets will
be present in a given learning event. Let k denote the number of unique learning
events (learning events may repeat, cf. good morning and tickets please). We index
a specific learning event in the sequence t (of length K ≥ k) of learning events by
t. The classification problem is defined by t, a sparse n× k cue matrix C which
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is 1 whenever a given cue is present in a specific event and zero otherwise, and a
sparse m× k target matrix T that is 1 whenever an outcome is present and zero
otherwise.

Classification proceeds in two steps, using two networks. The first network has
cues as inputs and outcomes as outputs. It is defined by an m × n matrix W
of connection weights from cues (columns) to outcomes (rows). Given W, the
predicted support (henceforth activation) for a specific outcome given the cues
in the learning event is obtained by summation of the weights on the connections
from these cues to that outcome. The m× k activation matrix A specifies these
activations for all outcomes across all unique learning events:

A = WC.

The classification performance of this first network is assessed by checking whether
the outcomes with the highest activations are those of the targeted lexomes.

As shown by Danks (2003), if over a sequence of learning events no further changes
in the weight matrix take place other than the tiny increments and decrements
that come with individual updates, i.e., when the weight matrix has entered a
state of equilibrium, then, given the incremental learning rule of Rescorla and
Wagner (1972) (see below), W can be estimated straight from conditional prob-
abilities characterizing the input. Let E specify pairwise conditional probabilities
of cues given cues,

E =


Pr(c0|c0) Pr(c1|c0) . . . Pr(cn|c0)
Pr(c0|c1) Pr(c1|c1) . . . Pr(cn|c1)

. . . . . . . . . . . .
Pr(c0|cn) Pr(c1|cn) . . . Pr(cn|cn)

 ,

and let F denote a matrix specifying conditional probabilities of outcomes given
cues,

F =


Pr(o0|c0) Pr(o1|c0) . . . Pr(on|c0)
Pr(o0|c1) Pr(o1|c1) . . . Pr(on|c1)

. . . . . . . . . . . .
Pr(o0|cn) Pr(o1|cn) . . . Pr(on|cn)

 .

Danks’ equilibrium equations state that

F = EWT ,

which can be solved using the generalized inverse.

When a weight matrix is calculated in this way, the effect of the exact order of
learning events is lost. Furthermore, a Danks weight matrix dampens the con-
sequences of the frequencies of occurrence of cues and outcomes in the input
space, while highlighting the contrasts that allow cues to discriminate between
outcomes. Thus, the Danks weight matrix is useful when there is no information
on the sequence of learning events (e.g., when only the frequency of learning
events is available but not their order) and when interest is directed specifically
to an idealised endstate of learning.

Preferably, the weight matrix W is estimated by repeated application of the
learning rule of Rescorla & Wagner (1972) to the learning events t. The update
at learning event t,

Wt = Wt−1 + ∆rw
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depends on the learning rate η (typically set at 0.001) regulating the magnitude
of the changes to the weight matrix, on the predictions for the outcomes as
gauged by the activations of these outcomes given the cues, and on whether the
outcomes are actually present in the learning event. Specifically, let c denote the
transpose of that column vector of C specifying which cues are present at the
current learning event t, and let o denote the transpose of that column vector of
T detailing which outcomes are present at t, and let J denote an m× n all-ones
matrix. Let the (row) vector a1 to specify the activations of those outcomes that
are present in the learning event while setting to zero the activations for all other
outcomes:

a1 = (((J · o)T · c)T ·W)i.

Here, i is a row unit vector of length n. Note that ((J · o)T · c)T is 1 for all cue-
outcome combinations that are present in the learning event, and zero elsewhere.
Next, let the (row) vector a0 represent the activations of those outcomes not
present in the learning event, again given the cues in that learning event, and let
it be zero for all other outcomes:

a0 = (((J · [1− o])T · c)T ·W)i.

((J · [1−o])T · c)T is 1 for all cue-outcome pairs where the cue is present but the
outcome not, and zero elsewhere. The update to the weight matrix, ∆rw, can
now be defined as follows:

∆rw = η{((J · o)T · c)T · (1− a1)− ((J · [1− o])T · c)T · a0}.

For cue-outcome pairs that are both in the learning event, the update of their
weight is given by the difference from the maximal activation, 1 by definition.
As the summed activations a1 tend to be less than 1, weights will be strength-
ened. For cue-outcome pairs where the cue is present but the outcome is not,
the corresponding connection weight is decreased by the summed activations a0.
Estimation of W using incremental updating over the sequence of learning events
is fast, first because only parts of the weight matrix require updating (efferent
weights from cues not present in the learning event are left untouched), and also
because the updates to individual outcomes are independent and hence allow for
parallelization.

The activation matrix A = WC specifies, for each unique learning event and for
each outcome, the joint support provided by the cues in that learning event for
that outcome.

Although class predictions based on A can do well for small constructed data sets,
they lack precision for large real data sets. Prediction accuracy can be further
improved by a second network that is given the task to predict the target T from
the activation matrix A:

T = DA.

The prediction matrix
P = DA

is the resulting approximation of T. Although D can be calculated using the
generalized inverse of A, computation costs can be prohibitive for large numbers
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of learning events. It is therefore preferable to estimate D as follows:

T = DA

TAT = DAAT

Y = DX,

which leads to D = YX−1. Since X is m×m, and since generally m� k, com-
putational costs are much lower when calculating X+ as compared to calculating
A+.

The prediction matrix can also be estimated iteratively by means of the update
rule of Widrow and Hoff (1960). This update rule, which specifies the update
∆wh to the m×m second weight matrix D, is important, first, as it allows us to
assess the consequences of how the order of learning events affects classification,
and second, because for large numbers of training events (in the order of hundreds
of millions), it is not feasible to actually calculate A (and P).

Let Z denote an m ×m matrix initialized with zeroes, let a denote the column
vector of the activation matrix A giving the predicted activations for the current
learning event, and let o denote the transpose of the corresponding column vector
of the target matrix T. The Widrow-Hoff update to Z is:

∆wh = η{a(o− aTZ)}.

We take the transpose to obtain D = ZT .

The weights for the two networks (m× n for the Rescorla-Wagner network, and
m×m for the Widrow-Hoff network) can be estimated in two ways. One possibility
is to first estimate W and then estimate D. Alternatively, one can update both
networks in tandem for each successive learning event. In this case, it is not
necessary to calculate A. Note that when estimating

P = (WC)+TWC

we ‘inject’ error twice: once during the estimation of W and again during the
estimation of P.

The equilibrium equations are implemented in the ndl package for R on cran.
An efficient Python implementation for incremental learning of W is available at
github.com/quantling/pyndl. An implementation of incremental learning for R

is available (for linux only) upon request from the authors. Software for efficient
updating of D by Widrow-Hoff is currently under development.

Returning to the example of Table 1, first consider classification performance
when W and D are estimated independently, using incremental updating for the
former, and the generalized inverse for the latter. In this case, for each of the 10
sentences, the lexomes in that sentence have the highest prediction values in P.

When the two networks are updated in tandem, with at each learning event first
an update of W and then an update of D, accuracy varies with the (random)
order in which the 771 learning events are made available to the model. For one
such random order, the proper lexomes had the highest ranks in A for 9 out of
10 sentences. The one sentence with an error is John kicked the bucket, where
def (the lexome for the definite article) intrudes with a higher activation before
die, which is found at the next rank (4).
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FIGURE 1. Prediction strengths for selected lexomes in the learning events of
sentences 8 and 9 in Table 1, using incremented coupled Rescorla-Wagner and
Widrow-Hoff. Left and center panels: frequencies as in the table; right panel:
frequencies increased tenfold.

Figure 1 illustrates this incremental training regime. The left and center panels
show the predictions based on A and P when training proceeds on a random
order of 771 learning events, and the right panel when training proceeds on 7710
learning events. Solid lines represent key lexomes from sentence 8 in Table 1: kick
and bucket for the unintended literal reading and die for the intended idiomatic
reading. Dashed lines represent the competitors apple and applepie in sentence
9. The spiky behavior in the left and center panels reflects the learning and
unlearning that unfolds as outcomes competing for the same cues are encountered.
Comparison of the left and center panels shows that the Rescorla-Wagner network
learns much faster than the Widrow-Hoff network. By the end of the learning
sequence, the former, but not the latter network succeeds in giving the intended
lexomes higher prediction scores. The rightmost panel shows that with sufficient
experience, the model learns that kick the bucket means die, and that an apple
pie is not an apple but a particular kind of pie.

An important property of this approach to language comprehension is that the
correct lexomes are selected without any worries about regular or irregular verbs,
literal versus idiomatic expressions, finding boundaries between words, decom-
posing words into parts, or disambiguating homographs. Given the assumption
that understanding drives the recalibration of weights, the rich information avail-
able in the combinatorics of sublexical cues and lexomes is sufficient for multiple
label classification to be effective.

2 Multiple label classification with 52,000 classes

To clarify whether this approach scales up, we applied our algorithm to the tasa
corpus (Zeno, 1995), a collection of texts comprising a total of 10,807,146 words
representing 52,401 word types. Lemmatization was carried out with TreeTagger

(www.cis.uni-muenchen.de/∼schmid/tools/ TreeTagger/), which distinguished
90,339 lemmata, of which 37,938 occurred once. To keep computations tractable,
the model was trained on all words occurring at least twice and 351 hapax legom-
ena that occurred in a precompiled list of words. Hapax legomena that were not
included were replaced by the dummy word HAPAX, resulting in a total of 52,401
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lexomes. Learning events were sentences in the tasa corpus. Sequences of more
than 8 words were split at the next available occurrence of and or or. This resulted
in a total of 992,752 learning events. The multi-label classification challenge is to
predict the appropriate lexomes (out of 52,401) given the letter trigrams of the
(possibly inflected) words in the learning events.

Using the ndl2 package for R, W (52,401 lexomes × 11,724 letter trigrams)
was estimated using all learning events. To keep computations tractable for the
second network, two learning events were selected randomly from a precompiled
list of 8866 targeted lexomes, resulting in a total of 17,455 learning events (in 276
cases there was overlap with two or more lexomes in the same event, and for one
word, there was only 1 learning event available). The total number of outcomes
in this subset of learning events was 19,020. With these restrictions, the matrices
A (19,020 lexomes × 17,455 learning events), D (19,020 × 19,020 lexomes) and
P (19,020 lexomes × 17,455 events) could be estimated straightforwardly.
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FIGURE 2. Left: Quantiles of the ratio of intruders (false positives) to targets
(correct identifications), full utterances. Right: Rank and corresponding cumula-
tive proportion based on A (red) and P (blue), isolated words.

The left panel of Figure 2 presents the ratio of intruders (lexomes with an ac-
tivation exceeding that of the least activated target lexome) to the number of
targeted lexomes. The median number of intruders is zero, at the 8th decile the
ratio is 0.17, and at the 9th, it is 0.33. At the 10th decile, we find cases with vast
numbers of intruders, leading to a maximal ratio of 1208.9. Examples of intrud-
ers are down for the sentence The aleuts were housed in abandoned rundown gold
mines or fish canneries, and field and success for the sentence He is an ecologist
who studied succession in abandoned cornfields.

We also tested identification performance when target lexomes were presented in
isolation. The right panel of Figure 2 plots in blue cumulative proportion (out of a
total of 7179) against rank based on P: 34% of lexomes had the highest prediction
value, 88% of the targeted lexomes had at most a rank of 16 (indicating 15
intruders with higher activations). As show by the red curve, performance based
on A instead of P is substantially worse. Human lexical decision performance, as
gauged using the British Lexicon Project (blp, Keuleers et al. 2012) was for the
present data at 90% correct. As the lexical decision task does not require actual
identification, but only sufficient evidence for lexicality, it appears that human
subjects tolerate around 16 intruders.

As shown in Figure 3, the model also predicts power-transformed lexical decision
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response times (t′ = −1000t−1). For all but the first decile, log activation ai =
Wci (with c the vector specifying the present and absent cues in the input, and
i indexing a specific lexome) shows a nearly linear effect with negative slope. Log
rank prediction (the log rank of pi = DWci) has a smaller effect that is again
negative and nearly linear, but now for the first nine deciles. The 90% decile of
the rank is at 18, which is close to the cut-off at rank 17 for lexicality decisions in
the right panel of Figure 2. Apparently, the same range of ranks influences both
decisions and reaction times.
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FIGURE 3. Partial effects in a gam fitted to power-transformed (−1000t−1) re-
action times. Left: log activation; Right: log prediction rank. Vertical lines denote
deciles. The 90% decile of log prediction rank is at rank 18 (red lines indicate
deciles). Regression analyses were carried out with gams (Wood, 2006).

PT defines a semantic vector space (cf. Landauer & Dumais, 1997), and lexomes
are indices or pointers for locations in this space. By way of illustration of the
semantic nature of PT , the left panel of Figure 4 presents partial effects for
human semantic similarity ratings for word pairs (Bruni et al., 2014) as predicted
from correlations of the corresponding column vectors of PT (left). For 90% of
the data points, a nearly linear relation is observed. Clearly, extreme values are
unreliable as predictors. Similarity in PT -space, i.e., similar prediction values
across events and thus greater similarity of experiences communicated, correctly
predicts greater perceived semantic similarity.

The column vectors of D also define a lexomic space, but similarities in this space
turn out to be positively correlated with the Levenshtein distance between the
orthographic forms of the two words. As shown in the right panel of Figure 4, the
more different two word forms are, the lower their perceived semantic similarity.

3 Concluding remarks

Multi-label classification is a hard problem, not only for statistics, but also for
humans. For instance, in auditory word recognition, isolated words taken from
conversational speech have recognition rates between 20% and 40% (Arnold et al.,
2017). In the visual lexical decision task, undergraduate students perform near
chance on the lower-frequency words (Baayen et al., 2017). From this perspective,
the model’s performance, with training on a mere 10 million words, is too good
to be true. This is, of course, due to the model being given perfect feedback,
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whereas human learning tends to proceed under uncertainty and lack of full
understanding.

Given that the model presents a simplified perspective on the first stage of com-
prehension — understanding the words — several of its features are remarkable.
First, the traditional linguistic assumption that language is a (de)compositional
system is replaced by a perspective in which the language signal is a code that
discriminates between possible messages (Ramscar 2013, Shannon, 1956).

Second, the model is parsimonious with only one free parameter, the learning
rate η. And although W and D can be very large, most of the weights are close
to zero. E.g., for W, only 5,885 weights exceed 0.1 (0.00058% of the total number
of weights), and only 195 weights are greater than 0.5. Arnold et al. (2017) show
for auditory comprehension that W can be pruned down to a fraction of the
original weights without noticeable loss of accuracy.

Third, the classifier implements a three-layer network that differs from back-
propagation networks in that there is direct error injection twice, once for W
using the Rescorla-Wagner equations, and once for D, using Widrow-Hoff (or the
generalized inverse). Importantly, the power of the first network should not be
underestimated. Although ever since the criticism of the perceptron by Minsky
& Papert (1972), two-layer networks have been regarded as far too restricted
for any classification tasks requiring more than the simplest linear separation,
it turns out that actually, with an appropriate choice of cues, Rescorla-Wagner
networks can solve much more interesting problems. Figure 5 illustrates this for
a simple example with two classes (represented by gray and red points) that in
R × R are not linearly separable (left panel). When the data are re-represented
by identifiers for rows and columns (right panel), a Rescorla-Wagner network
correctly predicts the highest activations for around 210 of the 260 elements of
the red class (see Baayen and Hendrix, 2017, for detailed comparison with other
machine learning classifiers, and also Ghirlanda, 2005).

Fourth, more sophisticated features than letter trigrams can be used as cues,
such as the frequency band summary features used by Arnold et al. (2017) for
modeling auditory word recognition, and for reading the histogram of oriented
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FIGURE 4. Partial effects of the correlations of row vectors of P (left) and
column vectors of D as predictors of human similarity ratings for 2,369 word
pairs. Red vertical lines indicate 5% and 95% percentiles. Regression analyses
were carried out with gams (Wood, 2006).
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FIGURE 5. A non-linearly separable classification problem with a majority class
in gray (2240) and a minority class in red (260). Left: data points in a Cartesian
grid (x = 1, 2, . . . , 50; y = 1, 2, . . . , 50). Right: rerepresentation with row and
column identifiers as cues for a Rescorla-Wagner network: hits in blue, misses
and false alarms in red.

gradients feature descriptor proposed by Dalal and Triggs (2005).

Finally, the model is transparent to interpretation. W specifies the support pro-
vided by sublexical features for lexomes. D transforms activation vectors that
are still strongly influenced by form similarity into vectors closer to the targeted
lexomes, which in turn results in a semantic vector space, PT .
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1 Introduction

In this paper we extend the method of simulated quantiles (MSQ) of Dominicy
and Veredas (2013) to a multivariate framework (MMSQ). The MMSQ is then
applied to estimate the parameters of the distribution of a portfolio of asset re-
turns with the purpose of allocating a fixed amount of preexisting wealth among
alternative risky assets. The asset allocation problem requires the prior selection
of an appropriate distribution for modelling the multivariate structure of finan-
cial returns being characterised by the presence of skewness, heavy–tails and
positive tail–dependence which may prevent the existence of the moments. The
Skew–Elliptical Stable distribution (SESD) introduced by Branco and Dey (2001)
extends the elliptical Stable distribution using the skewing mechanism of Azzalini
and Dalla Valle (1996) and it is particularly useful to model skewed and heavy–
tailed continuous data. Despite their prominent role in the financial literature,
multivariate Stable distributions have not been massively employed because of

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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the inferential issues that can arise when fitting these distributions to data. The
lack of a closed form expression for the density function as well as moments finite-
ness prevent either the use of valid likelihood–based inferential procedures and
the moment–matching estimators. Furthermore, the inferential problem becomes
even more relevant as the dimension of the distribution increases. The method of
simulated quantiles (MSQ), like alternative likelihood–free procedures, is based
on the minimisation of the distance between appropriate quantile–based statistics
evaluated on the true and simulated data. Specifically, the MSQ estimates the
vector of unknown parameters ϑ by solving the following minimisation problem

ϑ̂ = arg min
ϑ

(
Φ̂y − Φ̃R

ϑ

)′
Wϑ

(
Φ̂y − Φ̃R

ϑ

)
, (1)

where Φ̂y is the vector of quantile–based statistics evaluated on the available sam-
ple of observations y = (y1, y2, . . . , yT ), while Φ̃R

ϑ = 1
R

∑R
t=1 Φ̃r

ϑ is the average

of the vector of quantile–based statistics Φ̃r
ϑ based on the r–th vector of simula-

tions from the postulated model yr = (yr1 , y
r
2 , . . . , y

r
T ) with r = 1, 2, . . . , R, and

Wϑ is a positive definite weighting matrix. The success of the method strongly
depends on a careful selection of the vector of quantile–based measures Φ even
in the univariate setting where quantiles are well defined. The lack of a natural
ordering in the multivariate setting instead requires an accurate definition of the
concept of quantile. Here, we rely on the notion of projectional quantile recently
introduced by Hallin et al. (2010) and Kong and Mizera (2012). This notion of
multivariate quantile makes the estimator flexible and it allows us to deal with
non–elliptically contoured distributions.
An issue frequently observed in high dimensions is the curse of dimensionality,
i.e., the situation where the number of parameters grows quadratically or expo-
nentially with the dimension of the problem. In those circumstances, the right
identification of the sparsity pattern becomes crucial since it reduces the number
of parameters to be estimated. Those reasonings motivate the use of sparse esti-
mators that automatically shrink to zero some parameters, such as, for example,
the off diagonal elements of the variance–covariance matrix. In this paper, we
penalise the quadratic objective function of the MMSQ by adding a smoothly
clipped absolute deviation (SCAD) `1–penalisation term that shrinks to zero the
off–diagonal elements of the scale matrix of the postulated distribution. We ex-
tend the asymptotic theory in order to accommodate sparse estimators, and we
prove that the resulting sparse–MMSQ estimator enjoys the oracle properties of
Fan and Li (2001) under mild regularity conditions.
The remainder of the paper is organised as follows. Section 2 briefly describes
the MMSQ and its sparse extension. Section 3 introduces the multivariate Skew–
Elliptical distribution and discusses some of its properties which are useful for
the application to the portfolio optimisation problem. We apply the MMSQ to
the portfolio optimisation problem in Section 4. Portfolio optimisation has a long
tradition in finance initiated by the Markowitz’s (1952) seminal paper that in-
troduced the mean–variance (MV) approach. The MV approach relies on quite
restrictive conditions about the underlying distribution of asset returns that are
relaxed here by assuming that financial returns follow a multivariate SESD. More-
over, since these distributions do not admit finite second moment, we consider
a portfolio allocation problem where the expected return is traded–off against
higher Value–at–Risk (VaR) profiles that make investment less attractive.
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2 The multivariate method of simulated quantiles

In this section we briefly describe the MMSQ. To this aim, we first introduce
the following definition of projectional quantiles. Let Y ∈ Rd be random vector,
u ∈ Sd−1 be a vector in the unit sphere and τ ∈ (0, 1), then the τu projectional
quantile of Y is defined as

qτu ∈
{

arg min
q∈R

Ψτu (q)

}
, (2)

where

Ψτu (q) = E
[
ρτ
(
u′Y − q

) ]
, (3)

and ρτ (z) = z
(
τ − I(−∞,0) (z)

)
. Clearly the τu–projectional quantile is the τ–

quantile of the univariate random variable u′Y. This feature makes the definition
of projectional quantile particularly appealing in order to extend the MSQ to the
multivariate setting because, once the direction is properly chosen, it reduces to
the univariate quantile. The multivariate method of simulated quantiles is now
introduced. Let FY (·, ϑ) be the distribution function of Y which depend on a
vector of unknown parameters ϑ ⊂ Θ ∈ Rk and let:

(i) qτuϑ = (qτ1uϑ , qτ2uϑ , . . . , qτsuϑ ) be a s × 1 vector of projectional quantiles at
given confidence levels τi ∈ (0, 1) with i = 1, 2, . . . , s, and u ∈ Sd−1;

(ii) Φu,ϑ = Φ (qτuϑ ) be a b × 1 vector of quantile functions assumed to be
continuously differentiable with respect to ϑ for all Y and measurable for
Y and for all ϑ ⊂ Θ;

(iii) q̂τu = (q̂τ1u, q̂τ2u, . . . , q̂τsu) and Φ̂u = Φ (q̂τu) be the corresponding sam-
ple counterparts;

and assume that Φu,ϑ cannot be computed analytically but it can be empirically
estimated on simulated data. At each iteration j = 1, 2, . . . the MMSQ compute
Φ̃R

u,ϑj
= 1

R

∑R
r=1 Φ̃r

u,ϑj
, where Φ̃r

u,ϑj
is the function Φu,ϑ computed at the r–th

simulation path from FY

(
·, ϑ(j)

)
. The parameters are subsequently updated by

minimising the distance between the vector of quantile measures calculated on
the true observations Φ̂u and that calculated on simulated realisations Φ̃R

u,ϑj
.

The subscript u denotes that those quantities depend on a set of directions, that
should be selected in such a way that they fully characterise the feature the
corresponding parameter of the distribution identifies. We establish consistency
and asymptotic normality of the proposed estimator. The MMSQ estimator is
then extended in order to achieve sparse estimation of the scaling matrix. Specif-
ically, the SCAD `1–penalty of Fan end Li (2001) is introduced into the MMSQ
objective function as follows

ϑ̂ = arg min
ϑ

(
Φ̂u − Φ̃R

u,ϑ

)′
Wϑ

(
Φ̂u − Φ̃R

u,ϑ

)
+ n

∑
i<j

pλ (|σij |) , (4)

where Wϑ is a b× b symmetric positive definite weighting matrix, Σ = (σij)
d
i,j=1

is the scale matrix and pλ (·) is the SCAD `1–penalty:

p′λ (γ) = λ

{
I(γ≤λ) +

(aλ− γ)

(a− 1)λ
I(γ>λ)

}
(5)
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3 Multivariate Skew Elliptical Stable distribution

Here, we introduce the definition of Skew–Elliptical Stable distribution intro-
duced by Branco and Dey (2001). Specifically, we consider a slightly different
parameterisation from Branco and Dey (2001), having the interesting property
that the diagonal elements of the scale matrix do not affect the overall skewness
of the distribution. Let (X′, Y )

′
be a Normal random vector of dimension (d+ 1)

conditional on the latent factor ζ ∼ Sα
2

(ω̄α, 1, 0) where Sα
2

(ω̄α, 1, 0) denotes the

univariate totally right–skewed α–Stable distribution with scale ω̄α =
(
cos πα

2

) 2
α

and shape parameter α ∈ (0, 2), i.e.[
X
Y
| ζ
]
∼ Nd+1 (0, ζΩδ) , (6)

where Ωδ =

[
Ω̄ δ
δ′ 1

]
and Ω̄ is a proper correlation matrix, symmetric and

positive definite with |σij | < 1, for i, j = 1, 2, . . . , d and i 6= j. Then the
random variable Z = (X | Y > 0) is Skew Elliptical Stable distributed, i.e.,
Z ∼ SESDd

(
α,0, Ω̄, δ

)
with density

fZ
(
z, α,0, Ω̄, δ

)
= 2

∫ +∞

0

φd
(
z,0, ζΩ̄

)
Φ1

(
λ′z√
ζ

)
h (ζ) dζ, (7)

where φd (·) and Φ1 (·) denote the density of the multivariate Normal distribution
and the cumulative density function of the univariate Normal distribution, respec-

tively, h (ζ) is the density of the mixing variable and λ =
(
1− δ′Ω̄−1δ

)− 1
2 Ω̄−1δ ∈

Rd denotes the vector of skewness parameters. Furthermore, the transformation
Y = ξ+ωX where ω = diag {ω1,ω2, . . . ,ωd} is Y ∼ SESDd (α, ξ,Ω, δ). Among
the attractive properties of the SESD, the closure under linear combinations is
of relevance for the portfolio optimisation problem discussed in the next Section.

4 Portfolio application

We consider a portfolio allocation problem, where, at each time t = 1, 2, . . . , T ,
the investor’s wealth allocation is based on the choice of the vector of optimal
portfolio weights wt > 0 by minimising the following objective function

arg minwt −Et (w′tYt+1)− κVaRλt (w′tYt+1) , s.t. w′t1 = 1, (8)

where Yt ∼ SESD (α, ξ,Ω, δ), Et (w′tYt+1) and VaRλt (w′tYt+1) denote the port-
folio’s expected return and the portfolio Value–at–Risk at level λ ∈ (0, 1) eval-
uated at time t for the period (t, t+ 1], respectively. Here, κ ≥ 0 denotes the
investor’s risk aversion parameter: the larger κ, the higher is the penalisation for
the risk profile of the selected portfolio. The empirical application is structured
as follows. We consider a basket of weekly returns of seventeen MSCI European
indexes, covering the period from January 6th, 1995 to November 25th, 2016.
Then, for each week, from April 23, 2010 to the end of the sample period, we
estimate the SESD parameters using a rolling windows of n = 800 observations
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FIGURE 1. Mean–VaR0.95 optimal portfolio results over the period from April
23th, 2010 to the November 25, 2016. Figures plot the optimal portfolios cumula-
tive returns for different values of the risk aversion parameter κ in the top panel
and the optimal portfolio weights for κ = 10 in the bottom panel. The dotted
thinned brown line represents the equally weighted portfolio cumulative returns
which has been added for comparison.

for the MMSQ and of n = 200 for the Sparse–MMSQ. The optimal tuning param-
eters of the SCAD penalty are selected by K–fold cross validation, with K = 5.
As regards the portfolio allocation exercise, for each window, we solve equation
(8) for the vector of optimal allocations wt, where the portfolio expected returns
and VaR are calculated exploiting the closure property with respect of the linear
combination of the SESD: Zt+1 = w′tYt+1 ∼ SESD

(
α,w′tξ,w

′
tΩwt,ω

−1
Z w′tωδ

)
,

where ωZ = (ΩZ � Ih)
1
2 and � denotes the Hadamart multiplication. Moreover,

the VaR confidence level is fixed at λ = 0.99 and several levels of investors’ risk
aversion are considered κ = {0.10, 0.5, 1.0, 2.0, 5.0, 10.0}. We present the results
of the empirical portfolio performance evaluation. To this end, we forecast the
one–step ahead conditional returns’ distribution over the whole sample period.
The sequence of predictive distributions delivered by the competing models, are
then used to build the mean–VaR optimal portfolios with and without the short
selling constraint in equation (8). Figure 1, reporting the cumulative returns for
the MMSQ (on the left) and the Sparse–MMSQ (on the right), evidence that,
as the risk aversion coefficient κ increases from κ = 0.1 to κ = 10, cumulative
returns increase as well. This evidence is stronger for the Sparse–MMSQ mean-
ing that the shrinkage effect induced by the estimation method have a positive
impact on the estimation of the scale matrix and, as a consequence, the portfo-
lio results greatly benefited from a better estimate of the dependence structure
among assets. The bottom panels of Figure 1 plot the evolution over time of the
optimal weights. Optimal weighs for the Sparse–MMSQ are characterised by a
marked heterogenous behaviour while those implied by the MMSQ are flat and
display lower levels of diversification.
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1 Introduction and motivation

FIGURE 1. Three-dimensional curves representing an upper lip, embedded in a
three-dimensional facial image, during the emotion Disgust, at time points 3, 13
and 37.

This study is motivated by the shape of the lips in a three-dimensional facial
image (surface) and their variation over the expression of different emotions such
as disgust, fear, anger, happiness, et cetera (Figure 1). To record the expressions,
a large number of pictures of a person producing the emotion are taken with
a stereophotogrammetric camera system, which leads to a set of data in four
dimensions (the three spatial dimensions plus time). The statistical analysis of
information on shape has been a research topic of considerable interest since the
earliest part of the twentieth century, but it has developed substantially in the
present century especially thanks to advances in computational tools. Interest in
shape analysis of the human face began because of its applications in biology,
medicine and psychology.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
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2 Gaussian Process model for three-dimensional
curves evolving over time

A ridge curve embedded in a three-dimensional surface can be expressed in terms
of a continuous index, i.e. its arc-length (rescaled to be from 0 to 1), s ∈ [0, 1],
and the discrete label (i.e. coordinate), c ∈ {x, y, z} (Mariñas et al. 2016). If the
surface is, moreover, changing over time, a time component t ∈ R can be added
to the model. A GP can be then specified as:

w(t, c, s) ∼ GP
(
m(t, c, s), k(t, t′, c, c′, s, s′)

)
. (1)

Let s = (s1, ..., sn)T for a choice of n values of s. Each coordinate can be
represented as a function of the arc-length and the time: w(t, x, s) = x(t, s),
w(t, y, s) = y(t, s) and w(t, z, s) = z(t, s) (Figure 2).

FIGURE 2. 3D upper lip curves, from the emotion Disgust. Each coordinate
represented as function of the arc-length, at time points 3, 13 and 37.

Then a three dimensional curve at time t can then be notated as:

W(t) =
[
x(t) y(t) z(t)

]T
, (2)

where x(t) = (x(t, s1) · · ·x(t, sn))T, and similarly for y(t) and z(t). The sequence
for a choice of T values of t, t = (t1, ..., tT )T: (W(t1) · · ·W(tT ))T = W ∼
N3Tn (m,K), where m is the mean, assumed to be zero, and K is the covariance
matrix. Separability is assumed such that: k(t, t′, c, c′, s, s′) = kt(t, t

′)kc(c, c
′)ks(s, s

′)
(Rasmussen 2006), i.e. K = Kt ⊗Kc ⊗Ks.

• If the process is assumed Markovian, the Ornstein-Uhlenbeck (OU) covari-
ance function can be used, i.e., kt(t, t

′) = exp(−|t − t′|/µ), with hyperpa-
rameter µ, the time-scale. Hence, Kt represents the covariance of curves at
different time points, with (i, j)th element equal to kt(ti, tj).

• For the 3 × 3 matrix Kc, two hyperparameters were specified: κ1, the
correlation between x and y or z, and κ2, between y and z:

Kc =

 1 κ1 κ1

κ1 1 κ2

κ1 κ2 1

 . (3)

• The space-covariance function used is the Squared-Exponential (SE), i.e.,
ks(s, s

′) = σ2
f exp

(
− 1

2
(s− s′)2/λ2

)
, with hyperparameters: σ2

f , the signal
variance and λ, the length-scale. Therefore, Ks represents the covariance
matrix for the n arc-length inputs, with (i, j)th element equal to ks(si, sj).
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3 Conditional dependencies, likelihood and predictive
distributions

The distribution for the first three-dimensional curve at time t = 1, W(1) ∼
N3n (0,Kc ⊗Ks), can be factorised as:

x(1) ∼ Nn(0,Ks),

y(1) | x(1) ∼ Nn(κ1x(1), (1− κ2
1)Ks),

z(1) | x(1),y(1) ∼ Nn
([
{κ1 − κ1κ2}x(1) +

{
κ2 − κ2

1

}
y(1)

]
/
[
1− κ2

1

]
,[

1−
{
κ2

1 + κ2
2 − 2κ2

1κ2

}
/
{

1− κ2
1

}]
Ks

)
.

(4)
Subsequent three-dimensional curves in the sequence can be conditioned on the
previous time-point (by the Markov property):

W(t) |W(t− 1) ∼ N3n

(
κW(t− 1), (1− κ2)Kc ⊗Ks

)
, (5)

where κ = exp(−1/µ), assuming the time difference between curves is one.

Analogous conditional dependencies between coordinates can be used:

x(t) |W(t− 1) ∼ Nn
(
κx(t− 1), (1− κ2)Ks

)
,

y(t) | x(t),W(t− 1) ∼ Nn
(
κy(t− 1) + κ1 [x(t)− κx(t− 1)] ,

(1− κ2)Ks(1− κ2
1)
)
, (6)

z(t) | x(t),y(t),W(t− 1) ∼ Nn

(
κz(t− 1) +

1

1− κ2
1

[{κ1 − κ1κ2}{x(t)−

κx(t− 1)}+ {κ2 − κ2
1}{y(t)− κy(t− 1)}

]
,

(1− κ2)

[
1− κ2

1 + κ2
2 − 2κ2

1κ2

1− κ2
1

]
Ks

)
.

Given the hyperparameters θ = (σf , λ, µ, κ1, κ2), the total log-likelihood of the
sequence can be calculated as:

log p(W | θ) = log p(W(1) | θ) +

T∑
i=2

log p(W(t) |W(t− 1),θ). (7)

At each time point t, log p(W(t) | W(t − 1),θ) = log p(x(t) | W(t − 1),θ) +
log p(y(t) | x(t),W(t− 1),θ) + log p(z(t) | x(t),y(t),W(t− 1),θ).

Marginal predictions at time q ∈ R can be done at a set of test points s∗ =
(s∗1, . . . , s

∗
n) for each coordinate x, y and z, using:

W∗(q) |W ∼
(
[L⊗Kc ⊗Ks∗s][M⊗Kc ⊗Ks]

−1W,

Kc ⊗Ks∗ − [L⊗Kc ⊗Ks∗s][M⊗Kc ⊗Ks]
−1[L⊗Kc ⊗Ks∗s]

T
)
, (8)

where Ks∗s denotes the n∗ × n matrix of the covariances evaluated at all pairs
of training and test points, M has (i, j)th element equal to κ|i−j| and

L =
[
exp(−|q − 1|/µ) exp(−|q − 2|/µ) · · · exp(−|q − T |/µ)

]
. (9)

The matrix L will change depending on the value of q. Analogous conditional
dependences between coordinates can be calculated.
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4 Fitting the model for the emotion Disgust and
classification of emotions

FIGURE 3. Observations, posterior means and predicted values for 3-dimensional
lip curves of the emotion Disgust.

The model was fitted for the 3D upper lip curves from the emotion Disgust (Fig-
ure 2), of 61 pictures, i.e. t = (1, . . . , 61)T. Optimal hyperparameters were found
by maximum likelihood. To ease the optimization process, the number of hyper-
parameters can be reduced by finding the signal variance, σf , that maximises
the log-likelihood function analytically. The small difference between time points
makes the hyperparameter µ very large. Through experimentation it was observed
that the larger the value of µ, the smaller its effect on the likelihood function.
Moreover, it was found that µ and κ2, the correlation between coordinates y and
z, were negatively correlated. For this reason, the hyperparameters κ1 and κ2

were optimised for a series of individual time points, using a GP model for three-
dimensional curves (Mariñas et al. 2016), and then fixed to the mean of these
values. Optimization is then carried out for the remaining hyperparameters. An
additive normal error of standard deviation 0.5 mm was added to the model of ob-
servations to accommodate errors in the observed facial surface. The optimal val-
ues found are: θ̂ = (σ̂f , λ̂, µ̂, κ̂1, κ̂2) = (5.3383, 0.1553, 25.5058,−0.0164, 0.7850),
with respective se: 0.0565, 0.0027, 2.5851, 0.0059, 0.0286. The same time-points
(t = (1, . . . , 61)T) were considered to make predictions at 25 spatial-points (Fig-
ure 3). Retrodiction was done at time q = −1, using the data at time point 1.
Prediction at time q = 63, conditioned on the data from the last curve available,
i.e. at time 61, was also made. Marginal prediction was done at time q = 30,
using the observed values at that time, and interpolation at q = 40.75, using the
observed values at times 40 and 41. The posterior means are displayed with 2
standard deviations bands (shown dotted). Note how the error bands expand as
predictions are further away from the observations.

Methods of classification are being studied to categorise each emotion in terms of
the correlation parameters. An initial approach was to perform Principal Com-
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FIGURE 4. Biplot of the (scaled) first two principal components.

ponent Analysis (PCA) (Figure 4). Data consists of six different emotions: anger,
disgust, fear, happy, sadness and surprise. There are available sequences from 60
images, in the case of the expression of disgust, to sequences of about 180 images,
in the case of happiness. Data were collected by Oliver Garrod and colleagues
from the School of Psychology at the University of Glasgow from a 25 year old
actress performing each expression between three and five times. There was no
stimulation: she based the expressions on the Facial Action Coding System pro-
posed by Paul Ekman (Ekman et al. 1997).

5 Conclusions and further lines of investigation

The use of shape information, expressed in a continuous and multivariate scale
raises a number of very interesting issues from a methodological perspective. The
lip curve data represent a peculiar scenario due to their high smoothness both
spatial and temporally, therefore special adjustments had to be made, which are
not needed in other sequences of three-dimensional curves. Nonetheless, the model
interpolates the data well and produces accurate predictions. When it comes to
the classification of the different emotions using PCA, it can be seen that this
is limited by the small number of replicates available. The first two principal
components explain together 72.4% of the variability. It is clear from the biplot
that Surprise is the most different from the rest of the emotions, and Disgust the
one with less variability between replicates, which can be interpreted as having
a series of strong unique characteristics that do not allow much change. For a
better understanding of the differences between the emotions, in terms of their
correlation parameters, it would be necessary to increase the number of replicates,
as well as adding more subjects to the study, to account for the variability across
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people. The notion of a shape evolving in time can be extended to a phylogenetic
setting, where branching points in the evolution can occur. The aim is to develop
statistical methods by which shape information on organisms can be used to
reconstruct a phylogenetic tree.
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Abstract: Linkage maps are important for fundamental and applied genetic
research. In this article, we introduce an algorithm to construct high-quality and
high-density linkage maps for diploid and polyploid species. We employ a sparse
Gaussian copula graphical model and the nonparanormal skeptic approach to
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1 Genetic background on linkage map

A linkage map provides a fundamental resources to understand the order of mark-
ers for the vast majority of species whose genome are yet to be sequenced. Fur-
thermore, it is an essential ingredient to identify genes associated with different
traits such as, disease resistance in plants or animals. Diploid organisms contain
two sets of chromosomes, whereas polyploids contain more than two sets of chro-
mosomes. Here, we refer to diploids and polyploids as q-ploid q ≥ 2, where in
diploids q = 2, triploids q = 3, and so on. The genotype of any q-ploid organism
at each single locus on the genome can be either homozygous if all q allele copies
of an organism are identical, or heterozygous otherwise.

1.1 Meiosis and Markov dependence.

Linkage mapping is possible because of a biological crossover process, which oc-
curs during meiosis. Assume a sequence of ordered SNP markers Xc

1 , . . . , X
c
pc

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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along chromosome c. Due to the genetic linkage, neighboring markers across a
chromosome are linked. The key biological fact during meiosis is that markers
at different chromosomes segregate independently. Given the above mentioned
fundamental genetic concepts, Xc

j can be defined as

Xc
j =

{
1 parental marker at locus j,
0 otherwise.

The sequence Xc
1 , X

c
2 , . . . , X

c
pc forms a Markov chain with the state space S

where the genotype state of a genetic marker on a genome depends only on the
genotype state in the previous genetic marker. Thus, genotype state of marker
Xj in following set {Xc

1 , . . . , X
c
j−1, X

c
j , X

c
j+1, . . . X

c
pc} can be written as follow

P (Xc
j |Xc

j−1, X
c
j−2, . . . , X

c
1) = P (Xc

j |Xc
j−1). This property implies that neighbor-

ing markers have conditional dependence relationship. Two complications arise
when (i) a population contains heterozygous genotypes, in this case we define

Y cj =
q∑
k=1

Xc
jk, (ii) we do not know what ”parental” is, in that case the conditional

independence relationships are more complicated. Treating the SNP markers ac-
cording to the Markovian assumption yields the graphical model. The variables
vector X = {Xc

1 , . . . , X
c
p}, where p is the total number of given markers in a

genome, is a discrete graphical model with a joint distribution P (X) which can

be factorized as P (X) =
∏C
c=1

∏pc
j=1 f

(c)
j,j+1(x

(c)
j , x

(c)
j+1). Here, C defines the num-

ber of chromosomes in a genome, and pc stands for the number of markers in
chromosome c.

2 Algorithm to construct linkage map

We propose to build a linkage map in two steps. First, reconstruct an undirected
conditional independence graph between SNP markers in a genome. Second, de-
termine the correct order of markers in the obtained linkage groups.

2.1 Construct undirected graphical model

To reconstruct the conditional independence graph between SNP markers in a
q-ploid species we propose two methods, latent graphical model, and the non-
paranormal skeptic. The former method can deals with missing values, whereas
the latter is computationally faster.

Latent graphical model

A relatively straightforward approach to discover the conditional independence
relationships among markers is to assume underlying continuous variables Z1, . . . , Zp
for the markers Y1, . . . , Yp such that Zj = Φ−1(F̂j(Yj)), where Φ−1(.) is the stan-
dard Gaussian quantile function. We assume Z ∼ Np(0,Θ) where Θ = Σ−1

contains all the conditional independence relationship between SNP markers.
Furthermore, we implement the EM algorithm which iteratively finds penalized
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maximum likelihood estimation of parameter Θ̂. Using the extended rank likeli-
hood in the E-step we compute the expected complete penalized log-likelihood
as follow

Qλ(Θ̂ | Θ(m)) =
n

2
[log |Θ| − tr(R̄Θ)− p log(2π)]− λ||Θ||1

where R̄ = 1
n

∑n
i=1 EZ(i)(Z(i)Z(i)t|y(i), Θ̂(m)), and λ is a nonnegative tuning

parameter. To calculate R̄ we propose two different approaches, namely Gibbs
sampling and approximation method (Behrouzi et al. (2017)). The M-step is
the maximization problem which can be solved efficiently using graphical lasso
(Fridman et al., 2008).

TABLE 1. Comparison the two methods over 50 independent run, where q = 2

Grouping Accuracy Ordering Accuracy

Missing rate Error rate DGMmap MSTMap DGMmap MSTMap

p=500 & n=200
0 0 1.00 (0.00) 0.55 (0.34) 1.00 (0.00) 0.90 (0.09)
0.05 0.05 1.00 (0.00) 0.10 (0.07) 0.77 (0.04) 0.61 (0.12)
0.10 0.10 1.00 (0.00) 0.01 (0.00) 0.60 (0.03) 0.18 (0.23)
0.15 0.15 1.00 (0.00) 0.01 (0.00) 0.56 (0.01) 0.00 (0.00)
p=1000 & n=200
0 0 1.00 (0.00) 0.61 (0.36) 1.00 (0.00) 0.91 (0.06)
0.05 0.05 1.00 (0.00) 0.04 (0.03) 0.56 (0.00) 0.51 (0.09)
0.10 0.10 1.00 (0.00) 0.44 (0.16) 0.52 (0.00) 0.78(0.02)
0.15 0.15 1.00 (0.01) 0.05 (0.00) 0.52 (0.00) 0.60 (0.13)

Nonparanormal SKEPTIC

Alternatively, we use the nonparanormal skeptic approach (Liu et al., 2012) to
compute the correlation matrix. In this approach, a sample correlation matrix Γ
can be computed from pairwise rank correlations, namely Kendall’s tau τ̂jl, and
Spearman’s rho ρ̂jl.

Γ̂jl =

{
sin(π

2
τ̂jl) j 6= l

1 j = l
,

Γ̂jl =

{
2 sin(π

6
ρ̂jl) j 6= l

1 j = l.
To estimate the graph we use the graphical lasso. To determine the number of
linkage groups we use the EBIC model selection which picks the penalty term
that minimizes the EBIC value over λ > 0.

2.2 Ordering markers in each linkage group

Assume that a set of d markers have been assigned to the same linkage group.
Let G(d,Ed) be a sub-graph. To order d markers, the algorithm uses multi-
dimentional scaling (MDS) method to post processing of each linkage group. The
goal of using the MDS is to find an one-dimensional map such that the distances
between markers fit a given set of measured partial correlation that indicate how
far markers are.
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3 Data analysis

3.1 Simulations

We set up simulations to generate q-ploid genotype data. We compare the per-
formance of our proposed method with MSTMAP(Wu et al. (2008)) for different
ranges of missing rates and genotyping errors when q = 2. The results of com-
parisons are provided in Table 1. We note that high values of the grouping and
ordering accuracy scores indicate good performance. These results suggest that
the proposed approach performs well compare with the other method.

3.2 Construct linkage map in Barley

A barley genotyping dataset is used in the literature to compare different map
construction methods for real-world diploid data. This genotyping dataset is gen-
erated from a doubled haploid population which allows to achieve homozygous
individuals, Y = {0, 1}. Barley genotype data is the result of crossing Oregon
Wolfe Barley Dominant with Oregon Wolfe Barley Recessive. The Oregon Wolfe
Barley (OWB) data includes p = 1328 markers that were genotyped on n = 175
individuals which 0.02% genotypes are missing. The barley dataset is expected
to yield 7 linkage groups, one for each of the 7 barley chromosomes.

Table 2 shows that our method estimated correctly the number of chromosomes
for the OWB dataset. Whereas, The MSTMAP grouped all 1328 markers as one
chromosome. The ordering accuracy scores are higher in qploidMap compare with
the MSTMAP, except in chromosomes one and three. Also, the size of the markers
within each linkage group is consistent with the number of markers that has been
reported in Cistue et al. (2011).
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4 Conclusion

Construction of linkage map is the most fundamental step required for a detailed
genetic study in any species. We propose to build a linkage map in two steps:
First, reconstructing an undirected conditional independence graph between SNP
markers in a genome, Second determining the order of markers in the obtained
chromosomes from the first step. Our simulations show that the proposed method
outperforms the alternative method in terms of linkage map quality. In the ap-
plication of our method in Barley, the proposed method construct more accurate
linkage map compare with the alternative method.

References

Behrouzi, P. and Wit, E. C (2017). Detecting Epistatic Selection with Partially
Observed Genotype Data using Copula Graphical Models. Submitted.

Cistu, L., et al. (2011). Comparative mapping of the Oregon Wolfe Barley using
doubled haploid lines derived from female and male gametes. Theoretical
and applied genetics, 1399-1410.

Liu, H., F. Han, M. Yuan, J. Lafferty, and L. Wasserman (2012). High-dimensional
semiparametric Gaussian copula graphical models. The Annals of Statis-
tics, 2293-2326.

Wu, Y., et al. (2008). Efficient and accurate construction of genetic linkage maps
from the minimum spanning tree of a graph. PLoS Genet, 4(10), e1000212.



Inference in complex systems using
multi-phase MCMC sampling with gradient
matching burn-in

Alan Lazarus1, Dirk Husmeier1, Theodore Papamarkou1

1 School of Mathematics and Statistics, University of Glasgow, UK

E-mail for correspondence: a.lazarus.1@research.gla.ac.uk
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1 Introduction

Statistical inference in nonlinear differential equations (DE) is challenging. The
log-likelihood landscape is typically multimodal and every parameter adaptation,
e.g. in an MCMC simulation, requires a computationally expensive numerical in-
tegration of the DEs. Using numerical methods to solve the equations results
in prohibitive computational cost; particularly when one adopts a Bayesian ap-
proach in sampling parameters from a posterior distribution. Alternatively, one
can try to reduce this computational complexity by obtaining an interpolant
to the data from which one can obtain a comparative objective function that
matches the gradients of the interpolant and the DEs. By sampling on this cheap
representative likelihood surface, bias is introduced to the modelling problem.
Current research focuses on reducing this bias by introducing a regularising feed-
back mechanism from the DEs back to the interpolation scheme (e.g. Niu et al.
2016). The idea is to make the interpolant maximally consistent with the DEs.
Although this paradigm has proved to improve performance over näıve gradient
matching, the feedback loop fails to fully eradicate bias in the final estimate.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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For this reason, a natural progression would be to sample from the true likeli-
hood space whilst reducing computational complexity in the discarded burnin
steps. Assuming this hypothesis, we postulate the use of a surrogate likelihood in
the burnin phase alone. Through an example possessing multimodal likelihood,
we will show the ability of the algorithm to avoid any local entrapment whilst
obtaining accurate parameter estimates.

2 Method

Consider time-dependent observations y(t) = x(t) + ε—where x(t) denotes the
signal and ε independent additive zero mean Gaussian noise with variance pa-
rameter σ2—whose signals are governed by a system of differential equations:

dx(t)

dt
= f(x(t),θ) (1)

dependent on some (partially) unknown parameters θ. Assuming Gaussian noise,
we place a GP prior on the latent variable x

x(t) ∼ GP(0, k(t, t′)), (2)

leading us to a Gaussian distribution, p(xi|φi) = N (xi|0,Ki) for an arbitrary
set of time points T = {t1, ..., tn} with entries of Ki given by evaluating kernel
function k at each element of T ×T (Rasmussen and Williams, 2006). Under our
assumption of Gaussian noise, we consider the joint distribution, p(y,x|φ, σ).
Marginalising over latent variables x provides a zero mean distribution for the
observations:

y ∼ N (0,K + σ2I) (3)

(see Dondelinger et al. (2013) for details). Considering the joint distribution be-
tween our signal and observed values, we may implement an elementary trans-
formation of a Gaussian distribution to obtain the posterior distribution for our
signal with mean given by:

µ(τ) = k(τ, T )(K + σ2I)−1y, (4)

where k(τ, T ) denotes evaluation of the kernel function at τ over T . Subsequently,
firstly estimating the hyperparameters via ML, we adopt the mean of the posterior
as a representation of our signal x. This allows us to proceed under the supposition
that we have a fixed interpolant for the true signal. Given that the derivative of
eq. 4,

∂µ(τ)

∂τ
= k′(τ, T )(K + σ2I)−1y, (5)

is the mean of the Gaussian distributed DE derivative (see section 7.5 of Van-
hatalo et al., 2015), we may consider:

f(x̂(t),θ) ∼ N
(dx̂(t)

dt
, γ2I

)
, (6)
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where γ2 is a fictitious noise term (assumed equal for both gradients) and x̂ is
given by eq. 4. Contrary to the work done by Dondelinger et al. (2013), fixing
the GP hyperparmeters φ and the interpolant x̂ allows us to abandon the Gibbs
sampling routine at this stage of the algorithm, further reducing the overall com-
putational burden. The corresponding negative log-likelihood term provides a
gradient matching objective function:

π(θ) = n logγ2 +
1

2γ2

∣∣∣∣∣∣∣∣dx̂(t)

dt
− f(x̂(t),θ)

∣∣∣∣∣∣∣∣2 (7)

which gives a representative computationally tractable surface as a surrogate for
the log-likelihood. This involves the term γ2 representing the mismatch between
the gradient obtained from the differential equation and that from explicit differ-
entiation of the GP posterior mean. This parameter will be sampled throughout
the surrogate burnin phase of the algorithm. The proposed sampling scheme in-
volves three phases. In the initial burnin phase, samples are drawn from the
surrogate distribution in eq. 7 using a Delayed Rejection Adaptive Metropolis1

(DRAM) scheme (Haario et al. (2006)). Assuming a degree of similarity between
the surrogate and true likelihood surfaces, this drives the sampler towards the
global minimum of the true likelihood function until a PSRF2 value of 1.1 has
been achieved. From here, we initialise a corrective phase in the true likelihood
space, correcting for any bias introduced by the inconsistencies between the sur-
rogate and true likelihood spaces. Sampling with DRAM, this phase is concluded
upon obtainment of a PSRF equal to 1.1. The proceeding sampling phase repli-
cates this corrective phase with sampling steps recorded until we achieve a PSRF
value of 1.05. The stepwise decrease in target PSRF values allows time for the
adaptive component of AM to learn the topology and adjust the covariance ac-
cordingly. We adopt an uninformative Inv-Gamma(0.001,0.001) prior for σ2 and
γ2 and a Ga(4, 0.5) prior for the parameters of the DE. All parameters are sam-
pled on the log scale to account for the positivity constraint.

3 Results

We assess performance on the following DE model of circadian oscillation3:

dp1

dt
=

k1

36 + k2p2
− k3,

dp2

dt
= k4p1 − k5 (8)

This is a notoriously challenging problem due to the extreme multimodality of
the likelihood. Following Girolami et al. (2010), we focus on the inference of two
parameters (k3 and k4), setting the other parameters and initial conditions to

1Obtained using the adaptive Metropolis component of DRAM with modM-
CMC function in the FME package in R.

2Obtained at intervals of 20 steps using the gelman.diag function from the
coda package in R.

3We used the same differential equations as in Girolami et al 2010. The actual
Goodwin oscillator is of a slightly different form, where the terms k3 and k5 are
replaced by k3p1 and k5p2, respectively.
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the same fixed values as in Girolami et al. (2010). Five sets of initial parame-
ter values for k3 and k4 were obtained using a Sobol sequence over the domain
[0, 5]2. Figure 1 shows the chain moving through the k3-k4 parameter domain.
Comparing with the traditional method, we observe the ability of the proposed
method to evade the various local minima. PSRF values of 17.1, 10.4 and 12.3
were obtained for k3, k4 and σ2 simulations respectively after 10000 steps us-
ing the traditional DRAM method in true likelihood space. Comparatively, the
proposed method required 1690 steps in surrogate space, 1690 in the corrective
phase and 1010 in the sampling phase to achieve a PSRF of 1.05. The number
of numerical integration steps required are given in Table 1 for each of the ten
DRAM chains. In Figure 2, boxplots are given that provide the distribution of

 500 
 1000 

 1000 

 1500 
 2000 

 2500 
 3000  3500  4000  4500  5000  5500  6000  6500  7000  7500  8000  8500  9000  9500  10000  10500  11000  11500  12000  12500  13000  13500  14000  14500  15000  15500  16000  16500  17000  17500  18000  18500  19000  19500  20000  20500  21000  21500  22000  22500  23000  23500  24000  24500  25000  25500  26000  26500  27000  27500  28000  28500  29000  29500  30000  30500  31000 

1 2 3 4 5

1
2

3
4

5

k3

k 4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●xxxxxxxxxx
 −

12
09

64
82

8 
 −

99
65

29
17

 
 −

76
56

50
13

 
 −

48
14

91
32

 
 −

46
37

31
39

 
 −

39
26

91
69

 
 −

32
16

51
99

 
 −

25
57

36
34

 
 −

22
59

10
38

 
 −

17
71

84
81

  −
15

79
89

89
 

 −
14

41
10

49
 

 −
13

40
70

07
 

 −
11

16
26

77
  −

90
06

94
0 

 −
81

80
08

2 

 −
75

00
87

7 
 −

71
76

04
0 

 −
54

33
73

1 
 −

50
79

36
4 

 −
49

90
77

2 

 −
47

24
99

6 

 −
37

20
95

4 

 −
36

61
89

3 

 −
34

25
64

7 

 −
30

41
74

9 
 −

30
12

21
8 

 −
28

64
56

5  −
22

73
95

2 
 −

21
26

29
9 

 −
20

96
76

8 
 −

19
78

64
6 

 −
18

90
05

4 

 −
16

53
80

8 

 −
14

47
09

4 

 −
14

17
56

3 

 −
12

69
91

0 

 −1
24

03
79

 
 −

11
51

78
7 

 −
10

92
72

6 

 −
10

04
13

4 

 −9
74

60
3.5

 

 −
94

50
72

.9
 

 −
88

60
11

.6
 

 −
76

78
89

 

 −
70

88
27

.7
 

 −
67

92
97

 

 −
62

02
35

.7
 

 −5
90705.1 

 −
56

11
74

.4
 

 −
53

16
43

.8
 

 −
50

21
13

.1
 

 −4
72

58
2.5

 
 −4

43
05

1.8
  −

41
35

21
.2 

 −3
83

99
0.5

 
 −3

54
45

9.9
  −3

24
92

9.2
 

 −295398.6 

 −295398.6 

 −2
65

86
7.9

 

 −265867.9 

 −2
36337.3 

 −236337.3 

 −206806.6 

 −206806.6 

 −206806.6 

 −206806.6 

 −206806.6 

 −206806.6 

 −206806.6  −206806.6 

 −206806.6 

 −177276 

 −177276 

 −147745.3 

 −118214.7 

 −88684.05 

1 2 3 4 5

1
2

3
4

5

k3

k 4
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●xxxxxxxxxx

 −
12

09
64

82
8 

 −
99

65
29

17
 

 −
76

56
50

13
 

 −
48

14
91

32
 

 −
46

37
31

39
 

 −
39

26
91

69
 

 −
32

16
51

99
 

 −
25

57
36

34
 

 −
22

59
10

38
 

 −
17

71
84

81
  −

15
79

89
89

 

 −
14

41
10

49
 

 −
13

40
70

07
 

 −
11

16
26

77
  −

90
06

94
0 

 −
81

80
08

2 

 −
75

00
87

7 
 −

71
76

04
0 

 −
54

33
73

1 
 −

50
79

36
4 

 −
49

90
77

2 

 −
47

24
99

6 

 −
37

20
95

4 

 −
36

61
89

3 

 −
34

25
64

7 

 −
30

41
74

9 
 −

30
12

21
8 

 −
28

64
56

5  −
22

73
95

2 
 −

21
26

29
9 

 −
20

96
76

8 
 −

19
78

64
6 

 −
18

90
05

4 

 −
16

53
80

8 

 −
14

47
09

4 

 −
14

17
56

3 

 −
12

69
91

0 

 −1
24

03
79

 
 −

11
51

78
7 

 −
10

92
72

6 

 −
10

04
13

4 

 −9
74

60
3.5

 

 −
94

50
72

.9
 

 −
88

60
11

.6
 

 −
76

78
89

 

 −
70

88
27

.7
 

 −
67

92
97

 

 −
62

02
35

.7
 

 −5
90705.1 

 −
56

11
74

.4
 

 −
53

16
43

.8
 

 −
50

21
13

.1
 

 −4
72

58
2.5

 
 −4

43
05

1.8
  −

41
35

21
.2 

 −3
83

99
0.5

 
 −3

54
45

9.9
  −3

24
92

9.2
 

 −295398.6 

 −295398.6 

 −2
65

86
7.9

 

 −265867.9 

 −2
36337.3 

 −236337.3 

 −206806.6 

 −206806.6 

 −206806.6 

 −206806.6 

 −206806.6 

 −206806.6 

 −206806.6  −206806.6 

 −206806.6 

 −177276 

 −177276 

 −147745.3 

 −118214.7 

 −88684.05 

1 2 3 4 5

1
2

3
4

5

k3

k 4

●

●

x

xxxxxxxxx
●

●

x

xxxxxxxxx

●

●

x

xxxxxxxxx

●

●

x

xxxxxxxxx

●

●

x

xxxxxxxxx
●

●

x

xxxxxxxxx

●

●

x

xxxxxxxxx

●

●

x

xxxxxxxxx

●

●

x

xxxxxxxxx

●

●

x

xxxxxxxxx

FIGURE 1. Ten chains generated with the proposed method shown in the param-
eter domain of the negative surrogate log-likelihood space (topleft) and negative
log-likelihood space (topright). The bottom plot shows simulations generated us-
ing the traditional method. The true parameter value is given by a point at (2,1).
The black crosses denote the final point of each chain.

TABLE 1. Number of numerical integration steps (N) for the traditional method.
The number required in the proposed scheme is 2700.

Chain Index 1 2 3 4 5 6 7 8 9 10

N 25583 29778 29835 28452 29708 29672 29768 29530 29859 29847

bias in our sampled parameter estimates for each of the five chains. Figure 3
provides RMS deviation in function space obtained using eq. 9,

RMSfunction =

√
1

n

∣∣∣∣x− x̂
∣∣∣∣2 (9)
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where x denotes the true signal and x̂ denotes the numerical solution of the DE
for one parameter sample from the sample phase of the multiphase approach and
the post burnin period of the traditional method. This provides a measure of the
predictive accuracy of the MCMC samples.
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FIGURE 2. Boxplots showing the distribution of bias for both methods (left)
where red boxes give the bias of the standard DRAM samples (without outliers)
and the black boxes give the bias of the proposed method. The plot on the right
gives the bias in both parameters for the DRAM method with outliers included.
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FIGURE 3. Functional RMS comparison between the proposed method (black)
and DRAM (red). On the left, we include outliers (from DRAM) and, on the
right, these are removed to enable better scalability of the plots for comparison.
The red dotted line denotes a functional RMS equal to zero.

4 Conclusion

Our work considers the sampling in DE parameter inference as a computationally
efficient three-phase scheme that achieves low levels of bias in sampled parame-
ter estimates (Figure 2). Achieving a PSRF of 1.05, we observe the ability of the
algorithm to converge in the parameter space of the circadian oscillator system
of equations; a model for which the standard DRAM procedure fails to replicate
this success (bottom of Figure 1). Considering the results in function space, we
observe the superior performance of the proposed method compared with the tra-
ditional DRAM method, showing that the performance improvement is witnessed
in both domains of study. These features, along with the vast improvement in
computational efficiency, demonstrate improved parameter inference compared
with the traditional method.
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Abstract: We discuss the notorious problem of order selection in hidden Markov
models, i.e. of selecting an adequate number of states, highlighting typical chal-
lenges arising when analyzing complex real data. Extensive simulations are used
to demonstrate why standard information criteria tend to favor models with
undesirably large numbers of states. We also propose a pragmatic step-by-step
approach to implement order selection.
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1 Introduction

Hidden Markov models (HMMs) are time series models for observations that
are driven by an underlying finite-state Markov chain. Despite their popularity,
identifying the most appropriate number of states has proven to be notoriously
difficult in practice (when the focus lies on inference on the data-generating pro-
cess, i.e. in an unsupervised learning situation). In particular, it has been demon-
strated that information criteria, when applied in empirical settings, often lead
to the selection of much larger numbers of states than seem desirable (see, e.g.,
Langrock et al., 2015). This behavior can partly be explained by the complexity
of many real data sets. In addition to the features that actually motivate the
use of state-switching models (such as multimodality and autocorrelation), real
time series data often exhibit additional patterns, e.g. outliers, seasonal fluctua-
tions or non-trivial dependence structures. When neglecting these features in the
specification of an HMM, then additional states within the model can “mop up”
the neglected structure in the data, therefore providing an improved model fit,
however at the price of reduced interpretability.

In this paper, we demonstrate the above points using simulations, and suggest
a pragmatic approach to choose the number of hidden states, which takes into

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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account formal criteria for guidance, but also stresses the importance of the study
aim, expert knowledge and model checking procedures.

2 Basic formulation of hidden Markov models

An HMM comprises an observed time series {Xt}Tt=1 which is assumed to be
driven by an unobservable state process {St}Tt=1. In the basic model formulation,
{St} is assumed to be a first-order Markov chain, characterized by the state tran-
sition probabilities γij = Pr(St = j |St−1 = i), i, j = 1, . . . , N . In addition, it
is usually assumed that the observations are conditionally independent of each
other, and of past states, given the current state: p(Xt|Xt−1, .., X1, St, ..., S1) =
p(Xt|St). Thus, the distribution of each observed variable Xt is completely deter-
mined by the current state St. These two assumptions complete the basic model
formulation.

3 Simulation Studies

We use simulations to investigate the performance primarily of the AIC and
the BIC when it comes to selecting a suitable number of hidden states. We also
investigate the performance of the integrated completed likelihood (ICL) criterion
(Biernacki et al., 2001), which has a stronger focus on the model’s ability to
partition the data. The integrated completed likelihood is obtained using the
most probable (Viterbi-decoded) state sequence ŝ:

ICL = −2 logLc(x , ŝ) + p log(T ),

where Lc(x , ŝ) denotes the (approximate) complete-data likelihood function given
the observed time series x = (x1, . . . , xT ), and p is the number of model param-
eters (see Zucchini et al. (2016), for details on how to evaluate the likelihood of
an HMM).

We showcase six scenarios where there is additional structure in the data that is
not accommodated within the basic HMM formulation detailed above. Each type
of additional structure considered may be found in real data, where the assump-
tions made with the basic HMM formulation typically are overly simplistic.

Scenario 1 (benchmark, correct model specification): We simulate data using a
two-state gamma HMM without additional structure, primarily as a benchmark
for the subsequent scenarios (see Fig. 1).

Scenario 2 (outliers): The data are generated using the benchmark model, adding
uniformly distributed errors to 0.5% of the observations generated.

Scenario 3 (inadequate emission distribution): Modified emission distribution
within state 2, using a nonparametrically constructed density with a form similar
to the gamma distribution, but exhibiting a heavy tail.

Scenario 4 (temporal variation): Transitions probabilities dependent on the time
of the day, i.e. state occupancy exhibits within-day variation.

Scenario 5 (semi-Markov state process): Replacing the geometric dwell-time dis-
tribution within state 2 of the benchmark model by a Poisson.
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FIGURE 1. a) Densities specified in Scenario 1; b) Densities used in Scenario 7.

Scenario 6 (violation of conditional independence assumption): Time-varying mean
parameters of the state-dependent gamma distributions, generated using autore-
gressive processes of order 1.

For each scenario, 100 data sets were generated (T = 5000). In each run, sta-
tionary gamma HMMs with 2–5 states were fitted using maximum likelihood
estimation (neglecting the additional structure in scenarios 2–6).

Table 1 shows, for each simulation scenario, the percentages of runs in which the
models with 2–5 states are chosen by AIC, BIC and ICL, respectively. Both AIC
and BIC mostly failed to detect the true number of states, in all five scenarios
with model misspecifications, with AIC doing worse than the BIC, due to the
higher penalty on model complexity in the latter.

The ICL did fairly well in our simulations, which can be explained by the ten-
dency of the ICL to favor non-overlapping solutions, i.e. HMMs where the state-
dependent distributions are clearly distinct. This tendency is also pointed out in
Biernacki et al. (2001). However, crucially, this behavior will not always be de-
sirable. To demonstrate this point, we carried out an additional simulation using
more overlapping states.

Scenario 7 (stronger overlapping emission distributions): We simulate data using
a three-state gamma HMM without additional structure, where the states overlap
more strongly than in the previous scenarios (see Fig. 1). Furthermore, in this
scenario transition probabilities are specified as γ11 = γ22 = 0.8.

For this scenario, we generated 100 data sets, with T = 2000 observations each,
and fitted stationary gamma HMMs with 2–4 states to each data set.

The results obtained for Scenario 7 are displayed in Table 2. We find that the
ICL here does indeed tend to favor models with too few states. While the AIC
performed equally poorly as the ICL — often selecting four and hence too many
states — the BIC always chose the correct number of three states in this scenario.

In complex real data, we will usually find several violations of the assumptions
involved in the basic HMM formulation. While the deviations may be relatively
minor, they may effectively accumulate, such that order selection can in fact even
be more problematic than with just a single, yet stronger assumption violation.
While conceptually it would seem natural to simply overcome the limitations of
HMM formulations that cause criteria-based order selection to fail, this is usually
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TABLE 1. Percentages of runs in which the models with 2–5 states are chosen
by AIC, BIC and ICL, for all simulation scenarios.

simul. number of hidden states selected

scenario criterion 2 (%) 3 (%) 4 (%) 5 (%)

1 AIC 37 43 20 –

(benchmark) BIC 100 – – –

ICL 100 – – –

2 AIC – 47 49 4

(outliers) BIC 30 70 – –

ICL 58 42 – –

3 AIC – 27 60 13

(inadequate emission BIC – 100 – –

distribution) ICL 26 71 3 –

4 AIC – – 57 43

(temporal variation) BIC 14 84 2 –

ICL 100 – – –

5 AIC – 14 74 12

(semi-Markov state BIC – 100 – –

process) ICL 100 – – –

6 AIC – – 28 72

(violation of cond. BIC 5 95 – –

indep. assumption) ICL 100 – – –

TABLE 2. Percentages of runs in which the models with 2–4 states are chosen
by AIC, BIC and ICL, for the additional simulation scenario 7.

simul. number of hidden states selected

scenario criterion 2 (%) 3 (%) 4 (%)

7 AIC – 54 46

(stronger overlapping BIC – 100 –

emission distributions) ICL 62 36 –

not a useful strategy in practice, both because of computational considerations
and as corresponding highly parameterized models may distract from the actual
study aim.
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4 Pragmatic Oder Selection

Given the difficulties outlined above, we suggest the following pragmatic step-
by-step approach to selecting the number of states of an HMM. The proposed
strategy applies only to the unsupervised learning case, where inference related
to the state process is of primary interest.

Step 1 decide a priori on the candidate models, in particular the minimum and the
maximum number of states that seem plausible, and fit the corresponding
range of models;

Step 2 closely inspect each of the fitted models, in particular plotting their esti-
mated state-dependent distributions and considering their Viterbi-decoded
state sequences;

Step 3 use model checking, in particular residuals, to obtain a more detailed pic-
ture of the fitted models;

Step 4 use model selection criteria for guidance as to how much improvement, if
any, is obtained for each increment in the number of states;

Step 5 make a pragmatic choice of the number of states taking into account find-
ings from Steps 2-4, but also the study aim, expert knowledge and compu-
tational considerations;

Step 6 in cases where there seems to be no strong reason to prefer one particular
model over another (or several other) candidate model(s), results for each
of these models should be reported.

The resulting choice of the number of states will necessarily be somewhat sub-
jective. However, a corresponding analysis nevertheless will be as scientific, if
not more scientific, than any allegedly objective choice of the number of states.
Furthermore, we have made the experience that a thorough implementation as
detailed in Steps 1-4 will usually make it fairly easy to pick a suitable N .

5 Conclusion

Model selection criteria are problematic with respect to choosing the number of
states of an HMM applied to complex real data within an unsupervised learning
framework. In particular, any structure in the data that is neglected in the model
formulation will, to some extent, be mopped up by additional model states that do
not have a clear interpretation anymore. The ICL criterion appears to overcome
several of the problems associated with the more established AIC and BIC, yet
it does not come without its own limitations, namely a sensitivity to overlapping
state-dependent distributions.

We proposed a pragmatic step-by-step approach to order selection which, while
lacking objectivity, we believe is the best possible practical solution. As pointed
out in Hennig (2015) in the context of cluster analysis, it is crucial that the indi-
vidual researcher’s modeling decisions, and in particular the rationale underlying
the selection of the number of states, need to be made transparent.

Overall, the selection of the number of states clearly is an important yet challeng-
ing issue, which requires statistical expertise (when applying model selection and
model checking tools) and modeling experience, but also a good understanding
and intuition of the data and research question at hand (in order to arrive at a
sensible choice of the number of states).
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Abstract: We propose alternative models for the analysis of count data featur-
ing a given spatial structure. We assume that the overdispersion data structure
partially results from the existing and well justified spatial correlation between
geographical adjacent regions, so an extension of existing overdispersion models
that include spatial neighborhood structures within a Bayesian framework is pro-
posed. Finally, their usefulness is illustrated by fitting them to infant mortality
rates and to data including the proportion of mothers who, after giving birth to
their last child, underwent a postnatal screening period in Colombia.
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1 Introduction and motivating examples

Generalized linear models are commonly used in medical data analysis, specially
for their flexibility in the modelling of the distribution of the response variable.
One of the most relevant contributions in the development of the generalized
linear models theory centers on count data, such as infant mortality rates or
the proportion of mothers who underwent a postnatal screening period. When
the data show some type of overdispersion, this phenomenon can be generated
from very different sources, which should be appropriately assessed in order to
be able to reduce the impact wrong model formulations not able to capture all
of the variability in the data have on the results from the statistical analysis.
Several models have been proposed following the theory originally developed for
overdispersed binomial and Poisson models. Therefore, taking into account the
existing spatial association between observations on the variable under study is

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
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very relevant in the statistical analysis of this type of data. One would desire that
the data provide spatially ordered information for the variable under study, so
that the general idea that observational units closer to a specific observation may
have some influence on its distributional behavior may be assessed and included
in the model specification. Several techniques have been proposed to model spa-
tial correlation, but interest in the proposals here lies in trying to quantify this
correlation with the use of a parametric model that includes a set of parame-
ters able to model this effect. Therefore, we propose alternative overdispersion
models that include basic neighborhood structures in spatial models, which are
based on a self-constructed covariate, defined by using a series of non stochastic
spatial weights that somehow establish the strength of the spatial dependence be-
tween the geographical units being considered in the study. The proposed models
include spatial neighborhood structures both for the mean and for the overdis-
persion parameter specification, so that the spatial association can be quantified
both in the mean and overdispersion behavior, by using neighborhood structure
assumed by the researcher performing the analysis. Thus, our models are able to
quantify the spatial association related to the neighborhood structures proposed
or assumed by the researcher. In addition, they include regression structures as-
sociated to the overdispersion parameter, to the different factors that may be
related to the existing heteroscedasticity, and to the spatial association not ex-
plained by the assumed neighborhood structures that could be related to other
covariates or to model structures specified in the proposed dispersion model. In
order to illustrate the usefulness of the proposed models we apply them to two
real data sets. The first one corresponds to the analysis of the number of chil-
dren under 5 years who died in the 5-year period 2000-2005 in Colombia. The
second one corresponds to the study of the proportion of mothers who had given
birth to their last child between 1999 and 2005 and who underwent a postnatal
screening period. In both data sets, we have variables available at the depart-
mental level, such as the percentage of the population that has basic services not
being satisfactorily attended to, the percentage of young people who had access
to a higher academic achievement level, and the resources provided for academic
achievement or education and integral attention for young children per household
for families coming from the general participation system. All of these variables
will be used as covariates for the proposed models.

2 (Generalized) spatial conditional overdispersion
models

Generalized overdispersion models for count data, in which regression structures
are assumed for both the mean and overdispersion parameters, may be an appro-
priate alternative to analyze count area data, where spatial association between
observations is present. However, given that these models do not provide infor-
mation related to the strength of the spatial association between observations of
the variable under study, some more general models should be specified. In the
spatial overdispersion models proposed here, this effect can be easily estimated,
an issue that is addressed by proposing the use of a weight matrix in the model,
where its parameter estimates are associated to the corresponding lag variable
modelling this neighborhood association. The specific choice of the elements of



66 Spatial Conditional Overdispersed Models

the weight matrix is a very relevant issue, mainly because it should be the result
of both interpreting and understanding the spatial structure the variable under
study has. In the proposed models we assume that observational units correspond
to each of the areas in the study, where we control for or model the variation
generated by the existing spatial correlation between experimental units, we use
the weights wij , which are the elements in the model reflecting the level of depen-
dence between the spatial units in the study, indexed by i and j. These values are
the corresponding elements of the weight matrix W. One of the most commonly
used specifications for the weight matrix W assumes that wij = 1/ni, if the ob-
servational unit or region j belongs to the neighborhood of an observational unit
i, or if there is geographical first or second order contiguity between regions i
and j, where ni is the number of first or second order adjacent regions for region
i; and wij = 0 otherwise. The generalized spatial conditional models proposed
here are structurally different from the Poisson or binomial CAR and SAR mod-
els. More specifically, the proposed spatial conditional models are formulated in
terms of generalized overdispersed models, which include spatial lag structures
in both the mean and dispersion regression structures. In addition, nonstructural
random effects are also included in both of the aforementioned regression struc-
tures, so that the models are able to capture the overdispersion not explained by
the spatial structures included in the proposed spatial models. Our proposed spa-
tial conditional overdispersion regression model assumes that the spatial variable
under study, Yi, i = 1, . . . , n, conditioned on the values in all of the neighbor-
hoods of the i-th region, but not including the i-th region itself (i.e., Y∼i), has a
overdispersed conditional distribution denoted by f(yi|y∼i), i = 1, . . . , n, where
the conditional mean and the conditional dispersion parameters follow given re-
gression structures that, besides some covariates affecting the response variable,
also include spatial lags of the variable under study. These models assume that
the conditional overdispersion density functions follow either a Poisson or a bino-
mial distribution, leading to the proposal of the (generalized) spatial conditional
Poisson, negative binomial, normal Poisson, binomial, beta binomial and bino-
mial normal regression models, respectively. As an illustrative example of these
model proposals, we consider the Poisson normal model for overdispersed count
data. In this model, the overdispersion is included in the model with the use of
a normally distributed random effect term in the mean model. In this way,

g(λi) = xT
i β + νi, (1)

where g(.) is usually the logarithm function, xi is the q× 1 vector of explanatory
variables for the i-th observation, β is a q × 1 vector of unknown regression pa-
rameters, and νi ∼ N(0, τ). In this model, (Yi|νi), i = 1, . . . , n, follows a Poisson
distribution with mean λi = E(Yi|νi). In the spatial conditional normal Poisson
model, if Yi, i = 1, . . . , n, represent area count data from different regions or
areas, such as departments or states, a portion of the existing overdispersion can
be explained by the neighborhood spatial structured assumed by the researcher,
which is given by the spatial conditional normal Poisson model where we assume
that (Yi|Y∼i, νi) follows a Poisson distribution with mean λi = E(Yi|Y∼i, νi), with

g(λi) = xT
i β + ρWiy + νi, (2)

and ρ is the parameter explaining the first order spatial association in the mean
model, Wi is the i-th row of the n × n weight matrix W, which follows the
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assumed first order neighborhood structure (i.e., regions, units or departments
share a common border), and y is the n × 1 vector of the observed values of
the response variable under study. Finally, we propose the generalized spatial
conditional normal Poisson model, which also allows for modelling spatial neigh-
borhood structures. That is, we assume that (Yi|νi) follows a Poisson distribution
with parameter µi, i = 1, . . . , n, where νi ∼ N(0, σ2

i ). In addition, it is assumed
that conditional mean µi and the variance terms in the random effect distribu-
tion, σ2

i ’s, are modelled as functions of some explanatory variables, so that its
regression structures are given by

log(µi) = xT
i β + ρWiy + νi and log(σ2

i ) = zT
i γ + ηWiy, (3)

where zi is the qφ×1 vector of explanatory variables for the i-th observation, γ is a
qφ×1 vector of unknown regression parameters, and η is the parameter explaining
the first order spatial association in the dispersion model. In these models, the
random factor is associated to the overdispersion generated, for example, from
the heteroscedasticity or the possible spatial correlation of higher order than that
considered in the model. In the generalized spatial conditional normal Poisson
model, if we have a fixed σ2

i = σ2 and keep σ2
i unstructured (i.e., do not propose

any model for it), we have the spatial conditional normal Poisson regression model
with τ = σ2. If, in addition, ρ = 0, we have the Poisson normal regression model.

3 Application

Data considered here correspond to the 32 departments (regions, geographical
units or states) in Colombia. Variables available for each one of the geographi-
cal units are: the number of children under five who died in the five-year period
2000-2005 (i.e., variable ND), the percentage of women over 18 who had suf-
fered any type of physical abuse from their current partners (i.e., variable Viol),
the percentage of the population that had basic services not being satisfactorily
attended to for the year 2004 (i.e., variable NBI), the resources (in thousands)
provided for academic achievement or education and integral attention for young
children per household for families coming from the general participation system
(i.e., the general plan for the allocation of resources from the central government
to the departmental or municipal governments) in the year 2005 (i.e., variable
Rec), the percentage of young people (i.e., between 18 and 23 years old) who had
access to a higher academic achievement level (i.e., to a higher educational level)
in the year 2005 (i.e., variable HE), the percentage of children under one year of
age who had the third dose of the polio vaccine applied in the year 2004 (i.e.,
the variable Vac), the number of mothers (in thousands) that had their last child
born between 1999 and 2005 and that underwent a postnatal screening period
(i.e., the variable NScree), the number of mothers (in thousands) that had their
last child after 1999 (i.e., variable NMother99), and the percentage of mothers
who had to pay for the total cost of the postnatal screening period (i.e., the vari-
able Pay). For the weight matrix, W, we assume that the elements wij is equal to
one if region j belongs to the neighborhood of region i, and equal to zero, other-
wise. As for the prior distributions, we assume independent normal distribution,
N(0, 105), for all of the regression parameters, including the spatial association
parameters, ρ and η. In the specific application considered here, the behavior
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of the chains, all of them with small transient periods, seems to show that the
convergence was quickly achieved. Therefore, a burn in period of 2000 iterations
is assumed from the 10000 iterations developed in the estimation process. The
best fitting model for this data was the generalized spatial conditional normal
Poisson model with BIC and DIC values of 200.78 and 251.88, respectively, and
mean and variance regression models given by:

log(µi) = β0 + β1Reci + νi, νi ∼ N(0, σ2
i ) (4)

log(σ2
i ) = γ0 + ηWiy, (5)

with the corresponding estimates reported in Table 1.

TABLE 1. Parameter estimates, together with their standard deviations for the
mean and variance parameters for the infant mortality data and the generalized
spatial conditional normal Poisson model.

β0 β1 γ0 η

Estimate 3.283 −4.564× 10−04 0.522 −6.617× 10−03

Standard deviation 0.271 2.091× 10−04 0.352 2.069× 10−03

4 Conclusions

Results from a simulation study and from the analysis of the infant mortality
rates data, for the Poisson case, and to data including the proportion of mothers
who underwent a postnatal screening period in Colombia, for the binomial case,
conclude that the proposed models fit better than both the previously proposed
models (i.e., the ones not modelling the overdispersion in the data sets) or the
well known intrinsic conditional autoregressive (ICAR) models. More specifically,
for the infant mortality rates data, the best fitting model was the generalized
spatial conditional normal Poisson model, with spatial structures and random
effects included both in the mean and overdispersion regression models. As for
the proportion of mothers who underwent a postnatal screening period, they
were the spatial conditional binomial normal and beta binomial models, with
spatial structures and random effects included only in the mean regression model.
Finally, a sensitivity analysis was performed to assess the effect or influence of
the assumed prior distributions for the different regression parameters for the
mean and overdispersion parameters have on the resulting parameter posterior
estimates.
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Abstract: Spatio-temporal smoothing of large ecological datasets describing
species distributions can be made challenging by high computational costs and
deficiencies in the available data. We present an application of a GAM-based
smoothing method to a large ordinal categorical dataset on the distribution of
wildebeest in the Serengeti ecosystem.
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1 Introduction

Spatio-temporal smoothing of species distribution data has many potential uses
in ecology; for example, to provide a smooth density function that can be used
with gradient matching approaches (Xun et al. 2013) to fit partial differential
equation (PDE) models of animal movement. A range of smoothing methods
(kernel density estimation, splines, Gaussian processes, etc.) have been developed
in the statistical literature. However, the practicalities and expense involved in
collecting species distribution data over large areas in the field can mean that
the data are not in a form that these methods can readily be applied to. Or-
dinal categorical data, for example, may be collected when it is infeasible to
accurately count all individuals in a population, so that the abundance at each
point in space and time is instead estimated as belonging to a broader abun-
dance category. A relatively small number of approaches have been developed
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tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
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for smoothing data of this type, where we need to recover the underlying true
density of individuals from the categories (Chu and Ghahramani 2005, Wood
et al. 2016). Smoothing large datasets in multiple dimensions can also be made
challenging by high computational costs. Methods that allow smoothing of these
datasets even when computational resources are limited would therefore be very
useful. Here we present an application of a method for applying spatio-temporal
smoothing to a large ordinal categorical dataset on the distribution of wildebeest
in the Serengeti ecosystem of Tanzania and Kenya.

2 Methods

The wildebeest distribution data, which have been described and utilised in
a number of previous studies (Norton-Griffiths 1973, Maddock 1979, Boone et
al. 2006, Holdo et al. 2009), were obtained from monthly aerial surveys of the
Serengeti ecosystem during the period from August 1969 to August 1972. Each
cell in a grid of 25km2 cells was assigned to one of five wildebeest abundance
categories: 0, 1-25, 26-250, 251-2,500 and >2,500 individuals per 25km2. There
were 2,576 cells making up the spatial grid, all of which were sampled on 33
occasions during the time period, resulting in a large dataset with a total 85,008
data points.

To smooth the data in time, t, and the two spatial dimensions (x, y) we fitted
GAMs (generalised additive models) with a tensor product (composed of cubic
regression spline smooths, where overfitting was prevented by penalisation of the
integral of the squared second derivatives) between these three variables using
the mgcv package (Wood 2011) in R (R Core Team 2015). We used the ordinal
categorical GAM method described in Wood et al. (2016), where the linear pre-
dictor gives the value of a latent variable, here representing the wildebeest density
underlying the ordinal categories. The cut-off points that demarcate the five or-
dinal categories were specified, and the probability that a point in space and time
belongs to a given category equals the probability that the latent variable lies
between the corresponding category cut-offs at that point.

In Wood et al. (2016), the latent function can range from −∞ to ∞, but we
know that wildebeest density has a minimum 0 and a finite maximum Wmax. We
can introduce these constraints by applying a sigmoidal transformation to the
latent function L after the GAM has been fitted, giving a preliminary wildebeest
density Ŵ as follows:

Ŵ (x, y, t) =
Wmax

1 + exp (−L (x, y, t))
(1)

Note that this also required that an inverse sigmoid transform be applied to the
category cut-offs c prior to the GAM fitting:

c̄ = − log

(
Wmax

c
− 1

)
(2)

Wmax was estimated by first assuming that the wildebeest densities in the grid
cells assigned to the lower four ordinal categories, which had known upper and
lower bounds, were equal to the mid-points of those categories. The sum of the
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densities in these lower category cells for each month was then subtracted from the
total number of wildebeest WT known to be in the region from a population count
in 1971 (Norton-Griffiths 1973). The remaining wildebeest for each month were
assumed to be divided evenly between the cells in the highest ordinal category
(which was unbounded above) for that month. We took Wmax to be the largest
wildebeest density estimated for cells in the highest abundance category over all
months.

Even after applying sensible upper and lower bounds to the latent function, large
fluctuations in the area under Ŵ (which represents the total number of wildebeest
in the region) can occur over time. This is undesirable, since we expect wildebeest
numbers to remain relatively stable at WT over the time period of interest. We
therefore consider the normalised wildebeest density W̄ , where the total number
of animals is maintained at WT by normalising Ŵ as follows:

W̄ (x, y, t) =
Ŵ (x, y, t)WT∫
Ŵ (x, y, t)dxdy

(3)

Due to computational time and memory constraints, a sufficiently flexible GAM
could not be fitted to the entire large dataset simultaneously. We therefore divided
the time series into three contiguous intervals and fitted a GAM in (x, y, t) to
each interval separately. Each GAM had 20 knots in the marginal smooth in each
spatial dimension, and a number of knots in the marginal smooth in time that was
equal to the number of time points present in the data subset to which the GAM
was fitted (11 or 12). This resulted in the effective degrees of freedom, which
are determined by the degree of penalization (selected during fitting) applied to
the integral of the squared second derivatives, being considerably lower than the
maximum number available, suggesting that the number of knots was sufficient
(Wood 2006). The three GAMs were joined together by averaging at the link
times li (i ∈ 1, 2), with smoothness being maintained by allowing the influence of
each GAM on the others to decline smoothly, according to the parameter σ, as
distance from the point of joining increased. For a given point (x̄, ȳ, t̄), therefore,
we obtain a final estimate of wildebeest density W by

W (x̄, ȳ, t̄) = W̄GAMj (x̄, ȳ, t̄) +
2∑
i=1

ai exp

(
−(t̄− li)2

2σ2

)
mi (t̄) (4)

Here W̄GAMj is the normalised wildebeest density obtained from the GAM fitted
to time interval j, where

j =


1 if t̄ ≤ l1
2 if l1 < t̄ ≤ l2
3 if t̄ > l2

(5)

The ai are given by

ai (x̄, ȳ, li) =
W̄GAMi (x̄, ȳ, li)− W̄GAMi+1 (x̄, ȳ, li)

2
(6)
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FIGURE 1. Model fit in space at three different time points. A-C: The wildebeest
spatial distribution data for months 1, 18 and 35. D-F: The smooth wildebeest
density distribution estimated in space by the model for months 1, 18 and 35.
The two contours indicate the boundaries between abundance categories 0, 1 and
2. G-I: Estimated wildebeest abundance categories based on D-F.

and the mi, which ensure that the adjustments are made in the correct direction
on either side of each link point, are

mi (t) =

{
−1 if t̄ ≤ li

1 if t̄ > li
(7)

If the influence of the adjoining GAMs declines too slowly with distance from
the link points, relative to the rate at which changes occur in W̄GAMi (i.e. σ is
too large), unrealistic negative values of W can occur. We therefore tuned σ by
starting with a relatively large value and gradually decreasing it until no negative
values of W occurred.
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3 Results and Conclusion

The method described was found to successfully produce a smooth function in
space that resembles the original data (Figure 1). The resulting function is also
observed to be smooth in time, with no evidence that the wildebeest density
changes either more slowly or more rapidly around the GAM link times than it
does elsewhere in the time period (Figure 2). This suggests that our approach of
linking models that have been fitted to subsets of a larger dataset is a promising
means of reducing the high computational costs of smoothing large datasets in
multiple dimensions. Using this method, we have recovered realistically bounded
wildebeest abundance estimates from coarse ordinal categories; an ability that
could be useful in the field of ecology where such imperfect data are common. By
producing a smooth surface from which spatial and temporal gradients in density
can

FIGURE 2. Changes in the estimated wildebeest density in six grid cells (indi-
cated by different colours/line types) over the time period of interest. The link
times between the three GAMs are indicated by dashed vertical lines.

be calculated, our method also promises to enable statistical inference for PDE
models of animal movement using the gradient matching approach of Xun et al.
(2013), which we will investigate in future work.
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to the wildebeest distribution data. E.A.F. is funded by a University of Glasgow
Lord Kelvin/Adam Smith PhD scholarship.

References

Boone, R.B., Thirgood, S.J. and Hopcraft J.G.C. (2006). Serengeti wildebeest mi-
gratory patterns modeled from rainfall and new vegetation growth. Ecology,
87, 1987 – 1994.



Ferguson et al. 75

Chu, W. and, Ghahramani, Z. (2005). Gaussian processes for ordinal regression.
Journal of Machine Learning Research, 6, 1019 – 1041.

Holdo, R. M., Holt, R. D. and Fryxell, J. M. (2009). Opposing rainfall and plant
nutritional gradients best explain the wildebeest migration in the Serengeti.
The American Naturalist, 173, 431 – 445.

Maddock, L. (1979). The migration and grazing succession. In: Serengeti: dy-
namics of an ecosystem, Sinclair, A. R. E., and Norton-Griffiths, M. (edi-
tors), Chicago: University of Chicago Press, 104 – 129.

Norton-Griffiths, M. (1973). Counting the Serengeti migratory wildebeest using
two-stage sampling. East African Wildlife Journal, 11, 135 – 149.

R Core Team (2015). R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria.

Wood, S.N. (2006). Generalized Additive Models: An Introduction with R. CRC
Press.

Wood, S.N. (2011). Fast stable restricted maximum likelihood and marginal like-
lihood estimation of semiparametric generalized linear models. Journal of
the Royal Statistical Society, Series B, 73, 3 – 36.

Wood, S.N., Pya, N., and Sfken, B. (2016). Smoothing parameter and model se-
lection for general smooth models. arXiv:1511.03864v2.

Xun, X., Cao, J., Mallick, B., Maity, A., and Carroll, R.J. (2013). Parameter Es-
timation of Partial Differential Equation Models. Journal of the American
Statistical Association, 108, 1009 – 1020.



Spatio-temporal clustering of traffic networks

Ashwini Venkatasubramaniam123, Ludger Evers2,
Konstantinos Ampountolas13

1 Urban Big Data Centre, University of Glasgow, United Kingdom,
2 School of Mathematics and Statistics, University of Glasgow, United Kingdom,
3 School of Engineering, University of Glasgow, United Kingdom

E-mail for correspondence: a.venkatasubramaniam.1@research.gla.ac.uk

Abstract: We present a novel Bayesian clustering method for spatio-temporal
data observed on a network and apply this model to cluster an urban traffic
network. This method employs a distance dependent Chinese restaurant process
(DDCRP) to provide a cluster structure, by incorporating the observed data and
geographic constraints of the network. However, in order to fully capture the
dependency structure of the data, a conditional auto-regressive model (CAR) is
used to model the spatial dependency within each cluster.
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1 Introduction

Heterogeneous urban traffic networks with regions of varying congestion levels
have unique fundamental properties and clustering aids in the division of a city
into homogeneous regions. We propose a novel Bayesian clustering technique for
spatio-temporal network data which is based on an amalgamation of a distance
dependent Chinese restaurant process (DDCRP) and a spatio-temporal condi-
tional autoregressive model (CAR). We assume that we observe a time series of
measurements that represent congestion levels aggregated over each junction in
the network and the degree of similarity between adjacent junctions can be used
to define spatially contiguous clusters. Existing literature relevant to clustering
techniques for transportation networks account for spatial constraints but typi-
cally do not incorporate changes over time within a cluster. Traditional clustering
algorithms such as k-means and probability mixture models also require choices
to be made about the number of clusters.
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2 Method

In our model, the road network forms an undirected graph with junctions acting
as nodes and road segments between junctions as edges. This graph can be used
to define the spatial component of the precision matrix. The spatial precision
Σ−1

S within a cluster is modelled as a CAR model and the temporal precision
Σ−1

T as an auto-regressive (AR1) model. Other models that incorporate tempo-
ral dependency such as the Matern covariance function are also possible. Due to
the presence of a grid network topology with a limited number of road segments
between junctions (typically not more than four per junction), the precision ma-
trices exhibit sparsity and we utilize a CAR model proposed by Leroux (2000) to
define this spatial precision. We define an adjacency matrix W and the precision
matrix Q = Σ−1

S = ρ(diag(Wk++) −W) + (1 − ρ)InJ , where ρ controls how
strongly correlated adjacent junctions are, diag(Wk++) is a diagonal matrix with
elements equivalent to the row sums of W, and InJ is an nJ ×nJ identity matrix
(nJ = number of junctions). With the presence of a unique observation for every
space-time combination (nJ junctions and nT time points), a covariance matrix
Σ can be written as ΣS ⊗ΣT. Clusters can be obtained by removing edges such
that the graph can be partitioned into components not connected to each other.
In Figure 1, a network composed of eight nodes can be divided into two clusters
such that there are road segments but no links between adjacent junctions of two
differing clusters.

FIGURE 1. Graph showing two clusters formed in the network based on the
presence or absence of a road segment between junctions.

Individually removing edges not supported by the data would yield a sparse
graph, but would be unlikely to result in a graph with more than one compo-
nent. Instead, we use a prior to enforce that edges are omitted in a way that leads
to a clear partitioning of the graph. We utilize a modified version of the DDCRP
first introduced by Blei (2011) that allows our model to incorporate geographic
constraints of the network, account for the shape, and determine the number
of clusters. The DDCRP makes assumptions of non-exchangeability to account
for components of distance such as time, space, etc. In a traditional Chinese
restaurant process (CRP) (also a special case of the DDCRP), a restaurant can
be assumed to consist of an infinite number of tables. Customers i = 1 . . . n are
individual data points that enter and take a seat at a randomly chosen table k.
Tables are deemed to be clusters and after a finite number of customers nk have
been seated, the seating plan represents a partition. In the usual representation
of the CRP, customers choose tables. In a DDCRP, clusters are instead deter-
mined based on friendships between customers i and j, with a group of friends
then sitting at an assigned table zi, i.e., forming a cluster. Thus, z(c) are table
assignments that follow from customer assignments. In a non-sequential DDCRP,
clusters arise from some customers choosing to befriend themselves or someone
already connected to them, resulting in a redundant assignment. We also mod-
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ify the DDCRP to allow customers to befriend more than one customer, which
controls for the number of singleton clusters. Let ci be the index of a customer
that is sitting with customer i and we describe the distribution of this customer
assignment as:

P (ci = j|α) ∝


0, j 6= i and i � j

1, j 6= i and i ∼ j
α, j = i

In our method, customers are junctions and friendships can only occur along
road segments between junctions. Since this modified DDCRP suggests a prior
over a combinatorial number of junction assignments, the posterior is intractable
and inference is carried out using a Metropolis within Gibbs sampler. We assume
that the measure of congestion levels Y follows a Gaussian distribution and the
likelihood at partition z(c) gives the product of probabilities calculated for sets
of observations at each determined cluster. To account for the spatial depen-
dency within the cluster, we define ΣS and ΣT to represent the precision matrix
described earlier. Accordingly, the likelihood can be defined as:

ln(P (Y|ΣS,ΣT, σ
2, τ2)) =− nJnT

2
ln(2π)− 0.5 ln |σ2I + τ2ΣS ⊗ΣT|

−0.5vec(Y)T[σ2I+τ2ΣS ⊗ΣT]−1vec(Y)

We can rewrite terms in the likelihood, vec(Y)T[σ2I + τ2ΣS ⊗ΣT]−1vec(Y) =
vec(Y)T(ΓS⊗ΓT)(σ2I+τ2Λ)−1(ΓT

S⊗ΓT
T)vec(Y) = vec(ΓT

TYΓS)T(σ2I+τ2ΛS⊗
ΛT)−1 vec(ΓT

TYΓS), where σ2 is variance of the noise, τ2 is a prior variance,
ΛT represents a diagonal matrix of the eigenvalues of ΣT, and ΓT represents
a matrix of the eigenvectors of ΣT. Here, we only need to compute the diag-
onal of [σ2I + τ2ΛS ⊗ ΛT]−1 on the rotated data vec(ΓT

TYΓS)T. In addition,

ln |σ2I + τ2ΣS⊗ΣT| can be rewritten as

nT∑
t=1

nJ∑
s=1

− ln(τ2ΛT[t, t] ·ΛS[s, s] + σ2I).

Together, these terms can be evaluated for an efficient solution in O(n2
JnT +

n2
TnJ + n3

J + n3
T ) rather than O(n3

Jn
3
T ). Sampling from this posterior can hap-

pen in two phases where we first remove the customer and then consider how
the likelihood term can be changed when this customer is replaced. The sampler
thus has the potential to change multiple cluster assignments through a single
change in customer assignment and using these moves is able to explore the space
of possible partitions to determine a partition structure conditional on observed
data.

3 Results

Occupancy is defined as the percentage of time that a location on the road is
occupied by vehicles. In our example, occupancy data was generated using the
AIMSUN microscopic simulator for a network in downtown San Francisco com-
posed of 316 links and 158 junctions. This was recorded over a period of six hours
with a sampling frequency of 180 seconds. We cluster the simulated network such
that each individual cluster represents a level of occupancy that is distinct from
other clusters, as shown in Figure 2.
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FIGURE 2. Traffic network with clusters that indicate different congestion levels.

This paper proposes a Bayesian clustering algorithm that accounts for spatial
constraints and is modelled in a computationally efficient manner on data with
varying temporal patterns. Further work seeks to identify clusters that change
over time. However, current Kronecker product tricks that enhance efficiency
cannot be utilized since spatial precision would change over time.

Acknowledgments: Research funded by the Lord Kelvin Adam Smith schol-
arship, University of Glasgow, 2014–2018

References

Blei, D. and Frazier, P. (2011). Distance dependent Chinese restaurant processes.
Journal of Machine Learning Research, 12(Aug):2461– 2488.

Leroux, B., Lei, X., and Breslow, N. (2000). Estimation of disease rates in small
areas: a new mixed model for spatial dependence. In Statistical models in
epidemiology, the environment, and clinical trials, pages 179 – 191. Springer.



Bayesian variable selection for identifying the
source of food-borne disease outbreaks

Rianne Jacobs1, Emmanuel Lesaffre2, Peter Teunis1, Jan van
de Kassteele1

1 National Institute for Public Health and the Environment (RIVM), Bilthoven,
NL

2 L-Biostat, KU Leuven, Leuven, Belgium

E-mail for correspondence: rianne.jacobs@rivm.nl

Abstract: Early identification of contaminated food products is crucial in re-
ducing social and economic burdens of food-borne disease outbreaks. Analytic
case-control studies are primarily used in this identification. In this paper, we de-
velop a Bayesian variable selection method to account for misclassified responses
and missing covariates. The method, implemented in JAGS/R Software is used
to analyse the Salmonella Thompson 2012 outbreak data.
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1 Introduction

With food chains becoming increasingly complex and food products being trans-
ported across the globe with increasing ease, contaminated food products can
rapidly cause food-borne disease outbreaks. Such outbreaks have a large social
and economic burden on society; see for example the Salmonella Thompson 2012
outbreak in the Netherlands (Friesema et al. 2014). Early detection of such out-
breaks and the subsequent identification of the contaminated food product(s) is
crucial in reducing these burdens.

Identification of contaminated food products is a long, cumbersome process in-
volving several steps which are not clear cut - much like a criminal investigation
where information is incomplete, delayed, uncertain and continually updated.
Analytic case-control studies are the main epidemiological tool in this process of
identification. Once an outbreak has been detected, patients fill out an extensive
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tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
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food consumption questionnaire for some period prior to becoming ill. Simulta-
neously, controls are sampled matched according to municipality, age and gender
and they also fill out the food consumption questionnaire. One can well imagine
the practical difficulties that subjects have trying to recall their dietary con-
sumption and the resulting amount of missing values in such data. In addition,
although controls are questioned on their symptoms, it is impossible to confirm
whether they are indeed true controls (i.e. not infected) or rather asymptomatic
infections (i.e. infected but not ill), resulting in misclassification of the response.

The analysis of the questionnaire data typically involves classical logistic regres-
sion. Due to the large number of different food products people may have con-
sumed, one often has a variable selection problem, where one attempts to identify
relevant exposures. Moreover, in the beginning of an outbreak, the number of co-
variates (i.e. food products) may very well be close to or even greater than the
number of observations. Classical variable selection procedures, i.e. a combina-
tion of univariable analysis and stepwise forward or backward selection based on
p-values, are most employed (Friesema et al. 2014), thereby ignoring the classical
problems of multiple testing and bias they imply. When searching for the cause
of an outbreak we, therefore, need a far more sophisticated variable selection
procedure.

We argue that the Bayesian approach offers tools to deal with variable selection
problems with missing covariates and misclassified responses. Indeed, Bayesian
methods allow us to use external information to aid the modelling when data
are scarce. This is crucial in the analysis of our case-control data especially in
the light of early identification when very few data are yet available. In addition,
Bayesian methods provide us with the flexibility to account for the additional
problems of missing covariates and misclassified responses which is hard to solve
in the frequentist setting. In this paper, we, therefore, develop a Bayesian vari-
able selection method which also accounts for misclassified responses and missing
covariates.

2 Data and method

The Salmonella Thompson 2012 outbreak data was obtained from a case-control
study performed by the National Institute for Public Health and the Environ-
ment (RIVM) in which smoked salmon was found to be the source of the out-
break but only after six weeks since the onset of the outbreak. The percentage
of missing covariates is high - up to 67% for a given observation. Salmonella
infections are often asymptomatic, i.e. an infected person does not become ill,
implying a sensitivity of less than one, P (Y = 1|T = 1) < 1 (Y : observed re-
sponse, T : true response). Moreover, as a case only entered the dataset if it was
twice laboratory-confirmed, we assume that no non-infected person entered the
dataset as a case, i.e. P (Y = 1|T = 0) = 0, implying that the specificity is one,
P (Y = 0|T = 0) = 1.

To deal with the problem of misclassified responses, our Bayesian variable selec-
tion model extends the logistic regression model. Logistic regression models the
probability of an observed success, P (Y = 1), which is equal to a true success,
P (T = 1), for a correctly classified response. In our case, however, this equality
is contaminated by the sensitivity (Se), P (Y = 1) = P (T = 1)P (Y = 1|T = 1),
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resulting in the scaled logistic regression model:

yi ∼ Bernoulli(µi)

µi = πi × Se (1)

logit(πi) = β0 +

p∑
j=1

xi,j × βj .

The scaled logistic model is, however, unidentifiable without extra information
from, e.g., validation data. In a Bayesian setting, one may, in addition also use
historical information to feed a prior distribution on the sensitivity.

To incorporate Bayesian variable selection, we apply the stochastic search vari-
able selection (SSVS) method (George and McCulloch, 1993) in which a mixture
prior on the parameters, βj , with one spike and one slab Gaussian component is
constructed. The variances of the spike and slab are τ2 and c2τ2, respectively.
The spike and slab prior is given by

βj |τ2, c2 ∼ γjN(0, τ2c2) + (1− γj)N(0, τ2), (2)

γj |ωj ∼ Bernoulli(ωj)

ωj ∼ Beta(aj,0, bj,0)

where γj is the indicator variable for inclusion of βj into the model with inclusion
probability, ωj . Parameters aj,0 and bj,0 are chosen to reflect prior knowledge
about the probability that a covariate should be in the model.

The large percentage of missing covariates in the data implies that many of the
xi,j ’s in Eq. 1 are missing. To impute these covariates, we construct a covariate
probability model as

f(x1, x2, ..., xp) = f(x1)

p∑
j=2

f(xj |x1, ..., xj−1) (3)

with f(xj |x1, ..., xj−1) a Bernoulli distribution with logit link function. In the
case of many covariates, as in our data, it is reasonable to assume that covariate
xj does not depend on all j − 1 covariates. Similarly to the variable selection of
the response model (Eq. 2), we perform variable selection in each of the regression
models of the covariate probability model in Eq. 3, applying the 2-level variable
selection model of Mitra and Dunson (2010).

3 Data analysis

We applied our Bayesian variable selection model to the Salmonella Thompson
data. The model was implemented in R Software using JAGS for the MCMC
sampling, running 5 chains with a burn-in of 1000 iterations and then a further
4000 iterations per chain. Trace plots showed good mixing. In this analysis, priors
for the inclusion probabilities were chosen to favour slightly parsimonious models,
namely ωj ∼ Beta(1, 2), based on the idea that a food product is not guilty unless
proven so by the data. In order to make the scaled logistic model identifiable,
we need an informative prior for the sensitivity. In this analysis, we used Se ∼
Beta(33, 4), assuming a median sensitivity of 0.9 and 5th percentile of 0.8. The
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FIGURE 1. Posterior percentiles of regression coefficients and corresponding
one-sided posterior inclusion probabilities, P (βj > 0.05), in the analysis of sub-
sets of the Salmonella Thompson data simulating the available data at different
time points during the outbreak.

variance parameters, τ and c, of the spike and slab components, were chosen
such that the two distributions intersect at a practical significance level of 0.05
and that the slab distribution is relatively narrow avoiding excessively large β’s,
which are very unlikely in practice. The intercept terms of response and covariate
models were given a diffuse normal prior distribution. Looking at the posterior
inclusion probabilities of each covariate (Fig. 1), the covariate for smoked fish
clearly had the highest inclusion probability and, therefore, our model correctly
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identified the contaminated food product.

4 Conclusion

In this paper, we developed a method that deals with the problems of variable
selection, missing covariates and misclassified responses in the context of source
identification in food-borne disease outbreaks. We have shown how a Bayesian
analysis allows a relatively easy implementation of these concepts in the re-
analysis of the Dutch Salmonella Thompson 2012 outbreak data. Moreover, the
Bayesian analysis performed better than the standard logistic backward variable
selection model (not shown in this paper).

The method presented in this paper constitutes a first attempt at formalizing the
methodology necessary for the analysis part of food-borne disease outbreak inves-
tigations. Current procedures are very much ad hoc in nature resulting in difficult
to interpret and misleading results. The method in this paper is methodologically
sound and the analysis results are intuitive and easy to interpret.
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Abstract: Diabetes is one of the most common long-term health conditions.
Today, diabetes takes more lives than AIDS and breast cancer combined. It is a
leading cause of blindness, kidney failure, amputations, heart failure and stroke.
The aim of this study is to use the differential geometric generalization of the
LARS algorithm for the double-parameter Gamma GLM with a canonical link
function to identify candidate factors that may be associated with diabetes. To
compute the solution path faster, we use the improved predictor-corrector algo-
rithm, as proposed in Pazira et al. (2017).
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1 Introduction

In the last decade, the cases of people living with diabetes jumped almost 50
percent. Worldwide, it afflicts more than 380 million people. And the World
Health Organization estimates that by 2030, that number of people living with
diabetes will more than double. Today, diabetes takes more lives than AIDS
and breast cancer combined. It is a leading cause of blindness, kidney failure,
amputations, heart failure and stroke. Living with diabetes places an enormous
emotional, physical and financial burden on the entire family.

In this paper we consider the benchmark diabetes data used in Efron et al. (2004)
and Ishwaran et al. (2010), among others. The response y is a quantitative mea-
sure of disease progression for patients with diabetes one year later. The data
includes 10 baseline measurements for each patient, such as age, sex, bmi (body
mass index), map (mean arterial blood pressure), and six blood serum measure-
ments: ldl (high-density lipoprotein), hdl (low-density lipoprotein), ltg (lamotrig-
ine), glu (glucose), tc (triglyceride) and tch (total cholesterol), in addition to 45
interactions and 9 quadratic terms, for a total of 64 variables for each patient, so
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tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
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that this data has n = 442 observations on p = 64 variables. The aim of the study
is to identify which of the covariates are important factors in disease progression.
This diabetes data can be found in the new version of our dglars package.

In literature several methods have been proposed to identify variables that can
affect the disease. For this kind of problems the number of variables, say p, can
be much larger than the sample size n. In this case, it is often assumed that only
a small number of covariates (factors) contributes to the response, which leads to
assume the sparsity of the model, many elements of the coefficients vector β are
equal to zero. In recent statistical literature, many variable selection techniques
for sparse regression models are based on the penalized likelihood approach to
estimate a solution curve embedded in the parameter space and then to find
the point that represents the best compromise between sparsity and predictive
behaviour of the model. Some important examples are the Least Absolute Shrink-
age and Selection Operator (LASSO) estimator (Tibshirani, 1996), the Smoothly
Clipped Absolute Deviation (SCAD) method (Fan and Li, 2001), among others.

Differently from the methods cited above, Efron et al. (2004) introduced a new
method to select important variables in a linear regression model called least an-
gle regression method (LARS). Augugliaro et al. (2013) proposed a new approach
based on the differential geometrical representation of a GLM. The method, which
does not require an explicit penalty function, has been called differential geomet-
ric LARS (dgLARS) method because it is defined generalizing the geometrical
ideas on which LARS is based. The later authors considered a class of the expo-
nential family for a GLM, so that, they assumed that the dispersion parameter is
known, φ = 1. They also used the predictor-corrector (PC) algorithm to compute
the solution curve.

In this paper we consider the dgLARS method for a larger class of the exponential
family, namely the exponential dispersion family, when the dispersion parameter
φ is unknown, and obtain the extended dgLARS estimator for Gamma GLM with
arbitrary link function. Aim of this paper is to identify a set of important factors
that can affect the diabetes disease using the extended dgLARS.

2 Differential Geometric LARS for general GLM

Let Y = (Y1, Y2, · · · , Yn)> be a n-dimensional random vector with independent
components. In what follows we shall assume that Yi is a random variable with
p.d.f belonging to an exponential dispersion family (Jorgensen, 1987, 1997), i.e.,

pYi (yi; θi, φ) = exp

{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
, yi ∈ Yi ⊆ R, (1)

where θi ∈ Θi ⊆ R is the canonical parameter, φ ∈ Φ ⊆ R+ is the disper-
sion parameter, and a(.), b(.) and c(., .) are given functions. In the following,
we assume that each Θi is an open set and a(φ) = φ. We consider φ as an
unknown parameter. The expected value of Y is related to the canonical pa-
rameter by µ = {µ(θ1), · · · , µ(θn)}>, where µ(θi) = ∂b(θi)

∂θi
is called mean value

mapping, and the variance of Y is related to its expected value by the identity
Var(Y) = φV(µ), where V(µ) is an n× n diagonal matrix with elements, called

the variance functions, V (µi) = ∂2b(θi)

∂θ2i
. Since µi is a reparameterization, model

(1) can be also denoted as pYi (yi;µi, φ).
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Following McCullagh and Nelder (1989), a Generalized Linear Model (GLM) is
defined by means of a known function g(·), called link function, relating the ex-
pected value of each Yi to the vector of covariates xi = (1, xi1, . . . , xip)

> by
the identity g{E(Yi)} = ηi = x>i β where ηi is called the ith linear predic-
tor and β = (β0, β1, . . . , βp)

> is the vector of regression coefficients. In order
to simplify our notation we let µ(β) = {µ1(β), . . . , µn(β)}> where µi(β) =
g−1(x>i β). Therefore, the joint probability density function can be written as
pY(y;µ(β), φ) =

∏n
i=1 pYi (yi;µi(β), φ). In the following of this paper we shall

use `(β, φ; y) = log pY(y;µ(β), φ) as notation for the log-likelihood function,

∂m`(β, φ; y) = ∂`(β,φ;y)
∂βm

= φ−1∂m`(β; y) as notation for the mth score function,

and Imn(β, φ) = E[∂m`(β, φ; y) · ∂n`(β, φ; y)] = φ−1Imn(β) as notation for a
element of the Fisher Information matrix function.

The Rao’s score test statistic, given as rm(β, φ) = ∂m`(β,φ;y)√
Im(β,φ)

= φ−1rm(β), helps

to define ρm(β), the angle between the mth basis function ∂m`(β, φ; Y) and the

tangent residual vector r(β, φ,y; Y) =
∑n
i=1(yi−µi) ∂`(β,φ;y)

∂µi
, defined as follows

ρm(β, φ) = arccos

[
rm(β, φ)

‖r(β, φ,y; Y)‖p{µ(β)}

]
, (2)

where ‖·‖p{µ(β)} is the norm defined on the tangent space Tp{µ(β)}M, where
the set M is a p-dimensional submanifold of the differential manifold S. From
(2), the Rao’s score test statistic contains the same information as the angle
ρm(β, φ). Thereby we can define the extended dgLARS method with respect to
the Rao’s score test statistic rather than the angle as respects the smallest angle
is equivalent to the largest Rao’s score test statistic.

The extended dgLARS solution curve, which is denoted by β̂A(γ) ⊂ Rk+1, with
γ ∈ [0, γ(1)], whereby 0 6 γ(p) 6 · · · 6 γ(2) 6 γ(1), is defined in the following
way: For any γ ∈ (γ(k+1), γ(k)], the dgLARS estimator is chosen in such a way
that

A(γ) = {a1, a2, · · · , ak},

|rai(β̂(γ), φ)| = |raj (β̂(γ), φ)| = γ, ∀ai, aj ∈ A(γ), (3)

|rac
h
(β̂(γ), φ)| < |rai(β̂(γ), φ)| = γ, ∀ach ∈ Ac(γ) and ∀ai ∈ A(γ),

where A(γ) = {m : β̂m(γ) 6= 0} is called active set and Ac(γ) = {m : β̂m(γ) =
0} is the complement of the active set. The new covariate is included in the active
set at γ = γ(k+1) where the following condition is satisfied:

∃ach ∈ Ac(γ(k+1)) :

|rac
h
(β̂(γ(k+1)), φ)| = |rai(β̂(γ(k+1)), φ)|, ∀ai ∈ A(γ(k+1)). (4)

From Pazira et al. (2017) we know that the value of the estimated dispersion
parameter does not change the order of the variables included in the active set
while it affects the value of `(β̂, φ̂; y), and as a result it affects the value of various
information criteria such as AIC or BIC.

For the high-dimensional setting (p ≥ n), we use the dispersion estimator φ̂P (γ)
at γ ∈ [0, γmax] by the Pearson-like dispersion estimator, as proposed by Wood
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(2006);

φ̂P (γ) =
1

n− |A(γ)|

n∑
i=1

(yi − g−1(x>i β̂A(γ)))2

V (g−1(x>i β̂A(γ)))
, (5)

where |A(γ)| = #{j : β̂j(γ) 6= 0} such that β̂j(γ) is the element of the extended
dgLARS estimator β̂A(γ).

To compute the solution curve, we use the improved predictor-corrector (IPC)
algorithm, described in Pazira et al. (2017), because this algorithm leads to an
decrease in the run times needed for computing the solution curve.

3 Application to Diabetes Dataset

In the recent literature, variable selection techniques, such as LARS and Spike
and Slab, were used in a linear regression model applied to the explained diabetes
data. While we spotted that, surprisingly, the response is markedly right-skewed
which can arise from a non-normal distribution, e.g. Gamma. Therefore, we fit a
Gamma regression model for this diabetes data and use the extended dgLARS
method by means of the IPC algorithm.

We first apply a number of variable selection methods such as LARS (Efron et
al., 2004), LASSO (Tibshirani, 1996), Elastic Net (Zou and Hastie, 2005), and
Spike and Slab (Ishwaran et al., 2010) by using the lars, glmnet and spikeslab

packages, and then compare the results to the results obtained from the proposed
dgLARS method implemented by our dglars package. Note that, for the dgLARS
method we use the Gamma family in our package, while this family is not available
in other packages, so that we fit the Gaussian family to the data to be able to
use these packages.

When we compare the results of the dgLARS Gamma method to the results
obtained from other algorithms, we find out the remarkable results. From Table
1 we can see that, the variables selected by the LARS, LASSO and Elastic Net
methods are the same, and almost in all models the first 4 variables (3, 9, 4 and 7)
are the same. Moreover, importantly, all models (except the dgLARS) have the
same selected variables just in the different order. While all algorithms (except
the dgLARS) select the covariates 37, 12, 22, 27, 33 and 52 in the first 20 variables,
our proposed algorithm does not select them among the top 20 variables. Instead,
the dgLARS algorithm by the Gamma model selects several new other variables
(indicated in bold in Table 1) which none of the other algorithms do. For instance,
the variables 60, 18, 42, 35 and 40 are selected with the inverse link function.

TABLE 1. The sequences of the top 20 predictors selected by the LARS, LASSO,
Elastic Net, Spike and Slab and dgLARS algorithms obtained for diabetes data.

Algorithm Selected Variables

LARS 3 9 4 7 37 20 19 12 22 28 2 10 27 11 30 46 33 52 24 29
LASSO 3 9 4 7 37 20 19 12 22 28 2 10 27 11 30 46 33 52 24 29
Elastic Net 3 9 4 7 37 12 20 19 10 22 28 2 27 30 11 52 46 33 24 29
Spike and Slab 3 9 4 7 2 20 37 19 12 27 52 11 10 22 63 30 24 58 43 5
dgLARS (inverse) 3 9 4 7 20 60 2 46 18 10 42 28 11 19 30 35 29 40 24 63
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TABLE 2. A list of the top 20 selected variables and their parameter estimates
obtained using dgLARS Gamma method (with inverse canonical link, ηi = − 1

µi
)

for diabetes data. |ACV | = 20, |AAIC | = 24 and |ABIC | = 10.

Variable Coefficient Estimate

Step Name Number CV AIC BIC

1 bmi 3 0.0182 0.0187 0.0171
2 ltg 9 0.0262 0.0278 0.0205
3 map 4 0.0129 0.0136 0.0101
4 hdl 7 -0.0145 -0.0159 -0.0105
5 age : sex 20 0.0067 0.0069 0.0042
6 hdl : ltg 60 0.0046 0.0053 0.0032
7 sex 2 -0.0090 -0.0113 -0.0035
8 map : hdl 46 0.0040 0.0052 0.0011
9 ltg^2 18 -0.0053 -0.0067 -0.0015

10 glu 10 0.0001 -0.0001 0
11 bmi : ltg 42 -0.0026 -0.0032 0
12 age : glu 28 0.0008 0.0010 0
13 age^2 11 0.0021 0.0027 0
14 glu^2 19 0.0016 0.0012 0
15 sex : map 30 0.0012 0.0020 0
16 sex : ltg 35 0.0007 0.0015 0
17 sex : bmi 29 0.0006 0.0015 0
18 bmi : hdl 40 0.0004 0.0015 0
19 age : ldl 24 -0.0002 -0.0014 0
20 tch : glu 63 0 0.0013 0

In Table 2, we also report the sequence of the top 20 variables and their parameter
estimates obtained using the dgLARS Gamma method with canonical link, ηi =
− 1
µi

, based on variable selection methods: AIC, BIC and CV.

As a result, the extended dgLARS method based on a Gamma model, with the
inverse canonical link function, finds out that the variables ”hdl : ltg”, ”ltg^2”,
”bmi : ltg”, ”sex : ltg” and ”bmi : hdl” (namely: 60, 18, 42, 35 and 40) are more
important factors in disease progression than the variables ”bmi : map”, ”bmi^2”,
”age : map”, ”age : ltg”, ”sex : hdl” and ”tc : tch” (namely: 37, 12, 22, 27, 33 and
52).
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at finding the best model according to a certain variable selection criterion. We
illustrate the performance of AdaSub and its stability with respect to changes
of its tuning parameters. Furthermore we demonstrate through simulations that
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the criterion, AdaSub often reduces the number of falsely selected variables (false
positives) and provides a more stable model.
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1 Introduction

We consider the problem of variable selection in linear regression models. Clas-
sical variable selection criteria include the Akaike Information Criterion (AIC)
and the Bayesian Information Criterion (BIC), aiming at optimal predictions and
identification of the true generating model, respectively. The challenging problem
with these `0-type selection criteria is that they lead to combinatorial and in gen-
eral NP-hard optimization problems: If there are p possible explanatory variables,
then there are 2p possible models for which the criterion has to be evaluated in a
full enumeration. To overcome this prohibitive computational approach, Staerk
et al. (2016) propose the Adaptive Subspace Method (AdaSub) which is based on
the idea of adaptively solving lower-dimensional sub-problems in order to provide
a solution to the original problem. It can be shown that, under certain conditions,
AdaSub identifies the best model according to the criterion used (Staerk et al.,
2017).

This work focuses on two important issues related to the performance of the Ada-
Sub algorithm. Since AdaSub is a stochastic algorithm in which certain tuning
parameters have to be specified, it is crucial to investigate the role of these pa-
rameters and their effect on the stability of the model selected by AdaSub. After
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a brief presentation of the AdaSub algorithm in Section 2, this issue is addressed
in Section 3.

The second issue refers to the interesting scenario in which AdaSub does not
identify the best model according to the criterion. It is well-known that the BIC
is variable selection consistent in the classical asymptotic setting, i.e. the best
BIC model coincides with the true generating model with probability tending to
one if the sample size n tends to infinity and the number of explanatory variables
p is bounded. However, this does not necessarily imply that the best BIC model
is always a good approximation to the “truth” for finite sample sizes n. In fact,
it will be demonstrated that in small sample size situations the best BIC model
tends to select many noise variables (false positives) and to overfit the data if
the true underlying model is relatively sparse. In Section 3 we show through
simulations that AdaSub can mitigate the problem of selecting many “unstable”
variables in such situations.

2 Adaptive Subspace Method (AdaSub)

Let {Xj ; j ∈ P} be the set of explanatory variables with index set P = {1, . . . , p}
and let M = P(P) = {S ⊆ {1, . . . , p}} be the corresponding space of linear
models. Suppose that we observe data D = (X,Y ) with design matrix X and
response Y . Let C :M→ R be any model selection criterion for the given data
D (e.g. the BIC). We assume that C(S) 6= C(S′) for all S 6= S′ and that we want
to find the model S∗ ∈M that minimizes C, i.e. S∗ := arg minS∈M C(S).

Define the map fC : M → M by fC(V ) := arg minS⊆V C(S) for V ∈ M. So
fC(V ) denotes the best model according to criterion C among all models included
in V . The steps of AdaSub are given by:

(1) Initialize expected search size q ∈ (0, p), learning rate K > 0 and number
of iterations T ∈ N.

(2) For j ∈ P initialize r
(0)
j = q

p
.

(3) For t = 1, . . . , T :
(a) Draw b

(t)
j ∼ Bernoulli(r

(t−1)
j ) independently for j ∈ P.

(b) Set V (t) = {j ∈ P; b
(t)
j = 1}.

(c) Compute S(t) = fC(V (t)).

(d) For j ∈ P update r
(t)
j =

q+K
∑t
i=1 1

S(i) (j)

p+K
∑t
i=1 1

V (i) (j)
, where 1A denotes the

indicator function of a set A.

As the final subset selected by AdaSub one can either (i) choose the “best”
sampled model Ŝb for which C(Ŝb) = min{C(S(1)), . . . , C(S(T ))}, or (ii) consider

Ŝρ = {j ∈ P; r
(T )
j > ρ} with some threshold ρ ∈ (0, 1).

3 Choice of Tuning Parameters in AdaSub

In order to illustrate the performance of AdaSub in a high-dimensional set-
up and how it is effected by the choice of the tuning parameters K and q,
we consider an example with p = 1000 and n = 100. For this we generate
data D = (X,Y ) by simulating X = (Xij) ∈ Rn×p with independent rows
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Xi,∗ ∼ Np(0,Σ), where Σkl = 0.3 for k 6= l and Σkk = 1. Furthermore let
β0 = (1,−1, 1, 2,−2, 2, 0, . . . , 0)T ∈ Rp be the true vector of coefficients with
active set S0 = {1, . . . , 6}. The response Y = (Y1, . . . , Yn)T is simulated via

Yi
ind.∼ N(Xi,∗β

0, 1), i = 1, . . . , n. The criterion C we adopt is the Extended BIC
(EBIC) with parameter γ = 0.5, which is especially suited for high-dimensional
situations (Chen and Chen, 2008). The R-package “leaps” (Lumley and Miller,
2009) is used to compute fC(V ) for V ∈M.

FIGURE 1. AdaSub for high-dimensional example: Plot of the evolution of
EBIC(S(t)) along the iterations (t) for different values of K (q = 5 fixed).

FIGURE 2. AdaSub for high-dimensional example: Plot of the evolution of r
(t)
j

for j ∈ {1, 3, 12} along the iterations (t) for different values of K (q = 5 fixed).

We apply AdaSub with T = 10, 000 iterations on a dataset simulated as above
and fix q = 5 as the initial expected search size. Figure 1 and Figure 2 show
the evolution of EBIC(S(t)) and r

(t)
j along the iterations t for different values of

the learning rate K ∈ {10, 100, 1000}. In all three cases the algorithm identifies
the correct model S0 = {1, . . . , 6} with EBIC(S0) ≈ 371 based on Ŝb and Ŝρ for
ρ ∈ [0.2, 0.9], i.e. S0 = Ŝb = Ŝρ.

However, there is a trade-off in choosing K > 0: If K is small (K = 10), then
AdaSub adapts slowly to the information learned about the variables and hence
a very diverse range of models is considered. If instead K is large (K = 1000),
then the algorithm might actually “converge” too fast. Suppose for example that
a variable Xj is not chosen when it is first considered in the model search (i.e.

j ∈ V (t) but j /∈ S(t)), then r
(t)
j = q

p+K
≈ 0 for K very large, so variable Xj

will probably not be considered in the model search for a long time. In our case,
the choice K = 100 = n seems favourable, for which AdaSub only needed 1123
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iterations to find S0. Nevertheless, an important observation is that the selected
model by AdaSub is stable with respect to changes of K, as long as the number
of iterations is large enough.

FIGURE 3. AdaSub for high-dimensional example: Plot of the sizes of the sam-
pled sets V (t) (grey dots) and the sizes of the “best” subsets S(t) (red crosses)
along the iterations (t) for different values of q (K = 100 fixed).
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FIGURE 4. AdaSub for high-dimensional example: Plot of the evolution of the
expected search size along the iterations (t) for different values of q (K = 100
fixed).

We now apply AdaSub with T = 10, 000 iterations on the same dataset as above
for different values of q ∈ {2, 5, 10}, while K = 100 is fixed. Figure 3 shows the
sizes of the sampled sets V (t) and the sizes of the “best” subsets S(t) = fC(V (t))
along the iterations t, while Figure 4 depicts the evolution of the expected sizes
of the sets V (t) which are given by E[|V (t)|] =

∑
j∈P r

(t−1)
j for t = 1, . . . , T .

We can see that the AdaSub algorithm automatically and quickly adjusts the
expected search sizes E[|V (t)|] and that the algorithm “converges” against the
true underlying model S0 with six variables, no matter which initial expected
search size q is used. Ideally, the tuning parameter q should be chosen in a way
such that it reflects the subjectively expected size of the best model S∗ = fC(P)
according to criterion C. However, a general observation is that the choice of the
tuning parameter q seems not to be as crucial as the proper choice of the learning
rate K. A more detailed and refined analysis of theses issues is an interesting topic
for future research.
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4 Improving Stability of BIC by AdaSub

In order to investigate the stability of BIC, we consider a low-dimensional scenario
with p = 30, so that the determination of the best BIC model S∗ is computation-
ally feasible. The sample size n is increased from 40 to 200 in steps of size 20 and
for each value of n we simulate 100 different datasets according to the simulation
setup described above, with the following modification: For each dataset, we se-
lect s0 ∈ {0, . . . , 10} and S0 ⊂ P of size |S0| = s0 randomly; then for j ∈ S0 we
independently simulate β0

j ∼ U [−2, 2] from the uniform distribution, while we set
β0
j = 0 for j /∈ S0. Based on these simulated data, we compare the performance

of the thresholded model Ŝρ with threshold ρ = 0.9 from AdaSub with the best
BIC model S∗. In AdaSub we set T = 2000, q = 5 and K = n.
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FIGURE 5. Comparison of Ŝ0.9 from AdaSub (solid lines with crosses) with
best BIC model S∗ (dashed lines with dots) in terms of mean number of false
positives/ false negatives, relative frequency of selecting the true model S0, rel.
frequency of agreement between Ŝ0.9 and S∗, Mean Squared Error (MSE) and
Mean Squared Prediction Error (MSPE) on independent test set with sample
size 100.

Figure 5 shows that the best BIC model S∗ tends to select many false positives
if the sample size is small. In contrast, the thresholded model Ŝ0.9 selected by
AdaSub is often sparser and yields less false positives in situations where the
BIC is too liberal (at the prize of a slightly increased mean of false negatives).
When the sample size increases, the best BIC model S∗ becomes more “stable”
and the relative frequency that Ŝ0.9 and S∗ agree tends to 1. However, selecting
the thresholded model from AdaSub is beneficial for small sample sizes yielding
higher relative frequencies of selecting the true model S0, smaller Mean Squared
Errors (MSE) and smaller Mean Squared Prediction Errors (MSPE).

A reason for the undesirable behaviour of the best BIC model is that the discrete
nature of the `0-penalty can lead to “overfitting” of the criterion, since the op-
timization is carried out among all possible 230 ≈ 109 models. This problem has
been addressed both by the Statistics community (e.g. Breiman, 1996) and the
Machine Learning community (e.g. Loughrey and Cunningham, 2005). However,
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the simulation results show that AdaSub can mitigate the “overfitting problem”
of BIC in the given situation of a sparse underlying true model.

The tendency that AdaSub selects a sparser model in unstable situations is also
observed in additional simulations with different correlation structures of X and
different selection criteria C. In ongoing research we want to investigate this phe-
nomenon further and aim to provide theoretical explanations for the promising
performance of AdaSub.

References

Breiman, L. (1996). Heuristics of instability and stabilization in model selection,
The Annals of Statistics, 24(6), 2350 – 2383.

Chen, J. and Chen, Z. (2008). Extended Bayesian Information Criteria for Model
Selection with Large Model Spaces, Biometrika, 95(3), 759 – 771.

Loughrey, J. and Cunningham, P. (2005). Overfitting in wrapper-based feature
subset selection: The harder you try the worse it gets, In Research and
Development in Intelligent Systems XXI, Springer London , 33 – 43.

Lumley, T. and Miller, A. (2009). leaps: Regression Subset Selection. R package
version 2.9, http://CRAN.R-project.org/package=leaps.

Staerk, C., Kateri, M. and Ntzoufras, I. (2016). An Adaptive Subspace Me-thod
for High-Dimensional Variable Selection. In: Proc. of the 31st International
Workshop on Statistical Modelling, Rennes, 295 – 300.

Staerk, C., Kateri, M. and Ntzoufras, I. (2017). High-Dimensional Variable Se-
lection via Low-Dimensional Adaptive Learning. (submitted)



Boosting distributional regression models for
multivariate responses

Andreas Mayr12, Janek Thomas2, Matthias Schmid3, Florian
Faschingbauer1, Nadja Klein4

1 Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Germany
2 Ludwig-Maximilians-University Munich, Germany
3 Rheinische Friedrich-Wilhelms-University Bonn, Germany,
4 University of Melbourne, Melbourne Business School, Australia

E-mail for correspondence: andreas.mayr@fau.de

Abstract: We introduce a boosting algorithm for multivariate distributional
regression that is able to estimate these complex models while simultaneously
selecting the most informative variables in potentially high-dimensional settings.
Our proposed method is evaluated empirically and applied in a recent birth cohort
study. The aim is to model the growth of children via the combined distribution
of height and weight during early childhood to identify possible predictors.
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1 Introduction

One of the most popular semi-parametric statistical modelling approaches beyond
the classical regression of the mean are generalized additive models for location,
scale and shape (GAMLSS, Rigby and Stasinopoulos, 2005). The main idea of
GAMLSS is that each parameter of the conditional distribution – not only the
expected value – is modelled by its own additive predictor. This flexible frame-
work can be further extended towards multivariate outcomes, in order to model
the joined distribution of two or more responses (Klein et al., 2014). We com-
bine this approach with an extended statistical boosting algorithm (Mayr et al.,
2012) which allows to estimate statistical models while simultaneously selecting
the most influential variables. Besides evaluating its performance in simulations,
we use this approach for the joint distribution of height and weight of a German
birth cohort study in order to select predictors for the growth of children. Partic-
ularly, we are looking for predictors in the clinical information from mother and
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child at birth and in a questionnaire on the socio-demographic characteristics of
the parents (e.g., education).

2 Multivariate GAMLSS

In case of a univariate Gaussian response Y ∼ N(µ, σ2) in GAMLSS we model
both the location µ = ηµ(x) and the scale σ = exp(ηµ(x)) of the conditional
distribution via additive predictors. In case of a bivariate Gaussian distribution,
e.g., for Y = (weight, height)> ∈ R2,(

weight
height

)
∼ N

((
µ1

µ2

)
,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))
we follow the same principle,leading to five different additive predictors, including
one for the correlation parameter ρ.

ηµ1(x) = µ1, ησ1(x) = log(σ1),

ηµ2(x) = µ3, ησ2(x) = log(σ2), ηρ(x) = ρ/
√

(1− ρ2)

3 Boosting multivariate GAMLSS

While variable selection is already a complicated issue for GAMLSS, the complex-
ity further increases for multivariate distributions. In order to deal with this issue,
we use a further extended version of the gradient boosting algorithm introduced
in Mayr et al. (2012). The new algorithm fits in every step m = 1, ...,mstop all par-
tial derivatives of the joint likelihood one-by-one to the base-learners h1(x1),...,
hp(xp), selecting the best-performing one j∗ for each dimension. Afterwards, the
best overall update is selected based on the potential increase in the likelihood
(Thomas et al., 2017):

∂

∂ηµ1

l(y1, y2, µ̂1
[m],σ̂1

[m],µ̂2
[m],σ̂2

[m],ρ̂[m])
select−→ j∗µ1

∂

∂ησ1
l(y1, y2, µ̂1

[m],σ̂1
[m],µ̂2

[m],σ̂2
[m],ρ̂[m])

select−→ j∗σ1

∂

∂ηµ2

l(y1, y2, µ̂1
[m],σ̂1

[m],µ̂2
[m],σ̂2

[m],ρ̂[m])
select−→ j∗µ2

best
update−→ η̂[m+1]

µ2

∂

∂ησ2
l(y1, y2, µ̂1

[m],σ̂1
[m],µ̂2

[m],σ̂2
[m],ρ̂[m])

select−→ j∗σ2

∂

∂ηρ
l(y1, y2, µ̂1

[m],σ̂1
[m],µ̂2

[m],σ̂2
[m],ρ̂[m])

select−→ j∗ρ

Only this best overall-update is finally carried out, leading to data driven vari-
able selection and mode-choice. Note, that the boosting algorithm is fitting the
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FIGURE 1. Resulting coefficients for 12 partly overlapping informative variables
from 100 simulations with n = 500 and p = 1000. Each plot refers to one additive
predictor (ηµ1 , ησ1 , ηµ2 , ησ2 , ηρ). The horizontal lines are the corresponding true
values: Generally, the algorithm selects the correct variables – the amount of
shrinkage differs among the predictors.

negative gradient of the joint likelihood (with respect to the different additive
predictors) and not the actual observations.

An implementation of this extended algorithm is provided via a new option in
the R add-on package gamboostLSS (Hofner et al., 2016).

4 Simulation

We first carried out a simulation study with n = 500 bivariate Gaussian dis-
tributed outcomes and p = 1000 explanatory variables. Only 12 variables have
an actual effect on any of the distribution parameters (see Figure 1). Our results
suggest that the algorithm converges to the correct solution and is able to iden-
tify a small subset of informative variables in potentially high-dimensional data
situations . There is small tendency to falsely include informative variables in
both scale parameters; e.g. X10, which actually has only an effect on σ2 and ρ is
often also included for σ1.
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FIGURE 2. Partial effect of the age on the parameters of the joint distribution
of weight and height in early childhood.

5 Birth cohort study

We apply our new approach analysing the joint distribution of weight and height
in early childhood. The underlying data set is a birth cohort study including
453 children born at the University Hospital Erlangen, with measurements at
five different time points. As possible explanatory variables we have the clinical
information of the mother and the baby at birth, the weight and the height of the
parents and results of a questionnaire on their socio-demographic background. For
continuous variables we use P-splines as base-learners while all other variables
enter via simple-linear models. To account for the longitudinal structure of the
data we include subject-specific random intercepts.

Picking the most influential variables, the results of our models suggest, that the
weight in early childhood is influenced to a much greater extend by the socio-
demographic background of the parents (e.g., education level) than the height.
The latter (µheight) only depends on the parents’ height at birth. Generally, the
algorithm selected more variables for σweight and σheight than for the mean pa-
rameters (see Table 1) . The correlation between height and weight follows a
u-type shape, while the variance increases for both outcomes with the children
getting older (Figure 2).
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TABLE 1. Selected variables for the different additive predictors and the type
of their effect (linear positive, linear negative, smooth) on the growth of children.
The results are based on the analysis of a recent birth cohort study with the
bivariate outcome Y = (weight, height)>.

Variable µweight µheight σweight σheight ρ

age child smooth smooth smooth smooth smooth
birth-weight smooth smooth smooth
weight father pos. pos.
weight mother pos. pos.
height father neg. pos. neg. pos.
height mother neg. pos. neg. pos.
female child neg.
education mother neg. neg
age mother neg.
breast-fed pos. neg.
cesarean-section neg.
stress-level (birth) neg. neg. neg.
gestational age neg. neg.
alcohol (pregnancy) neg. neg.

6 Discussion

We propose a boosting algorithm to estimate and select GAMLSS distributional
regression models (Rigby and Stasinopoulos, 2005) for multivariate outcomes.
GAMLSS had been already extended towards multivariate distributions by Klein
et al. (2014) in a Bayesian setting.

The proposed boosting algorithm, due to being based on a machine-learning
approach, is applicable to high-dimensional data with more candidate variables
than observations (p > n) – as illustrated in the simulation. It takes advantage
of a recent extension (Thomas et al., 2017) of the original algorithm for boosting
GAMLSS (Mayr et al., 2012). Following this new approach, tuning of the algo-
rithm (via the number of boosting iterations) boils down to a one-dimensional
problem, making the computationally burdensome grid search (Hofner et al.,
2016) for the optimal combination of stopping iterations unnecessary.

In the application to the birth cohort study we illustrated how the algorithm
simultaneously selects only the most influential variables for the different predic-
tors: although being a relatively low-dimensional data set, this task would have
been infeasible for most other variable selection approaches for distributional
regression models.

Acknowledgments: The work on this article was supported by the Deutsche
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1 Introduction

A model class that has gained increasing attention in recent years is the class
of the GAMLSS, introduced by Rigby and Stasinopoulos (2005). In contrast to
conventional regression approaches, where usually the expected mean is regressed,
in the GAMLSS all distribution parameters (as, for example, the location, scale
and shape) can be simultaneously modeled in terms of covariates. However, in
high dimensional data set-ups classical fitting procedures for the GAMLSS often
become very unstable and methods for variable selection are desirable.

The first ones who addressed the issue of variable selection, i.e. the selection of a
reasonably small subset of informative covariates to be included in a particular
GAMLSS, were Mayr et al. (2012). They extended boosting techniques, which
originated in the machine learning field, to the framework of the GAMLSS. The
approach is called gamboostLSS and is based on classical gradient boosting,
which they successfully adapted to the GAMLSS characteristics. Both variable
selection and model choice are naturally available within their regularized regres-

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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sion framework. For an implementation into the statistical software R, see Hofner
et al. (2016).

The present work describes a different regularization approach for the high di-
mensional GAMLSS framework, which is designed for linear covariate effects
only and is based on L1-type penalties. Using adequate penalties, the cases of
conventional LASSO for metric covariates, and both the group and fused LASSO
for categorical predictors are covered. The implementation of the methods is in-
corporated into the unified modeling architecture for distributional generalized
additive models (GAMs) established in Umlauf et al. (2017a), which exploits
the general structure of GAMs and encompasses many different response distri-
butions, estimation techniques, model terms etc. The corresponding R-package
bamlss (Umlauf et al., 2017b) embeds many different approaches suggested in
literature and software and serves as a unified conceptional “Lego toolbox” for
complex regression models. Furthermore, within its framework both the imple-
mentation of algorithms for complex regression problems and the integration of
already existing software are substantially facilitated.

For illustration purposes, the proposed methods are applied to Munich rent stan-
dard data, which are used as a reference for the average rent of a flat depending
on its characteristics and spatial features.

2 Model specification

Along the lines of Rigby and Stasinopoulos (2005), who regard the GAMLSS
as a semiparametric regression-type model with both linear and smooth covari-
ate effects, in the following we focus on the fully parametric model with solely
linear effects. Let y = (y1, . . . , yn)T be the response vector with single observa-
tions yi, i = 1, . . . , n, being conditionally independent given a set of covariates.
The corresponding conditional density f(yi|θi) usually depends on several dis-
tribution parameters θi = (θi1, . . . , θid)

T that commonly represent distribution
characteristics like location, scale, shape and/or kurtosis, but generally may be
any of the distribution’s parameters. After all, the key feature of a GAMLSS is
that each distribution parameter θk can be modeled by its own predictor ηθk for
k = 1, . . . , d, which, in our case, depends linearly on a set of pk covariates together
with an intercept β0k. Following Mayr et al. (2012), we denote by gk(·) known
monotonic link functions, corresponding to the linear predictor of the submodel
of parameter θk. Then, a generalized linear model for location, scale and shape
is given by the following set of equations

gk(θk) = β0k +

pk∑
j=1

xT
jkβjk = ηθk .

As the covariates can be metric and/or categorical, we use the general notation
xT
jkβjk for a single predictor term, which either collects all covariate dummies

and regression coefficients corresponding to the jk-th group of variables, if the
covariate is categorical, and which reduces to a product of scalar values, if the
covariate is metric, i.e. xjkβjk. Estimation of regression parameters can be based
on maximizing the model’s log-likelihood

l(β) =

n∑
i=1

log (f(yi|θi)) , (1)
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with vector β collecting the effects of all linear predictors ηθk , k = 1, . . . , d.
Note that the log-likelihood (1) depends on the parameters βjk through the rela-
tions θik = g−1(ηθik ). Suitable fitting schemes are implemented in the R-package
gamlss (Stasinopoulos and Rigby, 2007) and base on the following principle: in
each iteration, backfitting steps are successively applied to all distribution pa-
rameters, using the submodel fits of previous iterations as offset values for those
parameters that are not involved in the current step. However, in high dimen-
sional situations these fitting procedures often become very unstable and methods
for variable selection are needed.

3 L1-type penalization

In the following, three L1-type penalties are introduced, which are designed for
linear covariate effects: the conventional LASSO for metric covariates, and the
group and fused LASSO if categorical covariates are present. Altogether, a term
λJ(β) is subtracted from the log-likelihood (1), where J(β) is a combination
of (parts of) the three penalty terms from below and λ a tuning parameter,
controlling the strength of the penalty.

Classical LASSO: For a metric covariate xjk, following Tibshirani (1996), the
absolute value of its (scalar) regression coefficient is penalized, i.e.

Jm(βjk) = |βjk| .

Group LASSO: For a (dummy-encoded) categorical covariate xjk, the L2-norm
of vector βjk, which collects all corresponding coefficients, is penalized (compare,
e.g., Meier et al., 2008), i.e.

Jg(βjk) = ||βjk||2 .

Fused LASSO: Alternatively, for categorical covariates often clustering of cate-
gories with implicit factor selection is desirable. Depending on the nominal (first
expression) or ordinal scale level (second expression) of the covariate, one of the
following two penalties can be used (compare Gertheiss and Tutz, 2010):

Jf (βjk) =
∑
l>m

w
(jk)
lm |βjkl − βjkm|, or Jf (βjk) =

cjk∑
l=1

w
(jk)
l |βjkl − βjk,l−1| ,

where cjk is the number of levels of categorical predictor xjk and w
(jk)
lm , w

(jk)
l

denote suitable weights. Choosing l = 0 as the reference, βjk0 = 0 is fixed.

All proposed penalties have the attractive property to be able to set the coef-
ficients of single (groups of) covariates to zero and, hence, to perform variable
selection. Within the estimation procedure, i.e. the corresponding back-fitting al-
gorithm implemented in bamlss, local quadratic approximations of all presented
penalty terms are used (see Oelker and Tutz, 2015). Further, note that bamlss
generally also allows to assign to each linear predictor of the d submodels (corre-
sponding to parameters θk, k = 1, . . . , d) its own penalty term, i.e. a term λkJ(β).
This way, the estimated models become even more flexible, with the drawback
that then the grid search for the optimal tuning parameters λk has to be carried
out on d dimensions and, hence, becomes computationally more demanding.
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FIGURE 1. Marginal BIC curves for parameters µ and σ, holding the other
tuning parameter fix at the respective minimum of the BIC.

4 Application on Munich rental guide data

We now apply the proposed penalization approach to the Munich rent data, which
come from 3015 households interviewed for the Munich rent standard 2007. The
response is the monthly rent per square meter in Euro, and from a large set
of covariates we incorporate a selection of nine factors, both ordered as well as
nominal and binary, similar to Gertheiss and Tutz (2010). We fit a Gaussian
GAMLSS and use for both distribution parameters, i.e. µ and σ, a combination
of the two different fused LASSO penalties introduced above. In order to obtain a
flexible fit, the penalty terms of both corresponding linear predictors are assigned
with separate tuning parameters λµ and λσ, respectively.

The optimal tuning parameters are selected by BIC on a 2-dimensional grid. Fig-
ure 2 shows the corresponding marginal BIC curves for both µ and σ, holding the
other tuning parameter fix at the respective minimum of the BIC. Figure 2 and
3 show the paths of the dummy coefficients of both the ordinal covariate year of
construction and the nominal district, which are penalized by the two different
fused LASSO penalties from above. It is seen that with increasing tuning param-
eters λµ and λσ, respectively, categories are successively fused, i.e. the coefficients
are set equal. In addition, it can be seen that for the ordinal covariate year of
construction in Figure 2 only neighboring coefficients are fused, while for the
nominal factor district in Figure 3 any groups of coefficients can be aggregated.
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FIGURE 2. Ordinal fused coefficient paths for the year of construction for pa-
rameters µ (left) and σ (right); vertical dashed lines: optimal tuning parameters.

FIGURE 3. Nominal fused coefficient paths for the district effect for parameters
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1 Introduction

We propose a flexible approach to regression with functional response allowing
for simultaneously estimating multiple distributional characteristics of response
curves. It therefore generalizes usual functional mean regression models.

In functional data analysis (Ramsay and Silverman; 2005), functional response
regression aims at estimating covariate effects on response curves. Depending on
the application, covariates might effect the response curves in quite different ways.
This makes it particularly important to have a general framework for functional
regression to draw on.

Rigby and Stasinopolous (2005) introduced GAMLSS extending usual Gener-
alized Additive Models (GAM) to multiple distributional parameters: covariate
effects on all parameters can be analyzed simultaneously, while doubtful assump-

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
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tions of homoscedasticity can be overcome. At the same time the range of appli-
cable distributions of GAM is extended to non-exponential family distributions.

We develop and implement functional GAMLSS combining a GAMLSS frame-
work developed by Mayr et al. (2012) and a general functional regression frame-
work (Brockhaus et al.; 2016a). For scalar-on-function regression the combination
with GAMLSS was discussed by Brockhaus et al. (2016b) providing a selection of
different functional covariate effect types. Thus, the framework now provides flex-
ible functional GAMLSS for scalar-on-function, function-on-scalar and function-
on-function regression.

We apply the model to analyzing bacterial interaction of two competing Es-
cherichia coli bacteria strains: a toxin producing ‘C-strain’ and a toxin sensitive
‘S-strain’. Both are exposed to different external stress levels. Our aim is to model
the S-strain growing behavior in dependence of C-strain and stress level. As the
growth process can be influenced in various ways, the covariates might effect both
location and scale of growth curves.

2 Model formulation

Consider a data scenario with N observations of a functional response Y and
respective covariates X. Y is a stochastic process, such that its realized trajec-
tories yi : T → R, t 7→ yi(t) for i = 1, ..., N present the response curves over an
index set T . Let xi = (xi,1, ..., xi,p)

T denote the collection of the i-th observed
covariates. Each single covariate might be categorical, scalar or functional.

We assume that for all t ∈ T the conditional distribution of the response FY (t)|X

is known up to the unknown parameters ϑ(t) = (ϑ(1)(t), ..., ϑ(Q)(t)). For each
parameter an additive regression model is assumed specifying

g(q)(ϑ(q)) = h(q)(x) =

J(q)∑
j=0

h
(q)
j (x), q = 1, ..., Q,

where g(q) is a link function for the q-th parameter of interest. The model struc-
ture corresponds to the GAMLSS introduced by Rigby and Stasinopoulos (2005).
However, covariates and response may now be functions. Correspondingly, also
ϑ(1), ..., ϑ(Q) are modeled as functions.

The effect functions h
(q)
j (x, t) are constructed modularly using tensor product

bases, which allows for flexible specification of a variety of effect types of scalar
and functional covariates (see Brockhaus et al.; 2016a).

The model coefficients are estimated using gradient boosting. It generalizes for-
mer model based boosting approaches (Brockhaus et al.; 2016b, Thomas et al.;
2016) to GAMLSS for functional response regression. Gradient boosting is a gra-
dient descend method for model fitting, which aims at minimizing a loss function.
This is performed in a component-wise and stepwise procedure and thereby yields
automatic model selection, prevents over-fitting and allows for fitting models with
more parameters than observations.



Stöcker et al. 111

3 Analysis of bacterial interaction in Escherichia coli

Equilibria in biodiversity stand and fall with bacterial interaction. A comprehen-
sive analysis of underlying processes involves investigating both expectation and
variability of growth curves.

Von Bronk et al. (2016) establish an experimental setup with two cohabiting
Escherichia coli bacteria strains: a colicin producing ’C-strain’ and a colicin sen-
sitive ’S-strain’. Single bacteria of the C-strain can liberate the colicin, which kills
numerous S-strain bacteria on contact. However, the S-strain might still outgrow
the C-strain. The arising population dynamics are influenced by external stress
induced with the antibiotic agent Mitomycin C (MitC). At N = 334 observation
sites, bacteria under consideration are exposed to four different MitC concen-
trations. Bacterial growth curves Si(t) of the S-strain and Ci(s) of the C-strain,
i = 1, ..., 334, are observed over 48 hours.

We model the i-th S-strain curve Si(t) in dependence on the C-strain growth.
To this end, we assume Si(t) to be gamma distributed with mean and standard
deviation ϑi(t) = (µi(t), σi(t))

T. Both mean and standard deviation are modeled
analogously as

log ϑ
(q)
i (t) = f

(q)
0 (t) + f

(q)
MitCi

(t) + h
(q)
0 (Ci , t) + h

(q)
1 (C′i, t), q = 1, 2,

with historical effects h
(q)
j (Ci, t) =

∫ t
0
Ci(s)β

(q)
j (s, t) ds, j = 0, 1.

For both mean and standard deviation, the model includes functional intercepts
f

(q)
0 (t) and group specific deviations f

(q)
MitCi

(t) per MitC level. Ci(s) and its
derivative C′i(s) reflect C-strain spread and growth. In the historical effect, the
complete history of the C-strain up to the current time point t may influence the
S-strain growth (see (Brockhaus et al.; 2016a)). Smooth functional components
are modeled using tensor-product B-Spline basis.

We observe MitC effects on both mean and standard deviation curves of the S-
strain. Especially, the standard deviation substantially increases with time and
with the MitC concentration.

Regarding the effects of the C-strain, we observe the effect of the derivative
C′ to be dominant. Moreover, the coefficient function shows temporal regimes.
Such regimes were already noticed by von Bronk et al. (2016) and may now be
quantitatively analyzed (Figure 1).

4 Discussion

Functional GAMLSS present an extremely flexible model class, which combines
two conceptual extensions of GAM. They are of particular interest, if not only
the mean curve but rather the full dynamic of the response process is under
consideration. In this sense, it provides a natural extension to the usual analysis
of bacterial growth.
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Abstract: This paper investigates modeling the dynamics of random sums repre-
senting the total operational losses where randomness is both in the loss frequen-
cies and the loss sizes such that a compound Poisson process model is employed.
To this end, we formulate a Markov-switching generalized additive model for
location, scale and shape that allows all parameters of the compound loss distri-
bution to depend on economic covariates in a flexible way while simultaneously
allowing this dependence to vary over time according to a hidden state process.
Relying on this approach, we analyze a novel dataset of 817 losses resulting from
frauds in the Italian bank UniCredit.

Keywords: distributional regression; extreme events; hidden Markov model;
generalized Pareto distribution.

1 Markov-Switching Compound Poisson Process
Models for Total Losses

We are interested in modeling the temporal dynamics of the distribution of ran-
dom sums

Lt =

Nt∑
i=1

Yi,t,

for t = 1, 2, . . ., where Nt is the number of events occurring in period t, and Yi,t is
the severity of the ith event occurring during period t. In the actuarial literature,
this model is used for modeling the total claim of an insurance company over
time whereas in the banking literature it is used to model the total operational
loss suffered by a bank. Operational losses are defined by the Basel Committee
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FIGURE 1. Total losses (left) and number of losses per quarter (right).

for Banking Supervision (BCBS) as direct or indirect losses resulting from inad-
equate or failed internal processes, people and systems or from external events.
In the financial literature, the distribution of Nt is referred to as the frequency
distribution whereas the distribution of Yi,t is termed the severity distribution.

The distribution of Lt is determined indirectly by making assumptions about the
frequency distribution and the severity distribution as well as their dependence.
For our application, we will assume

Nt
iid∼ Poisson(λ),

Yi,t
iid∼ GPD(γ, σ),

where realisations of Nt and Yi,t, ∀{t, i} are assumed to be independent, λ > 0
is the frequency parameter of the Poisson distribution for the counts and the
severities follow ageneralized Pareto distribution GPD(γ, σ) with shape parame-
ter γ ≥ 0, scale parameter σ > 0 and density

f(y; γ, σ) =

{
1−

(
1 + γ

y

σ

)−1/γ

, γ 6= 0

1− exp
(
− y
σ

)
, γ = 0

In combination, this leads to a compound Poisson process model for the total
losses Lt.

We are then interested in

• relating the distributional parameters λ, γ and σ to economic covariates by
embedding the compound Poisson model within the framework of gener-
alized additive models for location, scale and shape (GAMLSS, Rigby and
Stasinopoulos, 2005), and

• allowing for temporal variation in the regression effects via a Markov
switching structure implied by a latent state variable St.

We therefore propose Markov-switching GAMLSS that rely on combining a Markov
chain structure for the latent state St with a GAMLSS specification for the to-
tal loss distribution extending the Markov-switching generalized additive models
framework by Langrock et al. (2016). For each distributional parameter θ ∈
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{λ, γσ}, we assume an additive predictor

g(θ) = ηθ = x′β
(St)
θ +

J∑
j=1

h
(St)
θ,j (zj),

where g(·) is a monotonic link function, x is a vector of covariates with (state-

dependent) linear effects β
(St)
θ , and hθ,j(zj)

(St) are the (state-dependent) non-
linear effects of the continuous covariates zj modelled via penalised splines. All
model parameters (relating to the Markov chain for the latent state and to the
conditional compound Poisson process given state membership) can then be de-
termined based on penalised likelihood inference with smoothing parameters de-
termined by cross-validation.

2 Application to Operational Losses

We apply the proposed Markov-switching GAMLSS to a novel data set of 817
operational losses at UniCredit, one of the largest European banks. We focus
on the particular class of operational losses resulting from external frauds, see
Figure 1 for some descriptives on the data set. The collection period of the losses
ranges between January 2005 and June 2014. Losses have been scaled by an
unknown factor for anonymity reasons. The minimal amount considered is Euro
25,000, so that we have a sample of extreme losses, where the GPD is a reasonable
hypothesis for the severity distribution. We have access to the exact date of each
loss, meaning that we can assign each loss to a specific year and a specific quarter,
and compute the total loss for each quarter. From a regulatory point of view,
banks are expected to define the capital reserve for a horizon of one year but we
work on a quarterly basis, as we wouldn’t have enough time periods to estimate
correctly the transition probabilities of the model otherwise.

In our analyses, we rely on the following covariates (see Figure 2):

• To model the frequency parameter λ, we use the percentage of the total
revenue coming from fees (PRF) which can be interpreted as a measure of
the economic well-being of the bank (with higher ratios implying smaller
dependence on market interest rates). The PRF also measures the level of
activity of the bank on behalf of clients.

• To model the scale parameter σ, we use the Italian unemployment rate,
serving as a proxy for the overall economic performance of Italy, where
UniCredit has its main activities.

• To model the shape parameter γ, we consider the values of the VIX index
which is a measure of the market volatility, based on put and call options
of the S&P500. It is also considered as a barometer of market sentiments.

The estimated covariate effects for the different latent states are shown in Figure 3
while estimated state probabilities are shown in Figure 4 (left).

For operational losses, the capital reserve is derived from the estimated 99.9%
quantile of Lt such that this is a quantity of major interest for banking regula-
tors. Figure 4 (right) shows estimates for this quantile derived from our model.
One interesting feature is that the Markov-switching GAMLSS, unlike simpler
alternatives, never entails quantile breeches on the observed data.
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FIGURE 2. Values of the explanatory variables over the considered period. From
left to right: lagged values (one quarter) of the PRF, the Italian unemployment
rate and the VIX index.
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Abstract: In the insurance industry, the measurement of obligations and the
evaluation of actuarial risks depend fundamentally on the aggregate claims dis-
tribution. From a mathematical point of view, the aggregated claims variable is
a random sum of random variables. However, obtaining the analytical expression
for this probability distribution is a hard task. In this paper, a new approach is
proposed for the modelling of the aggregated claims predictive distribution. We
combine the newly proposed Generalized Autoregressive Score (GAS) models, to
specify a non-Gaussian distribution for both the number of claims and for the
claims severity. By use of the Fast Fourier Transform (FFT), we are then able to
numerically obtain the aggregated claims distribution. The proposed method is
applied to real data, provided by a leading Brazilian motor insurer.

Keywords: GAS models; Aggregate Claims; Collective risk model; Random sum.

1 Introduction

In the insurance industry, the measurement of obligations and the evaluation of
actuarial risks depend fundamentally on the aggregate claims distribution. New
solvency supervision principles have required more sophisticated approaches to
assess the claims expenses of an insurer. In addition to obtaining the expected
value of these expenses, it is essential to insurers to assess the inherent risk of
these cash flows, whose distribution of probability becomes the main objective.
From a mathematical point of view, the aggregated claims variable is a random
sum of random variables. Therefore, randomness is present on both the values
of the individual claims and on the number of incurred claims. However, the
aggregate claims distribution, except in rare circumstances, does not present a

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
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closed form.

In this paper, a new class of observation driven models proposed by Creal et
al. (2013) and Harvey and Chakravarty (2008), named the Generalized Autore-
gressive Score (GAS) models, is proposed for the modelling of the aggregated
claims predictive distribution. By construction GAS models allow parameters of
the probability distribution to evolve on time according to an updating equa-
tion which use the score as a driving mechanism. We combine the GAS models,
applied for the number of claims and also for the claims severity distribution,
with the use of Fast Fourier Transform (FFT) to compute the aggregated claims
distribution.

Differently from the traditional approach for the number and severity of claims
distribution, parameter time varying models allows a more precise forecast once
the model follows the parameter dynamic on time. Aggregate claims distribution,
except in rare circumstances, does not present a closed form. FFT was chosen
to obtain this distribution since it is an efficient numerical method with low
computational effort. The proposed method is applied to real data, provided
by a leading Brazilian motor insurer. The number of claims was both modeled
trough a Poisson distribution and a negative binomial distribution. Claim severity
was assumed both gamma or lognormal distributed. In all models appropriate
parameters were made time varying according to the score driven mechanism.

2 Models

The aggregate claims represents the total amount paid for all claims incurred in
a certain period of time in an insurance portfolio. In the collective risk model, the
aggregate losses is represented by a sum of a random number (claim frequency) of
individual payments (claim severity). In this work, the claim frequency and claim
severity data are both considered as times series, so the aggregate claim at time
t is represented by S∗t =

∑Nt
i=1 Xit, t = 1, ..., T , where Nt is the random variable

that represents the claim frequency at time t and Xit, i=1,...,Nt, is the random
variable that represents the severity of the claim i at time t. The assumptions are
that X1t, X2t, . . . are independent and identically distributed (iid) at each time t
and independent of Nt.

2.1 Score driven models

GAS models provide a general framework for modelling distributions with time
varying parameters. The time variation of the parameters is introduced by letting
parameters be functions of lagged dependent variables, using the scaled score.
It is also possible to introduce exogenous variables on the parameter updating
equation. In this framework, the parameters are perfectly predictable given the
past information.

For a GAS(p,q) model, the predictive model density and the associated updating
equation are given by yt ∼ p(yt|ft, θ;Ft−1) and ft+1 = w +

∑p
i=1 Aist−i+1 +∑q

j=1 Bjft−j+1, where Ft = {y1, . . . , yt}, ft is the time-varying parameter vector,

θ is the static parameter vector, θ ∈ Θ ⊆ Rdθ , w is a vector of constants, Ai and
Bj are coefficient matrices and st is the scaled score (st = St∇t).
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The score is defined as ∇t = ∂ln p(yt|ft,θ)
∂ft

and the scaling matrix St is, usually,

chosen between I−1
t|t−1, I

−1/2

t|t−1 ou I, where It|t−1 = Et−1

[
∇t∇

′
t

]
is the information

matrix and I is the identity matrix. Fixed parameters estimation is done by
maximum likelihood (ML).

2.2 Claim frequency and severity models

As in most cases in the insurance field, we have used the Poisson and negative
binomial distributions for claim frequency (Nt), considering the mean λt and
parameter pt time-varying, respectively.

For the claim severity models, following the results of Creal et al. (2014), it is
assumed that all severity claims (Xi,t) at time t are identical distributed and
cross-sectionally independent conditional on ft and on information set Ft−1. In
this case, the log-likelihood, the score vector and the information matrix at time
t take a simple additive form: lt =

∑nt
i=1 ln p(xi,t|ft, θ(2);Ft−1), ∇t =

∑nt
i=1∇t,i

and It|t−1 =
∑nt
i=1 It|t−1,i, where nt is the claim frequency at time t. Gamma and

lognormal are popular selections for distributions of motor insurance loss given
their appropriate characteristics, as non-negative support, positive skewness and
variance proportional to the mean-squared (constant coefficient of variation). In
this article, these two distributions are used to model the claims severity. Models
descriptions are given in Table 1. For the Gamma model, α is the shape parameter
and µt

α
is the scale parameter.

TABLE 1. Details for the claim frequency and claim severity models.

Models ft ∇t It|t−1

Claim frequency (Nt):
Poisson(λt) ln(λt) nt − λt λt

NegBin(r, pt) ln
(

pt
1−pt

)
r(1− pt)− ntpt r(1− pt)

Claim severity (Xt,i):

Gamma
(
α, µtα

)
ln(µt) α

(∑nt
i=1 xt,i
µt

− nt
)

ntα

Lognormal(µt, σ
2) µt

∑nt
i=1 ln xi,t − ntµtσ2 nt

σ2

Our goal is to obtain the aggregate claims distribution. In this sense, since this
distribution can not be obtained analytically for the vast majority of cases, the
models for series of claims numbers (Nt) and for severity (Xit) described previ-
ously were used with the FFT technique to obtain the target distribution. The
FFT is an efficient method to calculate compound distributions by inverting char-
acteristic functions. Klugman et al.(2012) and Wang (1998) give an explanation
of the method in application to aggregate claims distribution.
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3 Empirical application

The data base used in this paper consist of motor insurance individual claims
of Brazilian leading insurer, occurred between 01/2006 and 02/2014, totalizing
30.959 claims in 98 months. The observations of the first 86 months were used
to fit the models, leaving the remaining 12 months for out-of-sample evaluation.
Figure 1 presents the data time series (claim frequency, claim severity mean
and total aggregate loss). The claim severity values are deflated by a consumer
inflation index. All models were run using R Software. We adopted models with
p = q = 1 on the updating equation of ft and St = I−1

t|t−1. The models were also

fitted with St = I
−1/2

t|t−1, however the maximum likelihood optimization proved to
be more stable with the first option.
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FIGURE 1. Data time series (claim frequency, claim severity mean and total
aggregate loss) from 01/2006 to 02/2014.

Quantile residuals were used to evaluate the models. The results for serial auto-
correlation tests (Ljung-Box test up to the lag 30), conditional heteroscedasticity
tests (Ljung-Box test up to lag 30 on the squared residuals) and normality tests
(Jarque-Bera) tests were satisfactory, except for the lognormal model. In order
to compare models, the Akaike Information Criteria (AIC), Bayesian Schwarz
Criteria (BIC), the log-likelihood value, as well as the MAPE (Mean Absolute
Percentage Error) were used. The results are shown on Table 2. Our results,
including residuals analyses, indicate that the gamma distribution is more suit-
able to the severity data. The Poisson and negative binomial models for claim
frequency presented similar results but the Poisson model produces a slightly
better out-of-sample performance. Also, in comparison with a static benchmark
model, where all parameters are fixed in time, our model obtained better results.
Figure 2 presents information about the aggregate claims distributions for 12
months ahead, obtained using FFT and the results from Poisson and gamma
models for claim frequency and claim severity respectively.

4 Concluding Remarks

Following the methodology presented, we obtained the complete density for the
aggregate claims random variable conditioned on time and not only means and
upper moments. We used a new framework of time-series models, driven by score
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Model log-Lik AIC BIC MAPE

Claim frequency
Poisson GAS(1,1) -381.967 771.935 781.752 4.872

Neg. Binomial GAS(1,1) -380.412 770.825 783.097 4.870
Claim severity

Gamma GAS(1,1) -108790.3 217590.6 217602.9 7.042
Lognormal GAS(1,1) -109255.4 218520.8 218533.1 5.007

TABLE 2. In sample results, using data from 01/2006 to 02/2013, for claim
frequency models (Poisson GAS(1,1) and Negative Binomial GAS(1,1)) and for
claim severity models (Gamma GAS(1,1) and Lognormal GAS(1,1)).
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FIGURE 2. Quantiles and means of the aggregate claims distributions obtained
from the Poisson GAS(1,1) and Gamma GAS(1,1) models - 03/2013 to 02/2014.

with time-varying parameters, to model the predictive distribution of the claim
frequency and the claim severity. In comparison to static fitted distributions, the
predictive distributions are more appropriate as they take into account the time
dynamics and the parameters uncertainty. To the best of our knowledge, there are
few studies on obtaining the predictive distribution of the aggregate claims and
most of them use the Bayesian approach. In addition to the application proposed
in this article, the presented method can be applied to other lines of business or
other problems involving sum of random variables and calculation of compound
distributions, as well as developed with different probability distributions that
best fit the data.

From the aggregate claims distribution, it is possible to calculate the probabil-
ity that the insurer has a portfolio loss above a given value, perform premium
calculations, company ruin probability, and obtain subsidies for technical provi-
sions and risk-based capital calculations. The applications of our method meet
the demands of the current solvency principles and the measurement of insurance
contracts by making it possible to obtain predictive distributions, conditioned in
time, from the loss of insurance portfolios. Assessment uncertainty in relation
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to this stochastic process allows for the practice of risk management practices,
either through the acquisition of measures such as VaR, TVaR or others, as well
as to calculate risk margins.

Acknowledgments: The first author thanks FUNENSEG for the support.
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Abstract: We analyze two modifications to a simple measure of vulnerability to
poverty, which defines vulnerability as expected income poverty. First, to model
income, we use distributional regression and relate each parameter of the con-
ditional income distribution to a set of covariates. Second, instead of defining
a household as vulnerable if its probability of being poor is larger than 0.5, we
construct a vulnerability cutoff employing the receiver operating characteristic
(ROC). Using panel data from Germany, we find that our new cutoff method
considerably increases predictive performance while placing the income regres-
sion model into the distributional regression framework improves predictions for
some years.

Keywords: vulnerability to poverty, gamlss, ROC

1 Introduction

Although not living in poverty at the moment, many households are extremely
vulnerable to events such as job loss, unexpected expenditures, economic down-
turns, and weather phenomena, and can easily fall below the poverty line. Policy-
makers are therefore often interested in knowing which people are at risk of
poverty in order to adequately design anti-poverty programs. Even though a few
empirical applications of vulnerability to poverty measures evaluated predictive
performance of their estimates, very little attention has been paid to their im-
provement.

One popular approach considers vulnerability as expected poverty (Chaudhuri
et al., 2002) and defines the vulnerability of a household h as the estimated
probability of falling below a poverty threshold z of some normally distributed
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measure of welfare yh (e.g. log of income) given a covariate vector x′h. That is

P̂r(ln yh < ln z|x′h) = Φ

 ln z − x′hβ̂√
x′hθ̂

 (1)

where β̂ is a vector of coefficients from a regression specification with log income
as the dependent variable. Implying a relationship between higher volatility in
income and poverty risk, the variance is allowed to vary with the covariates across
households yielding coefficients θ̂. Both coefficient vectors are estimated via a
three-step feasible generalized least squares (FGLS) procedure as in Amemiya
(1977). The household is then classified as vulnerable if the probability in (1) is
equal to or greater than 0.5.

The need for an enhanced method results from three major drawbacks of the stan-
dard approach: First, the welfare measure is always assumed to be (log)normally
distributed but in many applications income or expenditures do not behave
(log)normally. Second, once we depart from the normality assumption, parame-
ters other than mean and variance could be modeled to capture the full effect
on the whole conditional income distribution. Third, setting the vulnerability
cutoff at 0.5, neglects the variability a household faces. If the expected income
equals the poverty line, the normal density function in equation (1) yields 0.5 in-
dependent of the standard deviation (McCarthy et al., 2016). Additionally, this
classification does not always perform well in terms of prediction (Bergolo et al.,
2012; Celidoni, 2013).

We tackle all of these drawbacks by two modifications: Distributional regression
is aiming at the first and second point. Within this flexible framework, different
distributions can be selected to model income, and all parameters of this dis-
tribution are related to a structured additive predictor which can incorporate
non-linear effects. This is equivalent to generalized additive models for location
scale and shape (GAMLSS, Rigby & Stasinopoulos, 2005). However, we prefer
the term “(structured additive) distributional regression” as some distributions
neither have location nor scale parameters but potentially only shape parameters
(Klein et al., 2015). Our approach to use the ROC to determine the vulnerability
cutoff focuses on the third drawback of the traditional method. We thus directly
address recent criticism of the traditional vulnerability threshold raised by e.g.
Bergolo et al.(2012) and McCarthy et al. (2016) and propose a endogenous cutoff
which improves predictive precision.

2 Estimation strategy

2.1 Data

To demonstrate the benefits of our modifications we use data of 15 years, namely
from 1993 to 2008 of the German Socio-Economic Panel (SOEP), which offers
comprehensive coverage of household characteristics and income enabling us to
retrospectively observe whether a household did become poor or not.
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2.2 Model

Placing the income regression within the framework of structured additive dis-
tributional regression, the conditional income distribution is given by a density
conditioned on parameters ϑhk, k = 1, . . . ,K. Each of the K parameters is itself
dependent on the covariates including variables such as past income, number of
children and elderly in the household h, education and gender of the household’s
head. We thus write

gk(ϑhk) = η
ϑk
h = x′hβ

ϑk
h +

Jk∑
j=1

f
ϑk
j (νh) (2)

where gk is a link function, η
ϑk
h the predictor for the k-th parameter, the vector

x′h contains covariates which are assumed to have a linear effect, β
ϑk
h are the cor-

responding coefficients for these covariates, and f
ϑk
j (νh) are smooth functions of

Jk continuous covariates νh which have non-linear effects. More precisely, for the
covariate past income we relax the restrictive assumption of a linear effect and use
P(enalised)-splines (Eilers & Marx, 1996) to flexibly model its relationship to the
dependent variable. As conditional distributions, we use in addition to the lognor-
mal, the Burr distribution. The parameters are simultaneously estimated via a
back-fitting algorithm that maximizes the penalized likelihood avoiding the step-
wise FGLS procedure of the traditional approach. The models are implemented
in the software R (R Core Team, 2016) using the package gamlss (Stasinopoulos
& Rigby, 2007).

2.3 Constructing a vulnerability cutoff using the ROC

After fitting the models, a cutoff (the vulnerability line) is specified such that
households whose predicted income falls below the cutoff are classified as vul-
nerable. To put it more precisely, we first calculate predicted incomes from the
models above. We then determine which households are actually poor in the next
year by using the observed incomes and a predefined poverty line. After that,
we use each of the predicted incomes as a hypothetical vulnerability line. House-
holds with an income below the hypothetical vulnerability line will be declared
vulnerable. For each possible cutoff, that is each predicted income, we construct
the ROC by comparing the actual poor and non-poor with vulnerable and non-
vulnerable households. A higher cutoff naturally leads to a higher true positive
rate (TPR) as more households are declared vulnerable but also increases the
false positive rate (FPR). Depending on the costs of ”false alarms” or ”missing a
household”, a prerequisite can now be arbitrarily established. We decided to de-
fine the predicted income which leads to a TPR of 80 percent as the vulnerability
line.

With the method described so far, we determine a cutoff ex post. To estimate
vulnerability as a forward looking perspective on poverty, we rely on the past
vulnerability lines to make a prediction for the following year. Thus, the predic-
tions will not exactly meet a TPR of 80 percent but will be close to it.
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3 Main results and concluding remarks

We compare how well the traditional and our proposed models predict poverty
status using the TPR, FPR, and scoring rules. The models differ with respect
to the distribution of the response (and hence parameters that are related to
covariates), nonlinearities in the covariate effects, and the vulnerability cutoff.

We find that for some years using distributional regression does improve predic-
tive performance mainly due to incorporating non-linear effects of past income.
We suppose that effects of modeling shape parameters are relatively small due
to the use of data from an industrialized country where social safety nets allow
households to cope with idiosyncratic shocks. Since modeling scale and shape pa-
rameters should account for idiosyncratic shocks, it is possible that for Germany
those idiosyncratic shocks are either little prevalent in the data or households are
able to cope reasonably well with them. Nonetheless, distributional regression is
an attractive alternative to estimate vulnerability to poverty as it estimates mean
and variance simultaneously and is able to incorporate non-linear effects. These
effects seem important in our dataset especially when looking at incomes at the
lower end of the distribution.

Regarding our new cutoff method, we find that it largely outperforms the tradi-
tional approach. Figure 1 shows the improvement in TPR and FPR when both of
our proposed modifications are applied but with the new cutoff being the main
driver. The plane’s division is based on our arbitrary prerequisites or, to put
it bluntly, which TPR and FPR are acceptable for us for being a good predic-
tion. The result for the predictions of each year is represented by a point. Best
predictions lie in the 4th quadrant, worst predictions in the 2nd quadrant.
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FIGURE 1. Plots of accuracy for different models. Plot (a) shows results for the
traditional approach, i.e. 0.5 poverty probability cutoff, log normal distribution,
no splines. Plot (b) represents the modified model, i.e. new cutoff, 3-parameter
Burr distribution, spline for past income.

The low TPRs for the traditional approach are somewhat surprising and we
put further effort in investigating why we obtain these striking differences in
predictive performance. Looking at the effects of past income on current income,
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we find that for the most part the relationship is roughly linear whereas non-
linearities occur especially at the bottom end of the income distribution where the
effects are much lower and can even be negative. These effects are not accounted
for in models assuming a linear relationship. On the other hand, models that do
incorporate non-linear effects also have difficulties in predicting very low incomes
as our dataset only comprises about 10-14 percent poor households. Hence, the
poor observations only have a small impact on the overall models’ prediction
ability, and thus the models predict overly optimistic incomes resulting in too
few households being classified as vulnerable.

Our new cutoff method is able to mitigate these weaknesses of the models since
the cutoff is determined endogenously and constructed in a way to fulfill a pre-
scribed TPR. In contrast, the traditional method relies heavily on the model
specification and its prediction abilities can be weak, especially at the lower
extremes of the income distribution. As the 0.5 probability was advocated for
developing countries, where the share of the poor is generally higher than in Ger-
many, it is possible that the traditional cutoff performs better in other settings.
One might argue that the 0.5 cutoff simply needs to be set lower in our case. We
tested several other probability cutoffs but the results where still not satisfactory
yielding very high FPRs.

Since our new cutoff method is constructed to improve predictive performance,
can mitigate weaknesses in the income generating model specification, and is easy
to implement, it is a useful tool if researchers or policymakers are particularly
interested in correctly identifying vulnerable households rather than in measuring
overall vulnerability.
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Abstract: Ensembles of deterministic numerical weather predictions require cor-
rection with respect to forecast bias and dispersion properties. A prominent ap-
proach is the use of statistical postprocessing models, yielding calibrated and
sharp predictive probability distributions. A recently developed postprocessing
method based on an AR-model for the forecast errors is now extended to incorpo-
rate a heteroscedastic variance parameter, accounting for the well-known spread-
error correlation of forecast ensembles. Making use of a high-resolution forecast
provides the model with additional information leading to improved properties
of the predictive distribution.

Keywords: Statistical postprocessing model; predictive probability distribution;
autoregressive process; high-resolution forecast; spread-error correlation.

1 Introduction

The method of choice to quantify and assess sources of uncertainty in determin-
istic numerical weather prediction (NWP) models is the employment of forecast
ensembles (Leutbecher and Palmer, 2008). However, ensembles of NWP forecasts
typically exhibit biases and dispersion errors, thus require statistical postprocess-
ing to improve reliability and forecast skill (Gneiting and Katzfuss, 2014).

Recently, Möller and Groß (2016) developed an ensemble postprocessing model
for temperature, based on autoregressive information present in the forecast er-
rors of the raw ensemble members.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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We present an extended version of the model in Möller and Groß (2016), where
the variance parameter is defined to depend on the ensemble spread, thus leading
to a heteroscedastic model accounting for the well-known spread-error correlation
(Gneiting et al., 2005), stating that there exists a positive association between
ensemble spread and ensemble mean forecast error. Further, an additional high-
resolution forecast is utilized for the postprocessing model. This single forecast
was obtained by running the respective NWP model with higher resolution than
used for the other ensemble members. Thus, the high-resolution forecast provides
more detailed information on small-scale processes not captured by the lower-
resolution forecast ensemble.

2 A heteroscedastic postprocessing model

Let {x1(t), . . . , xm(t)} denote an ensemble of NWP forecasts for a univariate
(Gaussian distributed) weather variable Y (t) at a fixed location. Further, let
xhres(t) = xm+1(t) denote an additional high-resolution forecast of Y (t). The re-
spective forecast error series are given by ei(t) = Y (t) − xi(t), i = 1, . . . ,m + 1.
Möller and Groß (2016) assume that the individual series {ei(t)}, i = 1, . . . ,m
follow a weakly stationary AR(p) process (Shumway and Stoffer, 2006). Fitting
autoregressive models to each individual error series yields an AR-adjusted en-
semble {x̃1(t), . . . , x̃m(t)}. We now follow the idea of Möller and Groß (2016)
and Gneiting et al. (2005) and assume the predictive distribution to be Gaus-
sian. However, in the extended model, the high-resolution forecast is considered
as additional covariate, that is

Y (t)|x1(t), . . . , xm(t), xhres(t) ∼ N (µ(t), σ2(t)) . (1)

To account for the fact that the members x1(t), . . . , xm(t) form an exchangeable
group, while the high-resolution forecast has somewhat different properties, the
parameters of the Gaussian distribution are defined as (weighted) sums of the re-
spective group-wise parameters. That is, µ(t) = 1

2
(µens(t) +µhres(t)), and σ(t) =

1
2

(σens(t)+σhres(t)). Here, µens(t) is estimated by the mean x̃(t) = 1
m

∑m
i=1 x̃i(t)

of the AR-adjusted forecast ensemble {x̃1(t), . . . , x̃m(t)}. To explicitly incorporate
the spread-error correlation of ensemble forecasts, our model for σ2(t) combines
the estimated dispersion of the error process retrieved solely from the past of
each member xi(t) individually with the spread of the AR-adjusted members.
Specifically, the standard deviation σens(t) is parameterized as

σens(t) = w

√√√√ 1

m

m∑
i=1

γ2
i (t) + (1− w)

√
S2(t). (2)

Here, S2(t) is the empirical variance of the AR-adjusted forecast ensemble {x̃1(t), . . . , x̃m(t)}
and γ2

i (t) = Var(ei(t)) is the variance of the AR(p) process assumed for the fore-
cast error ei(t) = Y (t)−xi(t) of ensemble member xi(t). The parameters γi(t) can
directly obtained from the fitted AR(p) model, while the weights w are estimated
by the so-called minimum-CRPS approach (Gneiting et al, 2005).

The high-resolution parameters µhres(t) and σhres(t) are estimated in the same
way. However, the above formulas are reduced to the (m+1)-st summand, thus are
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TABLE 1. Verification statistics averaged over 76 stations and 4341 test dates.

CRPS DSS RMV Var(PIT)

EMOS(ENS) 0.906 2.152 1.491 0.095
EMOS(ENS,HRES) 0.876 2.153 1.435 0.093
H-AR-EMOS(ENS) 0.903 2.013 1.532 0.088
H-AR-EMOS(ENS,HRES) 0.873 1.936 1.502 0.085

solely based on the AR-adjusted high-resolution forecast x̃m+1. Although the part
of the predictive variance corresponding to the ensemble spread is zero for a single
ensemble member, the variance γ2

i (t) of the AR(p) error series corresponding to
an individual member xi(t) can still be computed - on the basis of past values.
This fact highlights an additional advantage of the autoregressive postprocessing
model introduced by Möller and Groß (2016), as standard postprocessing models
are not able to estimate the variance parameter based only on a single ensemble
member.
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FIGURE 1. PIT histograms aggregated over 76 stations and 4341 test dates.
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As described in Möller and Groß (2016), the proposed model can be combined
with other predictive distributions (e.g. based on EMOS) in a spread-adjusted lin-
ear pool (Gneiting and Ranjan, 2013), to further improve predictive performance.
The basic approach of combining the group-wise mean and variance parameters
of the regular members and the high-resolution forecast by a (weighted) sum con-
stitutes a simple 2-group model. The assumption of equal weights in both groups
can be relaxed leading to weights estimated from training data, which provides a
more data driven version of the 2-group model. The SLP combination proposed in
Möller and Groß (2016) allows a further generalization of this approach. For each
of k ensemble member groups a separate predictive distribution (e.g. obtained by
the heteroscedastic AR-EMOS model, however, any postprocessing model could
be used) is fitted and the distributions of the k groups are then SLP-combined.

0.0 0.2 0.4 0.6 0.8 1.0

p−values

FIGURE 2. p-values of the 76 station-wise Diebold-Mariano tests for CRPS
values of H-AR-EMOS vs. EMOS.

3 Case study with ECMWF temperature forecasts

We employ 24-h ahead forecasts from the European Centre for Medium-Range
Weather Forecasts (ECMWF, see e.g. Buizza et al., 2007) for 2-m surface temper-
ature over Germany. A data set over a period of 12 years is considered, ranging
from 2002-01-01 to 2014-03-20 and containing forecasts and observations at 76
stations in Germany resulting in a total of 329916 forecast cases.

The ECMWF ensemble consists of 50 exchangeable members, a control forecast
and a high-resolution forecast. In the original analysis of Möller and Groß (2016),
only the 50 regular members where considered, while the two additional forecasts
have not been utilized. For the analysis presented here, we make explicit use of
the high-resolution forecast.
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Table 1 presents results for the continuous ranked probability score and the
Dawid-Sebastiani score (CRPS and DSS; see, e.g. Wilks, 2011; Gneiting and
Katzfuss, 2014) for the EMOS model, and the heteroscedastic AR-EMOS model
(named H-AR-EMOS here). It is clearly visible that incorporating the high-
resolution forecast into any of the models improves the predictive performance
substantially. Further, the H-AR-EMOS model substantially improves on the the
standard EMOS approach in terms of the DSS, while only a small improvement
is visible in the CRPS.

The last two columns of Table 1 present the root mean variance (RMV) and the
variance of the probability integral transform (PIT) values. The RMV is used
as sharpness measure for the predictive distribution, while the variance of the
PIT values assesses the dispersion properties of the distribution, and thus its
calibration. Neutral dispersion, corresponding to a uniform PIT histogram, is
indicated by a PIT variance equal to 1

12
= 0.0833, the variance of the uniform

distribution on [0, 1] (see Gneiting and Ranjan, 2013). In case the predictive dis-
tribution matches the distribution the observations are drawn from, the respective
PIT values would (approximately) follow a uniform distribution. In line with the
principle “maximizing sharpness of the predictive distribution subject to calibra-
tion” (Gneinting and Katzfuss, 2014), both aspects of the distribution should
be investigated in conjunction. That is, although EMOS has a slightly sharper
predictive distribution this is at the expense of calibration, thus the better cali-
brated H-AR-EMOS model is preferable. Table 1 shows that the heteroscedastic
AR-EMOS exhibits the best dispersion properties, with the model incorporating
the high-resolution forecast closest to the variance indicating neutral dispersion.
On the contrary, the EMOS models are slightly sharper than AR-EMOS, how-
ever, at the expense of calibration.

Figure 1 presents the corresponding PIT histograms of the considered models.
Their appearance is in line with the values obtained for the PIT variance. While
the EMOS models exhibit strong underdispersion (indicated by the strongly pro-
nounced U-shape), the H-AR-EMOS models are able to correct the dispersion
properties further. In addition to this, it can be noted that incorporating the high-
resolution forecast improves the dispersion properties of both models compared
to the version not using the high-resolution forecast.

To asses the significance of the difference in CRPS values a (one-sided) Diebold-
Mariano test (Diebold and Mariano, 1995) is performed for the comparision H-
AR-EMOS(ENS,HRES) vs. EMOS(ENS,HRES). Figure 2 shows the resulting 76
p-values. When looking at the Figure, it can be seen that for a large portion of
the stations the test is highly significant, indicating that H-AR-EMOS indeed
yields an improvement over EMOS.

Acknowledgments: We are grateful to the European Centre for Medium-
Range Weather Forecasts (ECMWF) and the German Weather Service (DWD)
for providing forecast and observation data, respectively.
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Abstract: Weather forecasts are typically based on numerical weather predic-
tion models, where possible forecast errors can be corrected by statistical post-
processing methods. A common quantity to develop, test, and demonstrate new
post-processing methods is the surface air temperature which is frequently as-
sumed to follow a Gaussian distribution. Nevertheless, the classical Gaussian
distributional regression models which use only few covariates are not able to
account for all local features leading to strongly skewed residuals. The authors
demonstrate two approaches to overcome this problem: assuming a skewed re-
sponse distribution to directly account for skewness, and extending the classical
Gaussian distributional regression model by including all available information
from the weather prediction model in combination with a boosting variable se-
lection method.

The preliminary findings show satisfying results especially for an Alpine station
by either using a generalized logistic type I distribution with few covariates,
or using all available information plus an appropriate variable selection proce-
dure. Both approaches are able to improve the predictions with respect to overall
performance and calibration. Furthermore, similar results can be achieved for
non-Alpine sites although with smaller improvements.

Keywords: Temperature; Ensemble; Forecast; Skewed; Distributional regression

1 Introduction

Weather forecasts are typically generated by numerical weather prediction (NWP)
models. Nowadays, ensemble prediction systems (EPSs) are widely used where

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
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multiple NWP runs with slightly perturbed initial conditions and parameteri-
zations try to capture the forecast uncertainty. Nevertheless, it was found that
such models often show systematic errors due to simplified physical equations,
insufficient resolution, and unresolved processes (Bauer et al. 2015).

One possibility to correct for these errors are statistical post-processing meth-
ods. These methods have been tested extensively for various forecast quantities,
especially surface air temperature. Distributional regression models (Klein et al.
2015) are one common post-processing strategy. Corrected probabilistic forecasts
are obtained by modeling the parameters of a response distribution using linear
predictors including covariates provided by an EPS.

Statistical models using the Gaussian assumption are generally able to improve
the EPS output and to produce well-calibrated probabilistic temperature fore-
casts (Gneiting et al. 2015). However, this is not true for all geographical loca-
tions. Atmospheric processes associated with unresolved topographical features
such as wintry cold pools are per definition not present in the EPS model and
often lead to a skewed distribution. If these effects (e.g. wintry cold pools, strong
valley heating during summer) cannot be depicted by the regression model, the
residuals might be (strongly) skewed leading to inappropriately calibrated prob-
abilistic forecasts.

To overcome possible skewness-related errors, this study assesses two different
strategies for an Alpine and two non-Alpine stations. The benefit of a skewed
response distribution will be evaluated using different distributional regression
models. In addition, it is tested whether additional covariates from the EPS
remove the need of a skewed response distribution. Focus will be on the Alpine
station where pronounced skewness is visible in observed surface air temperature
records.

2 Regression Framework

Distributional regression models can be expressed in a general form:

y ∼ D
(
h1(θ1) = η1, . . . , hK(θK) = ηK) (1)

where D represents the parametric distribution for the response y with θk, k =
1, . . . ,K parameters. The parameters are linked to the additive predictors ηk
using a monotone link function hk (e.g., identity, logit, log). Each parameter
hk(θk) can be expressed by an additive predictor of the form:

ηk = ηk(x, βk) = f1k(x, β1k) + · · ·+ fPk(x, βPk) (2)

including various (possibly non-linear) functions fpk, p = 1, . . . , P .

3 Data and Model Setup for Comparison

Results for three different sites and +12h–+96h forecasts in 6-hourly intervals are
shown: Innsbruck located in the European Alps, Munich in the Alpine foreland,
and Hamburg in a plain environment. These sites are selected to ensure spatial
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independence of observation-forecast data pairs and to investigate the influence of
different topographical environments. The covariates are based on forecasts from
the European Centre for Medium-Range Weather Forecasts. The EPS provides
(discrete) probabilistic forecasts consisting of 50 exchangeable ensemble mem-
bers for a wide range of atmospheric variables. Two types of regression models
are estimated: “simple” models which only use 2m temperature forecasts, and
“complex” models using all available information (110 covariates) plus a smooth
cyclic spline effect representing the seasonality as a function of the day of the
year (season). Table 1 shows a summary of the models and their specification.
We make use of the logistic and generalized logistic distribution in order to test
distributions with slightly heavier tails compared to the classical Gaussian distri-
bution. Additionally, the generalized logistic distribution type I (Johnson et al.
1995) is able to account for possible skewness and has the distribution function

F (x) = 1/(1 + exp(−(x− µ)/σ))ζ , (3)

where ζ defines the additional shape parameter that has to be estimated. Due
to the large number of covariates in the “complex” models, a likelihood gradient
boosting approach (R package bamlss, Umlauf et al. 2017, R package version
0.1-1, https://r-forge.r-project.org/projects/bayesr/) is used for variable selec-
tion and coefficient estimation. A 10-fold block-wise cross-validation is further
performed to ensure full out-of-sample results.

The overall performance of the models is evaluated on the ignorance score (Ign),
and PIT histograms to visually assess calibration (Gneiting et al. 2015). To quan-
tify the information provided by individual PIT histograms the reliability index
RI =

∑I
i=1 |κi −

1
I
| is chosen (Feldmann et al. 2015). It accounts for absolute

deviations of each PIT-bin from perfect uniform calibration, where I defines the
number of bins and κi the relative fraction in each bin. Ideally, RI values are
close to zero. Additionally, the sharpness of the predictive distributions is veri-
fied in terms of average width of predictions intervals which should be as small
as possible.

4 Results and Discussion

The response distribution for surface temperature is often assumed to be Gaus-
sian in statistical ensemble post-processing studies. This is obviously not appro-
priate for the investigated Alpine station used in this study. The simple Gaussian

TABLE 1. Covariates used for distribution parameters µ, σ, ζ for all response dis-
tributions. “mean”/“sd”: ensemble means and standard deviations, and “season”:
smooth seasonal effect. Covariates in brackets only for “complex” models.

Response Distribution location µ scale σ shape ζ

Gaussian mean (+season) sd —
Logistic mean (+season) sd —
Generalized Logistic (I) mean (+season) sd season (+mean)
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FIGURE 1. PIT histograms for the Alpine site. Left to right: Gaussian, logis-
tic, and skewed logistic models. Top column shows the “simple” models, bottom
column the “complex” models. Ignorance shown in brackets. Horizontal line in-
dicates perfect calibration.

regression model shows uncalibrated and strongly skewed predictions (Fig. 1a).
The skewed logistic distribution could clearly improve the predictive performance,
indicated by a smaller ignorance and an almost uniformly distributed PIT his-
togram (Fig. 1c). This improvement is also visible for all individual lead times in
terms of ignorance (Fig. 2a) and calibration (Fig. 2d).

A better overall performance in ignorance can be achieved using more complex
models which can select from a large number of EPS covariates. Although addi-
tional covariates remove the need of a skewed response distribution, the complex
Gaussian model still shows large errors in the tails (Fig. 1d), which might re-
sult from considerably smaller prediction intervals compared to simple Gaussian
model (Fig. 2g).

Overall best ignorance for the Alpine site was achieved using all available covari-
ates and a logistic response distribution (Fig. 1e), however, there is a distinct
trade-off between perfect calibration, lowest possible ignorance, and also com-
putational time. While simple models suggest the use of a skewed distribution,
complex models perform very similar on all three distributions and imply that
the Gaussian assumption might be sufficient. Nevertheless, these complex models
using a cross-validated boosting procedure are roughly ten times more expensive
in terms of computational time.

Similar results could also be found for the Alpine foreland site (Fig. 2b,e,h) and
the topographically plain site (Fig. 2c,f,i), if only with smaller magnitude of
improvements due to the two strategies and more visible at shorter lead times.
At these two sites, the raw EPS has generally a better forecast performance due
to less unresolved distinct local features in the EPS forecasts. Since better EPS
forecasts lead to more informative covariates, the overall predictive performance
of the statistical models is best at the plain site (Fig. 2c) and worst in the Alpine
environment (Fig. 2a).
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FIGURE 2. Verification measures for an Alpine, a foreland, and a plain site (left
to right) using “simple” models (black lines) and “complex” models (grey lines).
From top to bottom the ignorance score (Ign), reliability index (RI), and mean
width of the 80% prediction interval (PIW) are shown, evaluated at forecasting
lead times +12h–+96h. The 80% PIW defines the width between the predicted
0.1 and 0.9 quantile. Note that the Alpine site has a different range on the y-axis.
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5 Conclusion

The results shown highlight the importance of an appropriate distributional as-
sumption for post-processed surface air temperature forecasts, especially when
only the corresponding temperature covariate is used in the regression model. A
skewed logistic assumption improves calibration and forecast performance for all
tested sites, but more pronounced in the Alpine environment.

Compared to this skewed regression model, complex models cannot further im-
prove overall calibration but clearly obtain smaller prediction intervals which also
lead to better forecast performance. Generally, the difference in forecast perfor-
mance between the chosen distributional assumptions for the complex models
is rather small. This indicates that the Gaussian assumption is already suitable
given the large number of covariates. Nevertheless, these complex models are
computationally roughly 10 times more expensive, and hence can be difficult to
implement in an operational system.

The authors are currently extending this study by including additional sites to
analyze the most influential covariates. A small set of such covariates might al-
ready lead to an improvement of similar magnitude, while considerably cutting
down the computational costs. While the Gaussian assumption looks suitable for
the complex models considered, it has to be investigated whether this is still true
if the models only contain the most important covariates, especially for stations
located in a complex environment.
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Abstract: Many weather prediction tasks are multivariate problems, e.g., pre-
dicting several quantities (such as temperature and precipitation) for a particular
time or predicting a single quantity over time. In the latter case, a state-of-the-
art method is to fit several marginal prediction models and then combine them
using ensemble copula coupling (ECC). As an alternative approach, we propose
to fit a single multivariate Gaussian model where all parameters (means, vari-
ances, and correlations) can be expressed by additive models. For estimation of
the resulting large number of parameters a gradient boosting algorithm is em-
ployed. Results for a case study show equal performance with respect to marginal
predictive distributions and better performance with respect to the full multivari-
ate distribution in comparison to nonhomogeneous Gaussian regressions (NGRs)
combined with ECC.

Keywords: boosting; additive models; multivariate Gaussian; weather predic-
tion.

1 Introduction

To obtain calibrated weather forecasts for several lead times, e.g., predicting tem-
perature 12 h, 36 h, 60 h, . . . in advance, the output of numerical weather pre-
diction (NWP) ensemble systems is often postprocessed using statistical models.
One popular choice for temperature forecasts is nonhomogeneous Gaussian re-
gression combined with ensemble copula coupling (NGR-ECC, see Schefzik et al.,
2013). In a first step (NGR) linear models are employed for the location and scale
parameter of a Gaussian distribution for several lead times separately. In a second

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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step (ECC) the predicted quantiles are reordered according to the raw ensemble
output, in order to preserve the covariance structure of the NWP ensemble.

This study aims at extending NGR in the following way: Estimating predictive
distributions for several lead times and their correlations simultaneously. The
location, scale and correlation parameters of a multivariate Gaussian (MVN)
will be expressed by GAM-type additive predictors η. Estimating multivariate
distributions with these specifications is a complex task for dimensions higher
than 2 (Klein et al., 2015). Gradient boosting can offer an attractive solution to
fit a MVN with additive predictors for all parameters as only first derivatives
of the log-likelihood with respect the predictors are required. Another benefit of
boosting is that selection and shrinkage of coefficients can be obtained.

2 Methods

The log-likelihood of the multivariate Gaussian for a k-dimensional observation
y = (y1, y2, . . . , yk)T can be parameterized as follows,

l(µ,Σ|y) = −k
2

log(2π)− 1

2
log(|Σ|)− 1

2
(y − µ)TΣ−1(y − µ),

where µ = (µ1, µ2, . . . , µk)T denotes the vector of the mean parameters and Σ
denotes the covariance matrix. The latter can be decomposed into Σ = DΩD,
where D is a diagonal matrix with the standard deviations σ1, σ2, . . . , σk on the
diagonal, and Ω is the correlation matrix with the elements ρij .

The parameters µi, σi and ρij are linked to their predictors ηµi, ησi and ηρij by
the identity, the log and the rhogit function, respectively. The partial derivatives
with respect to the predictors of µi and σi are,

∂l

∂ηµi
=

k∑
j=1

ςij(yj − µj) and
∂l

∂ησi
= −1 + ỹi

k∑
j=1

ωij ỹj ,

where ςij and ωij denote the elements of the inverse covariance matrix Σ−1 and
inverse correlation matrix Ω−1, respectively. Additionally, ỹi = (yi−µi)/σi. The
partial derivative with respect to the predictor of ρij is

∂l

∂ηρij
=

[
−1

2
ωij +

1

2

(
k∑

m=1

ωimỹm

)(
k∑

m=1

ωjmỹm

)]
×
(
1 + η2

ρij

)− 3
2 .

In order to fit the model a gradient boosting algorithm is applied as implemented
by Umlauf et al. (2017). The algorithm is an iterative procedure. The number
of iterations mmax has to be defined in advance. In each step the coefficients
of the term which would contribute most to maximizing the log-likelihood are
updated by the proportion ν of the local estimate of the coefficients. Thus, the
boosting algorithm results in mmax distinct sets of coefficients. The optimal set
of coefficients is selected by out-of-sample validation. A generic description of
gradient boosting is given by Mayr et al. (2012).
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3 Application in weather prediction

A case study is presented for predicting temperature in Innsbruck, Austria (47.260◦N,
11.357◦E). Six lead times are considered, 12 h, 36 h, . . . , 132 h in advance. Data
is on hand from January 2011 to December 2016 leading to a sample size of
roughly 2150. The ensemble predictions of the European Centre for Medium-
Range Weather Forecasts (ECMWF) serve as NWP input. The additive predic-
tors are declared as follows,

ηµi = αi,0 + αi,1 ∗mean(ensi) + fi,cc(yearday),

ησi = βi,0 + βi,1 ∗ log(sd(ensi)) + gi,cc(yearday),

ηρij = γij,0 + γij,1 ∗ cor(ensi, ensj),

where indices i, j ∈ {1, 2, . . . , 6} refer to the lead times 12 h, 36 h, . . . , 132 h,
respectively. ensi denotes the raw ECMWF ensemble temperature forecast, and
fi,cc(yearday) and gi,cc(yearday) are cyclic smooth functions modeled by splines
to account for annual cycles. The model is trained on the period 2011–2015.
Validation on the data of year 2016 leads to an optimal set of coefficients after
mopt = 5000 iterations where ν = 0.05.

Figure 1 displays the fitted nonlinear functions fi,cc(·) and gi,cc(·), which con-
tribute to the additive predictors ηµi and ησi, respectively.

The coefficients describing fi,cc(·) were not selected within the first 5000 itera-
tions. Thus, fi,cc(·) remains flat. This suggests that the bias between the model
temperature and observations is constant throughout the year.

gi,cc(·) (Fig. 1, right) contributes to the predictor of σi on the log-scale. gi,cc(·)
reveals an annual cycle with two peaks. One occurs in January and one in
June/July. The fitted effects for all lead times vary only slightly among eachother.

However, the main focus of this study is to model the correlation structure of
temperature between the lead times, 12 h, 36 h, . . . , 132 h. Figure 2 summarizes
the distribution of the fitted correlations. All parameters on the first diagonal
next to the main diagonal of Ω vary around 0.74. The parameters on the second
diagonal vary around 0.46. Thus, the fitted correlation matrixes exhibit a struc-
ture similar to a symmetric Toeplitz matrix or or even close to the correlation
matrix of a AR-process.

f(yearday)

Time of year

−1.0

−0.5

0.0

0.5

1.0

J M M J S NF A J A O D

g(yearday)

Time of year

−0.2

−0.1

0.0

0.1

J M M J S NF A J A O D

FIGURE 1. Nonlinear effects for all lead times. Left: fi,cc(yearday) contributing
to ηµi. Right: gi,cc(yearday) contributing to ησi.
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FIGURE 2. Fitted correlation coefficients ρij for all days in 2016. Each
box-and-whisker plot indicates the distribution of one correlation parameter over
all sample cases.

The range indicated by the box-and-whisker plots (Fig. 2) suggests that the values
of the intercepts γij,0 are more important for determining the structure of the
correlation matrix than the coefficients of the linear terms, γij,1. Thus, only a
small part of the correlation structure modeled by the numerical ensemble can
be retained by the statistical model.
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FIGURE 3. Boosting paths for the coefficients of the predictors of the correlation
parameters on the rhogit scale.

Figure 3 illustrates how the values of the coefficients γij,0 develop during the
iterative boosting procedure. The intercepts γij,0 are selected before the γij,1 are
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selected. However, after 15000–25000 iterations the values of the intercepts start
dropping, which might be caused by an overfitting of the location parameter µi.
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FIGURE 4. Out-of-sample scoring. Left: continuous rank probability score
(CRPS) for univariate NGR models and marginal predictive distributions of the
boosted MVN model. Right: energy score (ES) of the NGR-ECC and the boosted
MVN.

Figure 4 compares the performance of the proposed method to the performance
obtained by the state-of-the-art method NGR-ECC. The NGR models are also
fitted via boosting. The marginal predictive distributions of the boosted MVN
model are compared to NGR models fitted for every single lead time separately
via the continuous ranked probability score (CRPS, Gneiting and Raftery, 2007).
The left panel of Figure 4 reveals that the two models perform equally well
with respect to their marginal distributions. The multivariate performance of the
models is assessed in terms of the energy score (ES, Gneiting and Raftery, 2007).
The boosted MVN outperforms the NGR-ECC in our case (Figure 4, right).

4 Conclusions

This study suggests to fit multivariate Gaussian distributions via gradient boost-
ing, where additive predictors can be defined for all location, scale and correlation
parameters. A case study in the field of weather forecasting shows promising re-
sults.

Further investigations are needed to fully understand the potential of boosting
MVN with additive predictors. There are alternative ways to parameterize the
correlation matrix, i.e., modeling the parameters of its inverse or its Cholesky
decomposition (Pourahmadi, 2011).

In the present case one could assume an AR-process among the response variable
as they are temporally ordered. This kind of parameterization is implicated by the
findings in this study (cf. Fig. 2). However, more research is needed to examine
whether a parsimonious or flexible parameterization is superior in this kind of
application.

Depending on the problem changing the parameterization can have an effect on
the required iterations until convergence of the boosting algorithm, and could
yield different results when a shrunken version of the model is selected.



148 Boosting multivariate Gaussian models

Acknowledgments: We acknowledge the funding by the Austrian Research
Promotion Agency (FFG) project LightningPredict (Grant No. 846620).

References

Gneiting, T. and Raftery, A.E. (2007). Strictly proper scoring rules, prediction
and estimation. Journal of the American Statistical Association, 102, no. 477,
359 – 378.

Klein, N., Kneib, T., Klasen, S. and Lang, S. (2015). Bayesian structured addi-
tive distributional regression for multivariate responses. Journal of the
Royal Statistical Society, Series C, 64, Part 4, 569 – 591.

Mayr, A., Fenske, N., Hofner, B., Kneib, T. and Schmid, M. (2012). Generalized
additive models for location, scale and shape for high dimensional data—a
flexible approach based on boosting. Journal of the Royal Statistical Soci-
ety, Series C, 61, Part 3, 403 – 427.

Pourahmadi, M. (2011). Covariance estimation: The GLM and regularization
perspectives. Statistical Science, 26, no. 3, 369 – 387.

Schefzik, R., Thorarinsdottir, T.L., and Gneiting, T. (2013). Uncertainty quan-
tification in complex simulation models using ensemble copula coupling.
Statistical Science, 28, no. 4, 616 – 640.

Umlauf, N., Klein, N., and Zeileis, A. (2017). BAMLSS: Bayesian additive mod-
els for location, scale and shape (and beyond). Working Papers, Faculty of
Economics and Statistics, University of Innsbruck.



Generalization of the Whittle likelihood for
nonparametric spectral density estimation

Claudia Kirch1, Matthew Edwards2, Alexander Meier1, Renate
Meyer2

1 Otto-von-Guericke University, Magdeburg, Germany
2 University of Auckland, New Zealand

E-mail for correspondence: meyer@stat.auckland.ac.nz

Abstract: Most nonparametric Bayesian approaches use Whittle’s likelihood to
estimate the spectral density as the main nonparametric characteristic of sta-
tionary time series, as e.g. Choudhuri et al. (2004) and Rosen et al (2012). But
as shown in Contreras-Cristan et al. (2006), the loss of efficiency of the non-
parametric approach using Whittle’s likelihood can be substantial. We show that
the Whittle likelihood can be regarded as a special case of a nonparametrically
corrected parametric likelihood which gives rise to a robust and more efficient
Bayesian nonparametric spectral density estimate based on a generalized Whit-
tle likelihood. Its frequentist properties are investigated in a simulation study.
Applications to LIGO gravitational wave data and the El Niño Southern Oscil-
lation phenomenon will be described.

Keywords: Bayesian nonparametrics; stationary time series; spectral density
estimation; Bernstein polynomial prior; gravitational waves.

1 Introduction

Most Bayesian nonparametric approaches to time series analysis are based on
Whittle’s likelihood approximation (Whittle, 1957), as e.g. Choudhuri et al.
(2004) and Rosen et al. (2012). We will show that the Whittle likelihood can be
regarded as the likelihood of a parametric working model, namely iid Gaussian,
which has been nonparametrically corrected in the frequency domain. Borrowing
an idea from a periodogram bootstrap for time series in Kreiss and Paparoditis
(2003), we propose a generalization of the Whittle likelihood that uses a more
realistic parametric working model, e.g. an AR(p) model, again nonparametri-
cally corrected in the frequency domain and suggest a Bayesian semi-parametric
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tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
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approach to spectral density estimation.

2 Generalized Whittle Likelihood

Let Zn = (Z1, . . . , Zn) be a real stationary time series with mean zero and ab-
solutely summable autocovariance function γ(h). Then the spectral density ex-
ists, is given by the Fourier transform of the autocovariance function f(λ) =
1

2π

∑∞
k=−∞ γ(k)e−ikλ for 0 ≤ λ ≤ 2π, is bounded and periodic, i.e. f(2π−λ) =

f(λ). Nonparametric estimation of the spectral density is based on the peri-

odogram In(λ) = 1
2π n

∣∣∑n
t=1 Zte

−itλ
∣∣2. It is well known that the periodograms

evaluated at the Fourier frequencies λj = 2πj
n

are asymptotically independent
and Exponential(f(λj)) distributed for j = 0, . . . , N = b(n − 1)/2c. This gives
rise to Whittle’s likelihood approximation (Whittle, 1957)

pW (Zn|f) ∝ exp

{
−

N∑
j=0

(
log f(λj) +

In(λj)

f(λj)

)}
.

This approximation is exact only in the case of Gaussian white noise in which
case f(λj) = σ2/2π but yields a good approximation also in the case of non-
Gaussian time series, see e.g. Shao and Wu (2007). Now consider that we start
with a N(0, σ2) working model. We then Fourier transform the time series, cor-

rect in the frequency domain by multiplication with a correction matrix C
1/2
n =

diag(. . . , f(λi)

σ2/2π
, . . .)1/2, and inverse Fourier transform into the time domain. Then

the density of the transformed time series FTn C
1/2
n Fn Zn induced by the Gaus-

sian iid working model is the Whittle likelihood. This gives rise to a gener-
alization: instead of a Gaussian iid working model, we take a more realistic
parametric working model, e.g. an AR(p) model, and define a correction ma-

trix Cn = Cn(f, fparam) = diag(. . . , f(λi)
fparam(λi)

, . . .) where fparam denotes the

spectral density of the parametric working model. Then we call the density of
the transformed time series FTn C

1/2
n Fn Zn the generalized Whittle likelihood:

pCparam(Zn|f) ∝ det(Cn)−1/2pparam(FTn C
−1/2
n FnZn).

It can be shown that the classical Whittle likelihood is a special case, the non-
parametrically corrected likelihood of a Gaussian AR(0) model. Furthermore, if
the model is correctly specified, then pCparam = pparam but even in the misspec-
ified case, the periodogram associated with the generalized Whittle likelihood is
asymptotically unbiased for the true spectral density. For a proof, we refer to the
preprint by Kirch et al. (2017).

3 Bayesian Spectral Density Estimation Using the
Generalized Whittle Likelihood

In the following, we propose a semi-parametric Bayesian approach to spectral
density estimation using the generalized Whittle likelihood and specify the prior
distribution. We assume a Gaussian AR(p) working model and use a nonpara-
metric Bernstein-Dirichlet prior for the spectral density as in Choudhuri et al.
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(2004), see also Petrone (1999). However, we put the prior not on the spectral
density f itself but on the ratio cη(λ) = f(λ)/fparam(λ; a)η where a denotes the
parameters of the AR(p) working model and η ∈ [0, 1] captures the confidence
in the parametric model. Assuming a stationary mean zero Gaussian time series
with absolutely summable autocovariance function and a spectral density that is
bounded away from zero, one can show that for fixed Gaussian AR(p) working
model and a fixed confidence parameter η the generalized Whittle likelihood, the
classical Whittle likelihood, and the true likelihood are all mutually contiguous.
Furthermore, under some technical assumptions on the prior, the posterior distri-
bution is consistent, i.e. the posterior distribution computed using the generalized
Whittle likelihood will concentrate in a neighbourhood of the true spectral den-
sity for increasing length of the time series. For a detailed proof, see Kirch et al.
(2017).

In practical applications, we will also estimate the parameters a of the AR(p)
working model and the confidence parameter η jointly with the nonparametric
spectral density. Therefore, prior specification is completed by putting a Uni-
form(0,1) prior on η and Uniform(-1,1) priors on the partial autocorrelations
corresponding to the autoregressive parameters a of the AR(p) working model to
ensure stationarity and causality. The degree p of the AR(p) model is fixed and
determined in a preceding parametric AR(p) model selection procedure by the
value of p minimizing the deviance information criterion (DIC), see Spiegelhalter
et al. (2002) and Meyer (2016).

We sample from the joint posterior distribution using an adaptive version of a
MH-within-Gibbs sampler, see also Roberts and Rosenthal (2009). Details re-
garding posterior computation can be found in Kirch et al. (2017) and software
is available in the R package beyondWhittle on CRAN, see Meier et al. (2017).

4 Simulation Study

We briefly summarize the major findings of a comprehensive simulation study in
Kirch et al. (2017). We generated data from various Gaussian ARMA(p, q) time
series and compared the performance w.r.t. the average integrated absolute error
(IAE) and the coverage probability of a uniform 95% credible interval (UCI) of
the Bayesian spectral density estimate based on a parametric AR(p) likelihood,
the classical Whittle likelihood, and the generalized Whittle likelihood, i.e. a
nonparametrically corrected likelihood with an AR(p) working model where the
order p was chosen by minimization of DIC. In the correctly specified AR(p)
scenario, of course the parametric estimator performed best. But the estimator
based on the generalized Whittle likelihood benefits from the correctly specified
AR(p) model and performed only marginally inferior to the parametric model
whereas the estimator based on the Whittle likelihood had much higher IAE and
lower UCI coverage. In the misspecified MA(q) scenario, the parametric estimator
had highest IAE and lowest coverage as expected, whereas the nonparametric
estimator based on the Whittle likelihood now had lowest IAE. However, the
generalized Whittle estimator was only marginally inferior w.r.t. IAE but had
even higher UCI coverage.
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5 Applications

The Southern Oscillation Index (SOI), the monthly standardized anomaly of the
mean sea-level pressure difference between Tahiti and Darwin (available form
the Australian Bureau of Meteorology) is one of the key atmospheric indices
for gauging the strength of El Niño events and their potential impacts on the
Australian region. We use the mean-centered SOI time series, shown in Figure 1,
to illustrate the effect of the choice of the AR(p) working model on the spectral
density estimate.
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FIGURE 1. Plot of the SOI index from 1950 to 1987.

Figure 2 shows the negative maximum log likelihood (NLL) value for different
AR(p) models.
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FIGURE 2. Negative maximum log likelihood for various AR(p) models of SOI
data.

Figure 3 shows the log-periodogram overlaid by the posterior median spectral
density estimates of the parametric AR(p) model and generalized Whittle likeli-
hood for the autoregressive orders p = 0, 5, 11 and 15 that correspond to “elbows”
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in the scree-like plot of the negative maximum log likelihood values in Figure 2.
For p = 0, the Bernstein polynomials of the nonparametric correction cannot yet
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FIGURE 3. Posterior median spectral density estimates of the generalized Whit-
tle likelihood (solid black) and AR (dashed black) for the SOI data on a loga-
rithmic scale, for different autoregressive orders p = 0, 5, 11, 15.

capture the main peak whereas for p = 5 they can. With p = 11, minor peaks
are also well estimated with the generalized Whittle but not with the classical
likelihood. The estimators of a parametric AR(15) and the nonparametrically cor-
rected model are very similar but all peaks of the AR(15) estimator are sharpened
even further via the nonparametric correction.

Because of space constraints, we refer to Kirch et al. (2017) for an application to
LIGO gravitational wave data that we aim to discuss in detail at the conference.
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1 Introduction

The last decades have witnessed a growing interest in network science. Although
statistical network models traditionally aimed at modelling relations encoded in
a single network, the increasing availability of relational data has encouraged the
collection of several instances of the same network. Examples include longitudi-
nal sequences of networks, which represent the dynamic evolution of a complex
system, and populations of networks, where each network represents the state of
a system for a given statistical unit.

Since it is reasonable to expect networks within such longitudinal or cross-sectional
sequences of networks to be similar to a certain degree, it is clear that modelling
each network separately would be a dispersive and ineffective strategy. Instead,
by jointly modelling them we can borrow information between similar graphs and
achieve a much more parsimonious answer.

For these reasons, we propose a novel method capable to characterize the joint
distribution of sequences of networks and to cluster networks, which relies on
mixtures of generalized linear models (Grün and Leisch, 2008). This approach
combines the flexibility of mixture models with the fact that many popular net-
work models can be estimated by specifying a generalized linear model. We also

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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propose EMSAGC, an estimation algorithm based on the integration of the EM
with simulated annealing.

2 Model-based clustering of networks

We consider a sequence of K graphs S = {G1,G2, ...,GK}, where each graph
Gk = (V,Ek), k ∈ {1, ...,K}, defines a specific set of edges Ek between the same
set of v vertices V , and it is represented by the adjacency matrix Yk. We represent
S with an array Y of size v × v × K. An entry ykij in Y refers to the presence
(and intensity) or absence of edge eij ∈ Ek.

In principle, we could imagine that each graph Gk is drawn from a different
distribution f(Y |θk), k ∈ {1, ...,K} with parameter vector θk - to wit, Yk ∼
f (Y |θk) . In the presence of many networks, however, this would result in a
cumbersome modelling exercise, leading to K different models.

Instead, we postulate the existence of M ≤ K subpopulations of graphs S1, ...,SM
within S, each with density f (Y |θm) , m ∈ {1, ...,M}. We denote by Zk ∈
{1, ...,M} the latent identifying label of graph Gk, such that Zk = m if Gk ∈ Sm.
Therefore, we view each graph Gk ∈ S as a random draw from a mixture model
whose components are the densities f (Y |θm)

Yk ∼
M∑
m=1

πmf (Y |θm) , (1)

with mixing proportions πm = Pr(Zk = m), m ∈ {1, ...,M} denoting the prior
probabilities that a graph belongs to the mth subpopulation Sm. Clearly, πm ≥
0 ∀m and

∑
m πm = 1. The likelihood of S is then

L(Y, Z|Θ) =

K∏
k=1

Pr(Yk|Zk,Θ)Pr(Zk|Θ) =

K∏
k=1

πZkf (Yk|θZk ) , (2)

where Θ = (θ1, ..., θM ) and Z = (Z1, ..., ZK).

Many popular network models, such as the p1 and p2 models (Holland and Lein-
hardt, 1981; van Duijn et al., 2004) as well as stochastic blockmodels and their
extensions (Wang and Wong, 1987), assume edges (or, for directed graphs, dyads)
to be statistically independent and, thus, they can be estimated with a gener-
alized linear model (or, in the case of the p2 model, a generalized linear mixed
model). If one of such models is employed, each of the densities f (Y |θm) in Equa-
tions (1) and (2) can thus be estimated by specifying a generalized linear model.
This can be done by considering densities f from exponential dispersion families,
and modelling the conditional expectation of each edge yij as

ηij = g [E (yij |xij , θm)] = xijβ, (3)

where xij indicates a set of nodal or edge-specific attributes and g is the link
function. Clearly, the density f (Y |θm) can then be obtained as

f (Y |θm) =
∏
i<j

f (yij |θm) . (4)
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With these specifications, model (1) defines a mixture of generalized linear models
(Grün and Leisch, 2008).

Within this framework, it is possible to cluster graphs according to features such
as node degree, reciprocation, membership of groups and nodal or edge-specific
covariates. For example, if the interest is simply on nodal degree, a mixture of p1

models can be considered; if a partition of nodes into groups is known, a mixture
of stochastic blockmodels can be specified as well (we provide an example of this
in Section 4). More generally, if one would simply like to cluster graphs without
assuming a specific network model, they can specify a model with one parameter
for each pair of nodes, i.e., ηkij = γmij . Note, however, that this approach does not
allow to cluster graphs according to their tendency towards transitivity, since
Exponential Random Graph Models cannot be specified as generalized linear
models.

3 Model estimation

3.1 EMSAGC: Expectation-Maximization algorithm with
Simulated Annealing for Graph Clustering

In principle, maximization of (2) could be performed with a simple implementa-
tion of the EM algorithm. However, in our simulations this often resulted in low
accuracy of the clustering method, in particular for the cases of binary graphs and
of sparse edge-valued graphs (Signorelli, 2017). Therefore, we propose EMSAGC,
an estimation algorithm that integrates the EM with Simulating Annealing and
is capable to improve the clustering accuracy. Simulated Annealing (Eglese, 1990)
is a strategy that avoids the risk to get trapped in a local optimum of an ob-
jective function f by proposing a move from the current local maximum x̂ to a
proposal x̃, and by allowing a positive probability to accept the move even when
f(x̃) < f(x̂). The algorithm consists of the following iterative steps:

1. for k ∈ {1, ...,K} and m ∈ {1, ...,M}, define the initial probabilities
p1
km = Pr(zkm = 1). Denote by P 1 the K × M matrix which collects

these probabilities;

2. for t = 1, 2, ...:

� M step with Simulated Annealing.

M1. Given P t, estimate M network models (specified as GLMs) with
weights given by

(
pt1m, ..., p

t
Km

)
for the m-th component and

derive Θ̂t.

M2. If t ≥ 2 and L(Y, Z|Θ̂t) ≤ L(Y, Z|Θ̂t−1), consider the alterna-
tive state P̃ t and estimate Θ̃t:

? if L(Y, Z|Θ̃t) ≥ L(Y, Z|Θ̂t), set Θ̂t = Θ̃t and P t = P̃ t.

? if L(Y, Z|Θ̃t) < L(Y, Z|Θ̂t), set Θ̂t = Θ̃t and P t = P̃ t with
probability equal to(

logL(Y, Z|Θ̃t)

logL(Y, Z|Θ̂t)

)1/T (t)

, (5)

where T (t) = 1
log t

.
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� E step. Given Θ̂t, derive P t+1 as

pt+1
km =

Pr(Gk|θ̂tm)∑M
j=1 Pr(Gk|θ̂tj)

. (6)

3. Choose the best solution within the sequence {Θ̂1, Θ̂2, ..., }, i.e.

Θ̂EMSAGC = argmaxt=1,2,...L(Y, Z|Θ̂t). (7)

3.2 A comparison of the performance of the EM and EMSAGC
algorithms

We have assessed the performance of the EM and EMSAGC algorithms on sim-
ulated sequences of undirected networks with two mixture components. We have
considered both binary graphs and edge-valued graphs, employing mixtures of
logistic and of Poisson generalized linear models to estimate the clusters. When a
sequence of edge-valued graphs whose edge values follow a Poisson distribution is
considered, the EM algorithm already results in a very good clustering accuracy.

Instead, as Table 1 shows, when we consider sequences of binary graphs and of
graphs whose edge values are overdispersed (i.e., they follow a negative binomial
distribution) the accuracy of the EM algorithm is often low, especially when
either K or v are very small. In these cases, application of EMSAGC results in a
higher accuracy of the retrieved clusters, yielding a substantial improvement over
the performance of the EM algorithm. Full details on the simulation settings can
be found in Signorelli (2017).

4 Example application

We consider 10 daily interaction networks between employees of the French Insti-
tute for Public Health Surveillance, collected by Génois et al. (2015). In partic-

TABLE 1. Comparison of the accuracy obtained with the EM and EMSAGC
algorithms, for binary graphs and edge-valued graphs with overdispersed degree
distribution. Each cell displays the percentage of correctly clustered graphs.

Binary graphs Sparse edge-valued graphs

K v EM EMSAGC EM EMSAGC

10 10 72% 74% 67% 86%
10 50 68% 99% 65% 100%
10 100 65% 98% 66% 100%
20 10 92% 100% 81% 92%
20 50 85% 100% 91% 100%
20 100 81% 100% 84% 100%
50 10 100% 100% 96.4% 98%
50 50 100% 100% 100% 100%
50 100 100% 100% 100% 100%
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ular, we focus on those employees who have registered interactions for at least 6
days; each of them belongs to one of four departments (DISQ, DMCT, DSE and
SRH). It is reasonable to assume that interactions are affected both by depart-
ment affiliation and by individual features. Therefore, we consider a mixture of
degree-corrected stochastic blockmodels with two components, where the number
of daily interactions between node i from department r and node j from depart-
ment s follows a Poisson distribution whose mean depends, on the log-scale, both
on nodal effects αi, αj and on block-interaction parameters φrs.

The application of the EMSAGC algorithm allows to detect a variation in the
pattern of interactions among departments from the first 7 days (cluster 1) to
the remaining 3 days (cluster 2) considered in the study. The estimate of the
block-interaction parameters in the two clusters are shown in Table 2. Overall,
we find two changes in the pattern of interaction across departments. On the one
hand, members of DISQ and DSE are more active within their department in
the first 7 days considered, but then they interact more with each other in the
remaining 3 days. On the other hand, employees in DMCT and SRH seem to
follow the opposite pattern: in the last 3 days, they reduce interactions between
their departments and are more active within their own department.
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1 Stochastic actor-oriented models

Stochastic actor-oriented models (SAOMs) (Snijders, 2001; Steglich et al., 2010)
are applied to analyze network panel data (x, z)t1 , . . . , (x, z)tM , defined as ob-
servations of a network x and a behavior z observed at M > 1 time points. The
network x is a digraph; the behavior z is an ordinal discrete variable with integer
values, defined at the level of actors.

In SAOMs the network and the behavior are jointly the two dependent variables.
The dependence of network dynamics and that of behavioral dynamics on the
network-behavioral configuration are referred to as “selection” process and “in-
fluence” process, respectively. SAOMs allow to distinguish the role of selection
and influence mechanisms in explaining the network and behavioral changes over
time.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
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Following the approach originally proposed by Holland and Leinhardt (1977),
SAOMs assume that the time series (x, z)t1 , . . . , (x, z)tM is the outcome of a
continuous-time Markov chain. The observed panel data are assumed to be the
result of a sequence of unobserved changes happening between two consecutive
observation time points tm−1 and tm. For simplicity, we treat only the caseM = 2.

The series of changes is modeled in the following way. At a random moment, one
actor is selected and has the opportunity to make either a network or a behav-
ioral change. Due to the Markov assumption, the time between two consecutive
opportunities for a change must be exponentially distributed. The correspond-
ing rate parameters are called λ

[X]
m and λ

[Z]
m for network and behavioral changes,

respectively.

Probabilities of changes are determined by so-called evaluation functions, defined
separately for the two variables. For variable V = X or Z, the evaluation function
is given by

f
[V ]
i (β[V ], x, z) =

K[V ]∑
k=1

β
[V ]
k s

[V ]
ik (x, z) (1)

where s
[V ]
ik (x, z) for V = X,Z are suitable statistics of which a description can

be found, e.g., in Steglich et al. (2010).

When an actor gets the opportunity for a network change, he can create one
new outgoing tie, terminate one existing outgoing tie, or do nothing. When an
actor gets the opportunity for a behavioral change, he can increase or decrease
his behavior by one unit, or do nothing. Changes are modeled according to a
multinomial logit model. Given the current state (x, z), the probability p

[X]

(x′,z)

that, for a network change, the next state is (x′, z), and the probability p
[Z]

(x,z′)

that, for a behavioral change, the next state is (x, z′), is given by

p
[X]

(x′,z) =
exp

(
f

[X]
i (β[X], x′, z)

)∑
x′′

exp(f
[X]
i (β[X], x′′, z))

and p
[Z]

(x,z′) =
exp

(
f

[Z]
i (β[Z], x, z′)

)∑
z′′

exp
(
f

[Z]
i (β[Z], x, z′′)

) .
The vector of parameters θ = (λ[X], λ[Z], β[X], β[Z]) of SAOMs is usually esti-
mated using the method of moments (MoM), solving the equation

Eθ
[
s
(
X(t2), Z(t2)

)
− s
(
x(t2), z(t2)

) ∣∣ (X(t1), Z(t1)
)

=
(
x(t1), z(t1)

)]
= 0 . (2)

Statistics s(X,Z) modeling influence (dependent variable: behavior) are distin-
guished from those modeling selection (dependent variable: network) by using
cross-lagged variables. Statistics suggested by (1), providing information about
β[X] and β[Z], respectively, are∑

i

s
[X]
i

(
X(t2), Z(t1)

)
and

∑
i

s
[Z]
i

(
X(t1), Z(t2)

)
.

The solution of (2) is the MoM estimate for θ. It can be approximated using a
stochastic algorithm (Snijders, 2001) based on Monte Carlo approximation of the
expected values and the Robbins-Monro step (Robbins and Monro, 1951). The al-
gorithm is implemented in the library RSiena (http://www.stats.ox.ac.uk/ snijders/siena/)
of the R software.
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2 Generalized method of moments for SAOMs

It is natural that we would like to include as much information as possible in
the estimation process. When analyzing the co-evolution of networks and be-
haviors, additional information is provided by the non-cross-lagged statistics
s

[V ]
i (X(t2), Z(t2)) for V = X,Z, where both dependent variables are taken at t2.

Taking these into account may improve the estimation, especially when changes
in both the behavior and the set of outgoing ties are observed for a significant
proportion of actors. We refer to these changes as simultaneous changes. Here,
we propose to include the non-cross-lagged statistics in the estimation process
to get a better estimate for θ, following the generalized method of moments
(GMoM; Hansen, 1982) estimation.For notational brevity, we denote (X,Z) =(
X(t2), Z(t2)

)
and (x, z) likewise.

Including more statistics than parameters results in an over-identified system of
moment equations. The GMoM estimate for θ is the value θ̂ minimizing the dis-
tance between the expected values of the statistics and their sample counterpart:

F (X,Z; θ) = Eθ[s
∗(X,Z)− s∗(x, z)]TWEθ[s

∗(X,Z)− s∗(x, z)] (3)

where s∗(X,Z) is the vector containing the cross-lagged as well as non-cross-
lagged statistics, the expectation is conditional given

(
X(t1), Z(t1)

)
as in (2),

and W is a positive semi-definite matrix. An optimal choice for W is the inverse
of the variance-covariance matrix of s∗(X,Z).

From (3) and the convexity of F (X,Z; θ), it follows that the estimate θ̂ is the
value solving

∂

∂θ
F (X,Z; θ) = BθEθ[s

∗(X,Z)− s∗(x, z)] = 0 (4)

where Bθ = ∂
(
Eθ[s

∗(X,Z)− s∗(x, z)]TW
)
/∂θ.

Equation (4) is equal to equation (2) except for the matrix Bθ. Therefore, θ̂ can
be computed using a modification of the stochastic approximation algorithm used
also for the MoM. Main changes in the algorithm are related to the estimation
and the inclusion of the matrix Bθ in the Robbins-Monro step. Based on the
econometric literature, we implemented both the efficient two-step and the iter-
ated two-step GMoM estimators and tested their performance. However, here we
report only the results based on the iterated two-step estimator.

3 Simulations

Several simulations were conducted to investigate the relative efficiency of the
GMoM estimator with respect to the MoM estimator. A nested simulation de-
sign was used: For several specification of the SAOMs, 500 network panel data
were generated and estimated twice by both methods. Such a design has the ad-
vantage of accounting for the variation in both the simulations and the stochastic
algorithm.

For illustrative purposes, we consider a simple model specification based on em-
pirical results deriving from the estimation of SAOMs in friendship networks and
on the use of only one non-cross-lagged statistic as described in the following.
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The simulated network panel data comprises a binary directed network and a
behavior with 5 ordinal categories, both simulated at 2 points in time, as well as
a constant binary actor covariate. Those were generated using a SAOM specified
by basic effects describing the network structure (e.g. density and reciprocity), the
impact of an actor covariate (e.g. popularity and activity) and the distribution
of the behavior (linear and quadratic effects). We also included in the model
the behavior similarity effect and the average similarity effect. These two model
homophily whose outcome is the similarity of two connected actors.

The similarity effect models selection, i.e. the tendency of actor to form ties with
actors that are similar to themselves, whereas the average similarity effect models
influence, i.e. the tendency of actors which are tied to become similar in their
behavior. The corresponding cross-lagged statistics s

[X]
sim and s

[Z]
av sim are defined,

respectively, as

s
[X]
sim =

∑
ij

xij(t2)

(
∆− |zi(t1)− zj(t1)|

∆
− simz

)

[Z]av sim =
∑
ij

1∑
j xij(t1)

xij(t1)

(
∆− |zi(t2)− zj(t2)|

∆
− simz

)
,

where ∆ is the range of the behavioral variable and simz is the average of

the observed similarity scores
∆−|zi−zj |

∆ .

The non-cross-lagged statistic related to the statistics above is defined as:

s∗sim =
∑
ij

xij(t2)

(
∆− |zi(t2)− zj(t2)|

∆
− simz

)
.

and used here to compare the relative efficiency of the GMoM to the MoM.

4 Results

The root mean squared errors of the estimators were compared using a one-
sided Wilcoxon-signed ranked test (alternative hypothesis: RMSEGMoM <

RMSEMoM) to evaluate the relative efficiency of the GMoM to the MoM.

Table 1 shows the results for two models differing in the value of the
rate parameters, and consequently in the mean percentages of simulta-
neous changes (25% and 45% for lower and higher rates, respectively). The
comparison suggests that the GMoM outperforms the MoM and the gain
in efficiency mainly affects the parameters related to the effects for those
a non-cross-lagged statistics was considered. The gain is due to both the
smaller deviations and the higher efficiency of the GMoM estimates, as
illustrated in Figure 1, which contrasts the absolute deviations and the
estimated standard errors of the GMoM (y-axis) and the MoM (x-axis)
estimates for the parameters of the behavior similarity and the average
similarity effects.

More generally, the set of simulations we performed indicates that the gain
in efficiency is negligible when i) the proportion of simultaneous changes is
rather low, and ii) the non-cross-lagged statistics are non-informative, i.e.,



Snijders et al. 165

MoM GMoM
θ Est. RMSE Est. RMSE Sig.

Selection
Rate 3.50 3.40 0.84 3.41 0.83
Density -2.20 -2.34 0.80 -2.31 0.74 *
Reciprocity 1.80 1.85 0.35 1.85 0.35
Transitive triplets 0.25 0.21 0.10 0.22 0.10
3-cycles -0.27 -0.24 0.21 -0.24 0.20
Transitive Ties 0.67 0.71 0.34 0.72 0.34
Outdegree popularity (sqrt) -0.60 -0.66 0.44 -0.65 0.42
Covariate-related popularity 0.19 0.23 0.51 0.22 0.48
Covariate-related activity 0.48 0.59 0.39 0.58 0.37
Same covariate 0.61 0.73 0.36 0.72 0.34
Behavior similarity 3.00 3.40 1.83 3.27 1.37 **
Influence
Rate 1.50 1.55 0.92 1.54 0.91
Linear 0.05 0.06 0.28 0.06 0.28
Quadratic 0.10 0.08 0.16 0.08 0.16
Average similarity 6.00 5.69 3.28 5.65 3.01 **
Selection
Rate 7.00 6.66 1.94 6.70 1.81 **
Density -2.20 -2.27 0.82 -2.24 0.67 **
Reciprocity 1.80 1.84 0.35 1.84 0.32
Transitive triplets 0.25 0.22 0.08 0.22 0.08
3-cycles -0.27 -0.23 0.18 -0.22 0.17
Transitive Ties 0.67 0.71 0.31 0.71 0.30
Outdegree popularity (sqrt) -0.60 -0.71 0.46 -0.70 0.40
Covariate-related popularity 0.19 0.31 0.53 0.29 0.44 **
Covariate-related activity 0.48 0.60 0.42 0.58 0.33 **
Same covariate 0.61 0.71 0.35 0.70 0.28
Behavior similarity 3.00 3.52 2.49 3.36 1.39 **
Influence
Rate 2.00 2.00 1.28 2.00 1.24 *
Linear 0.05 0.07 0.25 0.06 0.25
Quadratic 0.10 0.08 0.13 0.08 0.13
Average similarity 6.00 5.34 3.36 5.41 3.00 **

TABLE 1. Simulation results, 2 waves for 50 actors: true value of the parameter
(θ), mean parameter estimates (Est.), and root mean squared errors (RMSE).
The last column (Sig.) reports the significance of the Wilcoxon signed rank test
comparing the RMSE of the two estimators (* p-value < 0.05, **p-value < 0.01).

highly correlated with the cross-lagged statistics. In these cases, the MoM
is preferred to the GMoM since the MoM algorithm is faster. Furthermore,
in accordance with applications of the GMoM in economics, we observed
that the algorithm based on the iterated two-step estimator is more prone
to instability when the non-cross-lagged statistics are non-informative.

Acknowledgments: Part of this research has received funding from the Eu-

ropean Research Council under the European Union’s Seventh Framework Pro-

gramme (FP7/2007-2013) / ERC grant agreement n. 319209.

References

Hansen, L. (1982). Large sample properties of generalized method of mo-
ments estimators. Econometrica, 50, 1029 – 1054.

Holland, P. W. and Leinhardt, S. (1977). A Dynamic Model for Social Net-
works. Journal of Mathematical Sociology, 5(1), 5 - 20.

Robbins, H. and Monro, S. (1951). A stochastic approximation method.



166 GMoM for estimating the parameters of SAOMs

●●

●●

●●

●●

●●

●●

● ●

●
●

●●
●●

● ●
●●

●● ● ●

●●

●●

●●

●●●●

●●

● ●

●●

●●

●
●

●●
●●

●
●

●●

● ●●●

●

●●

●●

●●

●●

●●

●
●

● ●

●

●●

●●

●●

● ●

●

● ●●●

●●

●●●●

●●

●

●●

●●

●●

●●

●●

●

●● ●

●●

●●

●●
●●

●

● ●

●●
●●

●●

●●
●●

●●

●●

●●

●●
●●

●
●

●●

●●

●●

●●
●●●

●●

●●

●●

●
●

● ●

●●●●
●●

●●

●

●●

●●

●●

● ●●●

●●

●
●●

●
●

● ●

●
●

●●

●●

●● ●●

●●

●● ●●

●●

● ●

●
●

●●●●

●●
●●

●●

●●

●

●●

●●

● ● ●●

●●

●

●

●●

●
●●●

●
●

● ●

● ●

●●

●●
●

●●●

●●

●●

●●

●●

●●

●●

●●

●

●●

●● ●●

●●

●●

●●

●●

●● ●●

●●

●●

●
●

●●

●
●

● ●

●●

●●

●●

●●

●●

●●

●●

●

●●

●●

●●

●●
●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●● ●●

●●

●●

●●

●●

●●

●●

● ●
●●

●●

●●

●● ●●

●

●

●● ●●

●●

●●
●
●

●●

●●

●●

●●

●●

●●
●●

● ●

●●
●●●

●

●●●●

●●
●

●●

●●

●●

●●

●
●

●●
●●

● ●

●●

●●

●

●●

●●

● ●

● ●

●

●●

●●

●
●

●●
●
●

●●

●●

●●

● ●

●

●●

●●

●●

●●

●●
●●

●

●●

●●

●●

●●

●● ●●

●●

●●

●●●●

●●

●●

●●

● ●

●●●●

●●

●●
●●●●

●●

●●

●
●●

●●

● ●

●●

●●

●●

●● ●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●
●

●●

●
●

●
●

●●

●● ●●

●●

●●

●
●

●●

●●

●●

●●

●

●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●
●

●●
●●

●●

●●

●●

●●

●

●●

●●

●
●

●●
●●

●
●

●●

●●
●●

●●

●
●

●●●●
●●

●●

●●

● ●

●
●

●●

●●

●●

●

●●

●●

●●

●●

●●
● ●

●

●●
●

●

●● ●●

●●●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●
●●

●●

●●

●● ●●●●

●

●

●●

●●
● ●

●●

●
●

●●

●●

●●

●●
●●

●●

●●

●●

●●
●●

●
●

●●

●●●●

● ●

●●

●●

●●
●●

●● ●●
●●

●●

●●

●●●●
●

●
●●

●●

●●
●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●●●
●●

● ●

●●

●●●●

●●

● ●
●

●

●●

●●●●●●

● ●

●● ●●

●●

●
●

●●

●●

●●
●●●●

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

(a) Behaviour similarity: absolute deviations
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(c) Behaviour similarity: estimated standard errors
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(d) Average similarity: estimated standard errors
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FIGURE 1. Comparison between the absolute deviations and the estimated stan-
dard errors of the MoM (x-axis) and the GMoM (y-axis) for the behavior similar-
ity and the average similarity effects for the network panel data simulated with
the lower rates. The line in the plot represents the diagonal.
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Abstract: Stochastic block models have known a flowering interest in the so-
cial network literature. They provide a tool for discovering communities and
identifying clusters of individuals characterized by similar social behaviors. In
this framework, full maximum likelihood estimates are not achievable due to the
intractability of the likelihood function. For this reason, several approximate so-
lutions are available in the literature. Here, we propose a new and more efficient
approximate method for estimating model parameters, which has a hybrid nature
in the sense that it exploits different features of existing methods. The proposal
is illustrated by a Monte Carlo simulation study.
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1 Introduction

Stochastic Block Models (SBMs; Snijders and Nowicki, 1997, Nowicki and Sni-
jders, 2001) represent an important tool of analysis in the social network liter-
ature when the focus is on discovering communities and clustering individuals
with respect to their social behavior. According to the SBM specification, each
individual in the network belongs to one of k distinct blocks, corresponding to
the categories of a discrete latent variable, and the probability of observing a
connection between two units only depends on their block memberships. Despite
the simplicity of the model, Maximum Likelihood (ML) inference remains prob-
lematic due to the intractability of the likelihood function.

Some approximate solutions are available in the literature. These are mainly
based on classification likelihood (Choi et al., 2012), variational approximation

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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(Daudin et al., 2008), or on a composite likelihood approach based on all triples
in the network (Ambroise and Matias, 2012). In this work, we propose a new and
more efficient approximate method for estimating model parameters, which has
a hybrid nature as it is based on a classification likelihood but has features in
common also with full likelihood and with variational and composite likelihood
inference. We illustrate the potential of the proposed approach by an intensive
simulation study.

The reminder of this paper is structured as follows. The SBMs are introduced in
the following section, together with ML estimation of the model parameters and
the alternative approximate inferential solutions. In Section 3 we illustrate the
proposed hybrid estimation method, whereas in Section 4 we describe the main
results of the simulation study.

2 Stochastic block models

In this section we briefly outline the main assumptions of the SBMs and we
introduce the alternative approaches for parameter estimation.

2.1 Model assumptions

Let Y denote a socio-matrix involving n individuals/nodes and whose generic
element, Yij , is equal to 1 if there is a tie between i and j and is equal to 0
otherwise, with i, j = 1, . . . , n. We focus on undirected networks where Yij =
Yji, i 6= j, with probability 1, although the extension to the directed case is
straightforward. Moreover, self cycles are excluded by design.

In order to analyze social interactions existing between the nodes in the net-
work, SBMs assume the existence of k unobserved blocks, which are described by
the node-specific latent variables Ui, i = 1, . . . , n, having discrete support points
1, . . . , k and corresponding mass probabilities p(Ui = u) = πu, u = 1, . . . , k. Also,
SBMs postulate a local independence assumption between nodes: conditional on
the latent variables Ui and Uj , responses Yij are assumed to be independent
Bernoulli random variables with success probability ψuiuj = p(Yij = 1|Ui =
ui, Uj = uj). Therefore the response variables only depend on the block member-
ships of individuals i and j.

Despite the simplicity of the above assumptions, ML inference for this class of
models remains problematic. This is because the manifest distribution of the
entire network Y is obtained by marginalizing out all latent variables and this
marginalization is computationally tricky. In particular, we have

p(Y) =
∑
u

p(Y | u)p(u),

where u denotes a realization of the random vector U = (U1, . . . , Un)′, and

p(Y | u) =
∏
i<n

∏
j>i

p(yij | Ui = ui, Uj = uj),

p(u) =
∏
i<n

πui .
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Therefore, to estimate the model parameters collected in θ, approximate methods
that are alternative to full ML are needed, even dealing with small networks.

2.2 Maximum likelihood approach

With very small networks, the log-likelihood `(θ) = log p(Y ) may be maxi-
mized via the Expectation-Maximization (EM) algorithm, which is based on the
following complete data log-likelihood function related to the classification log-
likelihood:

`∗cl(u,θ) =
∑
i<n

∑
j>i

log
[
p(yij | Ui = ui, Uj = uj)πuiπuj

]
.

The EM algorithm maximizes `(θ) by alternating two steps until convergence.
The E-step (Expectation) consists in computing the conditional expected value
of `∗cl(u,θ) given the observed data and the current value of the parameters. At
the M-step (Maximization) we update the parameter vector θ by maximizing
the expected value previously computed.

2.3 Available approximate estimation methods

Among the available approximate methods, it is important to mention the classi-
fication likelihood approach (Choi et al., 2012). In this framework, the realizations
of the random vector U are considered as fixed parameters to be estimated. Two
steps are alternated until convergence: C-step (Classification), which consists in
maximizing the classification likelihood

`cl(u,θ) =
∑
i<n

∑
j>i

log p(yij | Ui = ui, Uj = uj)

with respect to u by iteratively moving nodes from one block to another as in a k-
means algorithm; M-step (Maximization), in which we update θ by maximizing
`cl(u,θ) with u being fixed at the previous value.

An alternative estimation method is based on a variational approximation of
the model likelihood (Daudin et al., 2008), in which parameter estimates are
derived by maximizing a lower bound of the log-likelihood function. This method
is computationally fast but may lead to non-optimal estimators and may suffer
from local maxima solutions that strongly depend on the starting values of the
estimation algorithm. Moreover, it may be quite slow to converge.

Finally, it is worth mentioning the composite likelihood approach introduced by
Ambroise and Matias (2012), see also Bartolucci et al. (2015), in which parameter
estimates are derived by maximizing a composite likelihood function based on the
probability of all triples in the network. This approach leads to an estimator with
properties similar to those of the standard ML estimator but it may suffer from
identifiability problems. Even in this case, the algorithm may be slow to converge.
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3 Proposed hybrid ML inference

The proposed hybrid ML method lies in between full ML and classification like-
lihood inference discussed in the previous section. More in detail, this method is
based on the following hybrid log-likelihood function:

`hyb(ũ,θ) =
∑
i<n

log
∑
ui

p
(
yi | Ui = ui,U(−i) = ũ(−i)

)
πui ,

where yi is the vector of all observed responses yij , j 6= i, for unit i, ũ is a
realization of U considered as a vector of fixed discrete parameters in the set
{1, . . . , k}, and ũ(−i) is the corresponding subvector without the i-th element.
Moreover, p(yi | Ui = ui,U(−i) = ũ(−i)) denotes the conditional distribution of
yi given the underlying latent variables.

The proposed method is based on alternating three steps until convergence. The
C-step (Classification) consists in maximizing `hyb(ũ,θ) with respect to ũ by
iteratively moving nodes from one block to another as in a k-means algorithm.
At the E-step (Expectation) we compute the conditional expected value of the
complete data log-likelihood function corresponding to `hyb(ũ,θ), and denoted
by `∗hyb(ũ,θ), given the current value of θ and ũ. At the M-step (Maximization),
θ is updated by maximizing the expected value of `∗hyb(ũ,θ).

The inferential method we propose is related to the classification likelihood
method because we explicitly consider the partition defined by the latent vari-
ables as depending on parameters to be estimated. Moreover, it has features in
common with a composite likelihood method based on the response configura-
tion of each node i. Finally, it relies on an optimization algorithm with structure
and numerical complexity similar to that of the variational approach, while being
typically faster to converge.

4 Simulation study

To assess the performance of the proposed approach, we carried out a simulation
study in which this approach is compared with the available alternatives, that
is, the k-means algorithm, the variational, the composite, and the classification
likelihood approaches. We considered B = 100 samples generated from an SBM
with varying number of groups (k = 2, 3, 4, 5) and equal proportions (πu = 1/k,
u = 1, . . . , k), varying sample sizes (n = 20, 50, 100), and varying intra-group
(ψin) and inter-group (ψout) connectivity parameters. In particular, we assumed
three different models: high intra-group connectivity (M1, with ψin = 0.30 and
ψout = 0.03); high inter-group connectivity (M2, with ψin = 0.03 and ψout = 0.30);
no structure (M3, with ψin = 0.55 and ψout = 0.45). Then, we set ψuiuj = ψin×α
if ui = uj and ψuiuj = ψout if ui 6= uj with α ∼ Unif(0.5, 1.5) for all models.

The agreement between the estimated and the true latent structure is evaluated
in terms of number of correctly classified nodes (#ccn) with respect to the true
partition.

With reference to the most sensible scenarios, Figure 1 reports the boxplots of
the values of #ccn obtained in the B = 100 samples by the alternative inferential
approaches under comparison.
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From the figure we observe that, for all methods under comparison, the quality
of clustering worsens as k increases, due to the higher uncertainty on the latent
structure, while it improves when the community structure in the data is more
evident, that is, when moving from model M3 to M1. Moreover, the proposed
approach seems to recover better the true clustering of the nodes in all simula-
tion settings we considered, especially when dealing with more complex model
structures. Lastly, the hybrid ML algorithm we propose generally requires a lower
computational time to reach the converge and seems to be less sensitive to the
adopted starting rule. In this respect, it represents an appealing alternative to
the available approximate ML methods for parameter estimation in the SBM
framework.

Further developments will be devoted to investigate the theoretical properties
of the proposed method, with the aim of extending the approach also to the
longitudinal social network framework.
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Abstract: We propose a generalised version of a non-homogeneous dynamic
Bayesian network (NH-DBN) model with sequentially coupled interaction param-
eters. Unlike the earlier model, our new model does not assume that the segment-
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new model introduces segment-specific coupling strengths, and we show that this
generalization can lead to improved network reconstruction accuracies.
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1 Introduction

In the field of systems biology non-homogeneous Dynamic Bayesian Networks
(DBNs) have become a popular model class for learning regulatory networks from
gene expression data. In many applications the intensities of the regulatory pro-
cesses (i.e. the network parameters) undergo temporal changes. The conventional
homogeneous DBN models, which assume that the network parameters stay con-
stant over time, therefore often lead to biased results and erroneous conclusions.
Non-Homogeneous DBNs (NH-DBNs) combine homogeneous DBNs with multi-
ple change point processes. Loosely speaking, a set of changepoints divides the
temporal data into disjunct segments and the data points within each segment
are modelled by separate DBNs. To allow for some information sharing among
segments it is often assumed that the same network structure applies to all seg-
ments and that only the network parameters are subject to temporal changes.
Often the number and locations of those changepoints are unknown so that they
have to be inferred together with the network structure and the segment-specific
network parameters.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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The standard NH-DBN models assume a priori that the segment-specific network
parameters are independent, and thus, they do not allow for any information shar-
ing: the network parameters have to be learned independently in each segment
and uninformative prior distributions are imposed.

A NH-DBN model with sequentially coupled network parameters was proposed in
Grzegorczyk and Husmeier (2012). The key idea is to take into account that the
network parameters often evolve gradually in time and that they are often similar
for neighbouring segments. Grzegorczyk and Husmeier (2012) therefore proposed
to use the posterior expectation of the network parameters of a segment h as prior
expectation for the next segment h + 1. For each segment h > 1 this yields an
informative network parameter prior, which is built from the Bayesian inference
result obtained for the preceding segment h−1. In the model of Grzegorczyk and
Husmeier (2012) there is one single coupling parameter for each network node and
all node-specific network parameters are coupled with the same coupling strength
among all segments. A low (high) coupling parameter leads to peaked (vague)
network parameter priors for all segments, where each segment-specific prior is
centred around the posterior mean of its preceding segment. This is a potential
bottleneck of the approach, since the similarity of the segment-specific network
parameters can vary over time. There might be changepoints where the network
parameters change only slightly, so that an informative (peaked) prior should be
used, as well as changepoints with drastic network parameter changes, where an
uninformative (vague) prior would be more appropriate. To address this short-
coming we propose a novel generalised sequentially coupled NH-DBN model with
segment-specific coupling parameters. In the new model the coupling strengths
δh (h > 1) between two neighbouring segments h− 1 and h are segment-specific.

Our new ’generalised’ sequentially coupled NH-DBN model can be thought of
as a continuous version of the ’partially sequentially coupled’ NH-DBN model,
which we proposed one year ago at IWSM 2016; see Shafiee and Grzegorczyk
(2016). In our earlier work we introduced discrete binary indicator variables δh
which indicate for each segment h whether it is coupled to the preceding one
(δh = 1; peaked prior around posterior of preceding segment) or uncoupled from
the preceding one (δh = 0; vague uninformative priors around 0). The new model
replaces the segment-specific binary indicator variables δh ∈ {0, 1} (uncoupled
vs. coupled) by segment-specific continuous variables δh ∈ R+, and thus mod-
els the coupling strengths between all neighbouring pairs of segments (h − 1, h)
continuously.

2 Methodological details

Let y be the response variable in a segment-wise linear Bayesian regression model.
Given a set of k covariates, π = {X1, . . . , Xk}, we assume that the data can
be divided into H disjunct segments with segment-specific regression coefficient
vectors wh. Furthermore, let yh and Xπ,h denote the response vector and the
design matrix for segment h, where Xπ,h includes a first column of 1’s for the
intercept. We then have for h = 1, . . . , H

yh ∼ N (Xπ,hwh, σ
2I) (1)
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where σ2 is the noise variance with σ−2 ∼ GAM(ν, ν) and ν = 0.01. While
the standard uncoupled NH-DBN uses independent Gaussian priors for all H re-
gression coefficient vectors, P (wh) ∼ N (0, δσ2I), the sequentially coupled model
from Grzegorczyk and Husmeier (2012) uses the prior

P (wh) =

{
N (0, δσ2I), h = 1

N (mh−1, λσ
2I) h > 1

(2)

where

mh =
(
λ−1I + XT

π,hXπ,h

)−1 (
λ−1mh−1 + XT

π,hyh
)

(h ≥ 1)

The prior of the first segment has a special parameter δ which is different from
the coupling parameter λ, as the coefficients of the first segment h = 1 cannot be
coupled to a preceding segment and thus must get the uninformative mean vector
m0 = 0. Only for h > 1 the prior mean is the posterior mean of the preceding
segment E[wh−1|yh−1,Xπ,h−1, λh−1] = mh−1, where the noise variance σ2 has
been marginalized out. In our new generalised sequentially coupled model we
replace equation (2) by:

P (wh) = N (mh−1, λhσ
2I) (3)

where m0 = 0 and λ1 refers to the δ parameter in equation (2). The only differ-
ence between equations (2) and (3) is then that the single coupling parameter λ
for h > 1 has been replaced by segment-specific coupling parameter λ2, . . . , λH .
Our generalised model is identical to the original sequentially coupled model for
H ≤ 2 and more flexible than the original model for H > 2. The wh posterior
means of our model are

mh =
(
λ−1
h I + XT

π,hXπ,h

)−1 (
λ−1
h mh−1 + XT

π,hyh
)

(h ≥ 1)

We follow Grzegorczyk and Husmeier (2012) and use the hyperpriors

δ−1 ∼ GAM(α1, β1), λ−1
1 ∼ GAM(α1, β1), λ−1

h ∼ GAM(αh, βh) (h > 2)

with α1 = 2, β1 = 0.2, αh = 3, and βh = 3. The segment-specific regression
coefficient vectors, wh, the noise variance, σ2, and the segment-specific coupling
parameters, λh, can then be sampled from their full conditional distributions
(Gibbs sampling steps)

wh ∼ N(mh, σ
2(λgI + XT

π,hXπ,h)−1)

λ−1
h ∼ Gam

(
α+

k + 1

2
, β +

1

2

1

σ2
[wh −mh−1]T [wh −mh−1]

)

σ−2 ∼ Gam

(
0.01 +

T

2
, 0.01 +

1

2

H∑
h=1

(yh − m̃h)T Σ̃−1
h (yh − m̃h)

)
where m̃h = Xπ,hm(h−1), Σ̃h = I + λhXπ,hX

T
π,h, and T is the total number of

data points. i.e. the length of the response vector y := (yT1 , . . . ,y
T
H)T .
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The marginal likelihood with all parameters, except for the λh hyperparameters,
integrated out can then be given in closed form

p(yh|π, λh) =
Γ(Th+ν

2
)

Γ( ν
2
)
· νν/2

πTh/2 det(Σ̃h)1/2
· (ν + ∆2)−

1
2

(T+ν)

where ∆2 = (yh−m̃h)T Σ̃−1
h (yh−m̃h) is the squared Mahalanobis distance, and

Th is the length of the vector yh.

Inferring the covariate sets and the data segmentations:
The objective is to sample the covariate sets, π, and the data segmentations
from the posterior distribution. For that we use the Metropolis Hastings sam-
pling moves, described in Grzegorczyk and Husmeier (2012). The covariate sets
π are modified by adding, deleting or substituting single variables from π, where
a priori every set π with up to three covariates is assumed to be equally likely
while the prior probability of sets with more than three covariates is set to zero
(’fan-in equal to 3’). The adaptation of those moves to our model is straightfor-
ward. For the segmentations we again follow Grzegorczyk and Husmeier (2012)
and employ a changepoint process where the distance between neighbouring
changepoints is assumed to follow a negative Binomial distribution with pa-
rameters p ∈ [0, 1] and r = 1. In our study we implement 9 different values:
p = 0.02, 0.025, 0.03, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3. The changepoints are inferred
via changepoint birth, death and re-allocation moves, where unlike in Grzegor-
czyk and Husmeier (2012) and Shafiee and Grzegorczyk (2016), those moves here
become Reversible Jump Markov Chain Monte Carlo (RJMCMC) moves, as the
number of continuous δh ∈ R+ parameters now varies with the number of seg-
ments H. We implement the RJMCMC variants of the three changepoint moves
in the standard way by re-sampling the involved δh parameters from their Inverse-
Gamma prior distributions. The determinant of the Jacobian transition matrix
is then equal to 1.

Networks: For a domain with n nodes we apply the regression model to each
node yi (i = 1, . . . , n) separately. The potential regulator sets of yi are all sub-
sets πi ⊂ {y1, . . . , yi−1, yi+1, . . . , yn} of the other nodes. As the interactions are
subject to a time delay, the segment-specific design matrices Xi

h are built from
the values of the covariates at the preceding time points. Merging the n parent
sets gives an interaction network G := {π1, . . . , πn}. There is an edge from node
yj to node yi in G if (and only if) yj ∈ πi.

Network reconstruction accuracy: With the MCMC sampling scheme, we
can generate samples of networks Gr = {πr1 , . . . , πrn}r=1,...,R, and we average
across those networks to obtain for each individual edge j → i (j, i ∈ {1, . . . n} :
j 6= i) a marginal posterior probability êj,i = 1

R

∑R
r=1 Ij→i(G

r), where Ij→i(Gr) =
1 if j ∈ πri , and Ij→i(Gr) = 0 otherwise. When the true edges are known,
ei,j ∈ {0, 1}, the network reconstruction accuracies can be quantified in terms of
areas under the precision-recall curves (AUPRC).
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FIGURE 1. Network reconstruction accuracy for S. cerevisiae (yeast).
AUPRC histograms for the three NH-DBN models. The white bars refer to the
NH-DBN model with sequentially coupled parameters from Grzegorczyk and
Husmeier (2012), the grey bars refer to the standard uncoupled NH-DBN model,
and the black bars refer to the generalised model, proposed here. There is a his-
togram for each of 9 different hyperparameters of the negative Binomial prior
on the distance between neighbouring changepoints. The heights of the bars are
the average AUCPR values, averaged across 10 independent MCMC simulation
results and the error bars indicate standard deviations.

3 Data

Cantone et al. (2009) synthetically designed a network of five genes in Saccha-
romyces cerevisiae (yeast) and measured expression levels of these genes in vivo
with quantitative real-time PCR at 37 time points over 8 hours. In about the
middle of this time period, they changed the environment by switching the car-
bon source from galactose to glucose. We pre-process those data as described in
Grzegorczyk and Husmeier (2012), including a gene-specific standardization to
mean 0. The goal of our empirical study in Section 4 is to infer the true network,
shown in in Figure 1, from the data.

4 Yeast network reconstruction

We show that the novel generalised NH-DBN model with segment-specific cou-
pling parameters reaches a higher network reconstruction accuracy than the stan-
dard uncoupled NH-DBN model and the original sequentially coupled NH-DBN
model, proposed by Grzegorczyk and Husmeier (2012). To this end, we cross-
compared the network reconstruction accuracies of those models on the yeast
gene expression data set, described in Section 3. For all three models we ran
MCMC simulations with 9 different parameters p of the negative Binomial prior
(on the distances between changepoints), so as to compare the models for varying
numbers of changepoints: Higher p values lead to more changepoints and thus
make the information-coupling scheme more important. We ran each MCMC sim-
ulation for R = 100, 000 iterations, and our convergence diagnostics suggested
that this simulation length is sufficient for all three models. The results of our
empirical study are summarized in Figure 1. It can be seen that the new model,
overall, shows the best performance. It performs significantly better than the
two competing models for high p parameters (i.e. when many changepoints are
inferred). For low p parameters the performance between the two sequentially
coupled model does not differ, since the two models do not differ if there is only
up to one single changepoint per gene (H ≤ 2 segments).
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5 Conclusion

Our results suggest that the new NH-DBN model with segment-specific coupling
strength parameters can reach a significantly better network reconstruction ac-
curacy than the two competing NH-DBN models. The new model can be thought
of as a continuous version of the partially sequentially coupled NH-DBN model,
proposed in Shafiee and Grzegorczyk (2016). The focus of our future research
will be on cross-comparing those two models systematically and on determining
their relative merits and shortcomings.
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Abstract: Missing data occurs in almost every field of research. Multiple im-
putation (MI) is a statistical technique which has become increasingly popular
to generate multiple data sets without missing values which can then be ana-
lyzed using the standard statistical methods for complete data.The sequential
regression imputation, building one model for each variable with missing data,
is a practical approach under MAR to get multiply imputed data sets. The ex-
isting algorithms and software tools either perform poorly or fail to respond for
high-dimensional data structures. The question of the best strategy for multiple
imputation for high-dimensional data is still not clearly answered in the literature.
In this paper we are proposing an MI technique based on sequential penalized
regression to address this issue. The proposed technique uses L1 and L2 penal-
ties and thus gives a penalized version of the sequential regression approach with
high-dimensional data. The performance of the proposed technique is examined
in a simulation study with covariates from different distributions. Mean Squared
Imputation Error (MSIE) is used to study the imputation performance of the
proposed algorithm as compared to the other existing approaches.

Keywords: Missing data; Multiple imputation; Sequential regression imputa-
tion; Penalization; Conditional distribution; High-dimensional data.

1 Introduction

Missing data occurs in almost every field of research. Multiple imputation (MI)
has become increasingly popular for imputing the missing data in recent years due
to its flexibility. Multiple imputation replaces the missing value with more than
one plausible values drawn from their predictive distributions conditional on the
observed data. As a result, one gets multiple imputed data sets which can then
be analyzed independently using standard methods for complete data and re-

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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sults from all imputed data sets are combined using Rubin’s rule (Rubin (1987)).
Harel and Zhou (2007) and Horton and Kleinman (2007) provide a nice review
of theory and implementation of different MI approaches with a comparison of
different software packages for MI. In case of high-dimensional data the number
of variables p can be close to the or even greater than the sample size n. In such
case the usual likelihood estimates in the imputation model may not converge or
even do not exist for p > n case. The use of regularization techniques becomes
indispensable in such cases with high-dimensional data. There is still a gap in
the literature that needs to be filled relating to the development of efficient MI
algorithms for high-dimensional data. Although Zhao and Long (2016) proposed
Bayesian lasso regression for multiple imputation with normally distributed data,
they considered only one variable with missing data in their simulation setting.
This approach is also computationally very expensive and even becomes prac-
tically infeasible with an increasing number of variables with missing data. In
this paper we are proposing regularized regression for model selection and pa-
rameter estimation for the imputation model. Each variable with missing values
is assumed to have a different distributional form and is imputed with its own
imputation model using L1 penalty (for model selection) and if needed also L2
penalty (for fitting the model with selected covariates).

2 Regularization

Regularization methods that are derived from MLE are based on the penalized
log-likelihood lp(βββ

∗) =
∑n
i=1 li(βββ)− λ

2
J(βββ).

Ridge Regression: Ridge regression uses the quadratic penalty J(βββ) =
∑p
j=1 βj

2.
It shrinks the parameter estimates towards zero and each other. The shrinkage
parameter λ ≥ 0 controls the amount of shrinkage. Ridge regression produces
biased estimates as β̂∗β̂∗β̂∗ = (XTWX + λI)−1XTW D−1[y − µµµ], with cov(β̂∗β̂∗β̂∗) =

Σ̂̂Σ̂Σ(β̂∗β̂∗β̂∗) = (XTWX +λI)−1(XTWX) (XTWX +λI)−1. Here mean µi is related
to the linear predictor ηi = xTi βββ as µi = h(ηi). D and W are n × n diagonal
matrices. The ith diagonal element of D is Di = ∂h(ηi)/∂ηηη. The ith element of
W is given as wi = σ2

i = var[h(ηi)] for i = 1, . . . , n.

Lasso Regression: Lasso (least absolute shrinkage and selection operator) uses
L1 penalty J(βββ) =

∑p
j=1 |βj |. Lasso penalty set some coefficients exactly equal

to 0 with large enough value of λ and hence provides a parsimonious model with
p >> n. The lasso penalty will perform imputation model selection for high-
dimensional data in our algorithm.

3 MI using regularization

Let Xn×p be a data matrix consisting of p variables (complete or with missing
values) corresponding to a set of n subjects. The variables in the data matrix can
assume different distributional forms. Let all the variables in the data matrix be
divided into two mutually exclusive groups as X = (Xmiss

n×q,X
comp
n×(p−q)) where Xmiss

contains q, out of p, variables with some missing values and Xcomp
n×(p−q) covers rest

of the p− q complete variables without any missing information. Here q may be



Zahid FM and Heumann C 181

equal to p in which case X = Xmiss. The proposed algorithm can be described as
follows:

• Step 1: Initialization

Repeat Step 2 till convergence

• Step 2: Convergence, for j = 1, 2, . . . , q

a) Fit xmiss
j ∼ X = (Xcomp,Xmiss

−j ) using L1 penalty.

b) compute β̂ββ from xmiss
j ∼ Xselect.

c) update missing values of xmiss
j with µ̂µµ = Xselect

mj×p · β̂ββ.

Repeat step 3 for m times with X achieved at convergence.

• Step 3: Imputation, Repeat for j = 1, 2, . . . , q,

a) perform steps 2(a,b) to compute Σ̂̂Σ̂Σ(β̂̂β̂β).

b) compute β̂̂β̂βnew = a random sample from MVN(β̂̂β̂β, Σ̂̂Σ̂Σ(β̂̂β̂β)) to impute the
missing values with

Xselect
mj×p · β̂̂β̂βnew + noise if xmiss

j is normal,

rbinom(h(Xselect
mj×p · β̂̂β̂βnew)) if xmiss

j is binary, and

rpois(h(Xselect
mj×p · β̂̂β̂βnew)) if xmiss

j is a count variable.

c) update Xmiss
n×q.

4 Simulation study

A simulation study was performed with S = 100 data sets using sample size
n = 100 and p = 200. The covariates are drawn from a p-dimensional multivariate
normal distribution with mean 0 and ρ|j−k| (with ρ = 0.8) covariance among xj
and xk. The MAR (Missing at

TABLE 1. Overall MSIE for imputed values with proposed algorithm, mice and VIM. The

MIlasso1 represents the results when step 3 of algorithm is also used for the convergence.

The numbers within brackets represent number of samples (out of 100) for which a particular

algorithm didn’t respond. The bold face values represent the best results for a particular

approach.

miss % MIlasso1 MIlasso2 mice VIM

10 810.66 776.01 1370.29 1305.94
20 1642.06 1568.48 2415.59 2656.38
30 2488.91 2374.67 3227.52 4060.23
40 3347.97 3203.18 3966.40 5553.46
60 (14)5025.75 (14)4848.28 (50)5469.01 (20)8778.00

Random) mechanism was considered with 10%, 20%, 30%, 40%, and 60% missing
values in each of q = 100 covariates selected at random. One third variables were
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FIGURE 1. Simulation Study: Box plots for log(MSIE)

binary and one third were taken as count variables randomly. The performance
of proposed algorithm is compared with existing software packages mice, VIM and
Amelia. The Mean Squared Imputation Error (MSIE) is used for comparison and

is given as: MSIE = 1
S

∑
S

[
1
m

∑
j

{∑mj
i=1(x∗ij−xij)2

}]
, where x∗ij represents the

ith imputed value for observed value xij of variable xj . The results are shown
in Table 1. The values within brackets here show the number of samples for
which a particular algorithm didn’t work. The results of Amelia are not shown
in the table because it did not respond in most cases because of its sensitivity to
the correlation structure and high dimension. The results of log(MSIE) are also
presented in the form of box plots in Figure 1. The MIlasso1 represents the results
when step 3 of algorithm is also used for the convergence. The box plots show that
our proposed algorithm performs better than its competitors. The MSIEs were
also splitted according to the distribution of the missing variables to examine how
well the different algorithms impute under different distributional forms. These
results of such split, not shown here, also showed consistent performance in favor
of the proposed algorithm.
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Abstract: This work proposes the estimation of nonlinear mixed-effects mod-
els for continuous data. We present a restricted maximum likelihood estimator
(REML), based on the integration of the fixed effects and a stochastic simulation
procedure. A comparison of REML estimator with maximum likelihood (ML)
estimator is presented. Random effects and errors are assumed to follow normal,
slash or Student-t distributions. A pharmacokinetic dataset are used to illustrate
the methods.
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1 Introduction

Nonlinear mixed-effects models (NLME) aim to model the nonlinear relationship
between the response variable and the covariates through the parameters. The
nonlinear relationship can occur either in fixed or random effects or only in one
of them. Russo (2009), for example, worked with a nonlinear marginal model,
where random effects are added linearly to the model. Mixed-effects models are
usually proposed for problems with correlated data, such as longitudinal or re-
peated measures data, with applications in several areas such as epidemiological,
pharmacokinetic industry, economics and agriculture. Several examples can be
found in Pinheiro and Bates (2000). These models usually bring a great chal-
lenge in the parameters estimation of the fixed effects and variance components.
Most authors use the ML estimate or the REML estimate. Unlike the ML esti-
mates, the REML is preferred since it produces less biased estimates for variance
components. It takes into account the degrees of freedom lost when estimating

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
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the fixed effects parameters, which does not occur with the ML estimator. This is
especially more evident in small samples, since for large samples the estimates do
not differ much. The development of REML will have a formulation as proposed
by Meza et al. (2007) and Monte Carlo Expectation - Maximization (MCEM)
algorithm will be used to estimate the parameters.

2 The model formulation

The scale mixture normal (SMN) distributions have a stochastic representation

Y = µ+ κ(U)1/2Z,

where Z ∼ Nn(0,Σ) is independent of the mixture variable U ∼ H(u; ν) with H
a cumulative distribution function that specify the SMN model, and ν is a scalar
or vector parameter indexing the distribution of U , κ(U) is the weight function.
The NLME can be written in two stage. The first stage consists of n nonlinear
regression models

yi = g(ϕi,Xi) + εi, i = 1, . . . , n, (1)

where yi (ni × 1) denotes the response vector for subject i, Xi is a matrix of
explanatory variables, n is the number of subjects, ni the number of observations
of subject i and εi the within-subject errors. In the second stage the fixed and
random effects are included to the model through the vector ϕi (ni×1) that can
be written linearly by

ϕi = Aiβ + bi, (2)

where β (p× 1) denotes the vector of fixed effects, bi (q × 1) denotes the vector
of random effects and Ai (q× p) is a known design matrix . From (1) and (2) we
assume (

εi
bi

)
∼ SMNni+q

( (
0
0

)
,

(
Σi 0
0 D

)
;H

)
,

where D and Σi are positive-definite dispersion matrices. Here we assume D =
D(τ ) = diag(τ ) is a diagonal matrix and let τ = (τ1, . . . , τq)

> be the elements
and Σi = σ2Ini , with σ2 > 0 a scalar. For the sake of simplicity we use g(β, bi)
to represent g(ϕ,Xi) = g(Aiβ+bi,Xi). We assume to errors and random effects
the normal, Slashν and Student-tν distributions.

3 Estimation

Assuming a vague prior for the fixed effects β, REML estimation to variance
components, τ and σ2, can be obtained integrating out the fixed effects, besides
integrate in b, given by

f(y; τ , σ2) =
∏n
i=1

∫∞
0

∫
Rq
∫
Rp φni(yi|g(β, bi), κ(ui)Σi)

×φq(bi|0, κ(ui)D) dbi dβ dH(u; ν),

where φn(·|µ,Σ) denotes n-dimensional normal probability density function with
parameters µ e Σ. The complete data of the model are given by yc = (y,β, b,u),
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and its likelihood function can be written as

Lc(θ
∗|yc) =

∏n
i=1 p(yi,β, bi,ui|θ

∗)

=
∏n
i=1 f(yi|β, bi, ui, σ2)f(bi|ui, τ )h(ui|ν),

where θ∗ = (τ , σ2). The complete likelihood function is given by

`c(θ
∗) =

n∑
i=1

`(θ∗;yi,β, bi, ui)

=
n∑
i=1

{log f(yi|β, bi, ui, σ2) + log f(bi|ui, τ ) + log h(ui|ν) + C},

C assumes a constant value.

To estimate the parameters we use MCEM algorithm, which facilitates the in-
ference and consists in two steps. In the E Step we obtain the expectation in
Q-function

Q(θ∗|θ∗(t)) = E[`c(θ
∗)|y;θ∗(t)]

and in the M Step we want to find θ∗(t+1) such that maximize Q(θ∗|θ∗(t)),

Q(θ∗(t+1)|θ∗(t)) ≥ Q(θ∗|θ∗(t)),

the two steps are repeated till convergence. For more details of this algorithm see
Wang (2007).

The Step E of the ith individual in the (t+ 1)th iteration can be written as

Qi(θ
∗|θ∗(t)) = E[`(θ∗;yi,β, bi, ui)|yi,θ∗(t)]

=
∫∞

0

∫
Rq
∫
Rp{φni(yi|g(β, bi), κ(ui)Σi)

×φq(bi|0, κ(ui)D)f(β, bi, ui|yi,θ∗(t))} dβ dbi dui.

One can use the Gibbs sampler algorithm with Metropolis-Hastings steps to
generate samples of [β, bi, ui|yi,θ∗(t)] by sampling of the full conditional distri-
butions from [ui|β, bi,yi,θ∗(t)], [bi|β, ui,yi,θ∗(t)] and [β|bi, ui,yi,θ∗(t)].
Assuming that {(β(1), b

(1)
i , u

(1)
i ), . . . , (β(mi), b

(mi)
i , u

(mi)
i )} is a random sample of

size mi from [β, bi, ui|yi,θ∗(t)], the E Step at the (t+1)th iteration can be written
as

Q(θ∗|θ∗(t)) =
n∑
i=1

Qi(θ
∗|θ∗(t))

=
n∑
i=1

[
1
mi

mi∑
j=1

`(θ∗;yi,β
(j), b

(j)
i , u

(j)
i )

]
∝

n∑
i=1

mi∑
j=1

1
mi

[
−ni

2
log(σ2)− κ−1(u

(j)
i )

2σ2 ‖yi − g(β
(j)
i , b

(j)
i )‖2

]
+

n∑
i=1

mi∑
j=1

1
mi

[
− 1

2
log(|D|)− κ−1(u

(j)
i )

2
b

(j)>
i D−1b

(j)
i

]
.

(3)

In M Step, the REML for the variance components, which are solutions from (3)
are given by

σ̂2(t+1) =
1

N

n∑
i=1

mi∑
j=1

1

mi

[
κ−1(u

(j)
i )‖yi − g(β

(j)
i , b

(j)
i )‖2

]
,



Gomes and Russo 187

and

D̂(t+1) =
1

n

n∑
i=1

mi∑
j=1

1

mi

[
κ−1(u

(j)
i )diag

(
b

(j)
i b

(j)>
i

)]
.

The fixed effects in the context of REML can be obtained by β̂ = E(β|y, θ̂∗).
The standard error estimates follow the expressions developed in Louis (1982),
with the observed information matrix written as

−E
{
∂2`(θ|y,β, b,u)

∂θ∂θ>

}∣∣∣∣
θ=θ̂∗

− V ar

{
∂`(θ|y,β, b,u)

∂θ

}∣∣∣∣
θ=θ̂∗

.

The expectation and variance are computed with respect to f(β, bi, ui, |yi,
θ∗(t)).

4 Application

As an illustration, consider the study of the pharmacokinetics of the drug theo-
phylline used in the treatment of asthma (Pinheiro e Bates, 2000). The drug
was given orally to twelve patients, whose blood samples were collected in 11
times points after administration, within a maximum of 25 hours, and the serum
concentration of the substance (in mg/L) was measured (Figure 1). The first-
order compartment model is usually reparameterizated in terms of the loga-
rithm of the clearance and constant rates. Thus, the model can be written as:
Ct = Dose exp(lKe+lKa−lCl)

exp(lKa)−exp(lKe)
{exp[− exp(lKe)t] − exp[− exp(lKa)t]}, where Ct de-

notes the concentration observed at the time t (mg/L), t is the time (in hours),
Dose is the dose, lKe = log(Ke), lKa = log(Ka) and lCl = log(Cl). Ke is the
constant elimination rate (1/hour), Ka is the constant absorption rate (1/hour)
which describes how the drug is absorbed from the intestine into the bloodstream,
Cl is the clearance rate (L/kg) representing the volume of blood from which the
drug is eliminated per unit of time.

REML and ML estimates for variance components parameters are presented in
Table 1. Note that the estimates are close, and we highlight the REMLs of the
variance components, which are generally larger than the ML estimates. A based-
REML fixed effects estimates are also shown as well as the ML estimator.

5 Discussion and remarks

REML and ML estimates to variance components in NLME were obtained sup-
posing to the within-subject errors and random effects are normal, Slash and
Student-t distributed. Here, we set four degrees of freedom for Student-t and
Slash. We run the MCEM algorithm for an initial 11,000 iteration, in the end
of the process we discarded half of them and thinning it in 100 to obtain the
convergence. The process to REML was slower than ML to converge. In future
research we will investigate REML estimator by Monte Carlo simulation.

Acknowledgments: The first author thanks to Fundação de Amparo à Pesquisa
do Estado do Amazonas - FAPEAM, Brazil. Second author thanks to Fundação
de Amparo à Pesquisa do Estado de São Paulo - FAPESP, Brazil.
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FIGURE 1. Serum concentration (mg/L) in the times of the drug administration
to twelve patients.

TABLE 1. REML and ML estimates (standard errors) for theophylline serum
concentration data

Par Normal Student4 Slash4

ML REML ML REML ML REML

lKe -2.460 -2.458 -2.434 -2.460 -2.443 -2.457
(0.050) (0.057) (0.040) (0.047) (0.047) (0.053)

lKa 0.401 0.493 0.342 0.547 0.414 0.473
(0.056) (0.058) (0.046) (0.049) (0.052) (0.055)

lCl -3.206 -3.229 -3.137 -3.230 -3.195 -3.222
(0.035) (0.039) (0.028) (0.032) (0.032) (0.036)

σ2 0.501 0.504 0.296 0.313 0.322 0.327
(0.063) (0.064) (0.040) (0.043) (0.043) (0.043)

τ1 0.001 0.001 0.001 0.001 0.000 0.001
(< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)

τ2 0.441 0.490 0.509 0.557 0.368 0.416
(0.007) (0.007) (0.005) (0.006) (0.005) (0.005)

τ3 0.029 0.031 0.023 0.027 0.020 0.023
(0.007) (0.007) (0.006) (0.006) (0.005) (0.005)
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Abstract: This study focuses on parameter inference in a pulmonary blood cir-
culation model for mice. It utilises a fluid dynamics network model that takes
selected parameter values and aims to mimic features of the pulmonary haemody-
namics under normal physiological and pathological conditions. This is of medical
relevance as it allows monitoring of the progression of pulmonary hypertension.
Constraint nonlinear optimization is successfully used to learn the parameter
values.
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1 Introduction

Pulmonary hypertension (PH) is a leading cause of right heart failure. It involves
vascular remodelling including stiffening of the large and small arteries. Clini-
cally, PH is diagnosed by analysing blood pressure (BP) measured invasively in
the large pulmonary arteries. However, key parameters, including arterial stiff-
ness, cannot be measured in vivo. This creates the need for methods to estimate
parameters indirectly from the measured haemodynamic blood flow and pres-
sure data. This study uses a 1D fluid dynamical network model that predicts
blood flow and pressure in the large pulmonary arteries (for details see Qureshi
et al., 2017). The model is used to predict blood flow and pressure in healthy
and hypoxic mice, for which data were acquired invasively (Tabima et al., 2012).

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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The method discussed here is not specific to mice, but can easily be extended
to analysis of similar data from humans for whom repeated invasive procedures
are required for diagnosis and treatment. The ultimate goal, and hence the mo-
tivation behind inferring the parameters, is to minimise the number of invasive
procedures for PH patients, as well as to assist clinicians in devising better treat-
ment strategies. Thus, this study focuses on inference of key parameters pertinent
to disease detection and treatment. We show that using this statistical method,
BP prediction is improved in healthy and hypoxic mice compared to the reference
prediction obtained by using the best parameter guesses in Qureshi et al. (2017).
This leads to enhanced reliability of key parameter estimates obtained using the
model.

2 Mathematical Model

The 1D fluid-structure model is derived from the incompressible axisymmetric
Navier–Stokes equations for a Newtonian fluid, coupled with a constitutive wall
model predicting stiffness of the blood vessels. In addition, assuming that the
vessels are cylindrical and the wavelength is significantly longer than their radii,
conservation of mass and momentum give

∂A

∂t
+
∂q

∂x
= 0,

∂q

∂t
+

∂

∂x

q2

A
+
A

ρ

∂p

∂x
= −2πµr

δ

q

A
, (1)

where x (cm) and t (s) are the axial and temporal coordinates, p (mmHg) is
blood pressure, q (ml/s) is blood flow rate, A (cm2) is the cross-sectional area,
δ = 40 µm is the thickness of Stokes-layer in velocity profile, ρ = 1.055 g/ml is
the blood density and µ = 0.0528 cm2/s is the viscosity. Assuming the arterial
walls are homogeneous, isotropic and thin, the pressure-area relation is given by

p− p0 =
4

3

Eh

r0

(
1−

√
A0

A

)
=⇒ c2(p) =

A

ρ

∂p

∂A
=

2

3ρ

Eh

r0

√
A0

A
, (2)

where c (cm/s) is the wave speed, A0 is the vessel cross-sectional area and r0 (cm)
the vessel radius at the pressure p0.

The arterial network geometry, including length and radii for the 13 largest vessels
in the pulmonary vasculature is obtained from a micro CT image of a healthy
mouse lung (see Figure 1(a)). To solve the equations, boundary conditions are
specified at the inlet and outlet vessels in the network. The system is driven by
imposing an invasively measured flow profile at the inlet of the main pulmonary
artery (MPA), while conservation of blood flow and continuity of pressure are
enforced across the bifurcations. For the outflow boundary conditions, 3-element
Windkessel models (two resistors R1, R2 and a capacitor C) are attached to
the outlet of each of the seven terminal arteries in the network. The outflow
boundary conditions account for the lumped effects of pulmonary haemodynamics
beyond the truncated network of large arteries. The Windkessel model relates flow
and pressure in the time domain over a cardiac cycle of length T via the input
impedance Z(ω) by:

Z(ω) = R1 +
R2

1 + iωCR2
=⇒ q(L, t) =

1

T

∫ T

0

p(L, t− τ)Z(τ)dτ, (3)
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where R1 and R2 are the proximal and distal vascular resistances beyond each
truncated artery, R1 +R2 is the total resistance and C is the total compliance of
the vascular bed. The model takes a number of parameters as input and predicts
the flow and pressure at different locations along the large pulmonary arteries.
One of these parameters is the arterial stiffness, which significantly increases
during the PH and which can be expressed as follows: Eh

r0
= f1 exp(f2r0) + f3,

where E and h are the Young’s modulus and thickness of the arterial wall, and
f1 (g cm/s2), f2 (cm−1), f3 (g cm/s2) are the material parameters.

3 Methodology

Let the statistical model be defined by yi = f(xi;θ) + εi, where yi ∈ y are the
noisy measured flow and pressure, f(.) describes the system behaviour that comes
from numerically solving the fluids model, θ are the parameters that we wish to
infer from the observed flow and pressure and they are bounded, xi ∈ x denote
other input variables and ε are the errors, which we assume are i.i.d and follow a
Gaussian distribution. The objective function to be minimised using Constraint
Nonlinear Optimization is the Residual Sum of Squares,

RSS =
∑
i

(yi − f(xi;θ))2. (4)

Under the assumption of i.i.d. Gaussian errors, the log likelihood of the data
takes the form

log(L) = −n log
√

2πσ2 − RSS

2σ2
. (5)

A Sequential Quadratic Programming (SQP) gradient-based method is used to
minimise the RSS (Boggs et al., 2000).

4 Simulations

Simulations are set up to mimic experimental waveforms, which are recorded in
the MPA in healthy and hypoxic mice (Tabima et al., 2012). The parameter set
to be inferred initially includes θ = (Eh

r0
, r1, r2, c1), where r1, r2 are resistances

(r1 = (1− 0.5r1)R01, r2 = (1− 0.5r2)R02, R01 and R02 are nominal resistances)
and c1 capacitance (C = (1−0.5c1)C0, C0 is nominal capacitance) used to predict
parameters assigned at the outlet and Eh

r0
is the elastance used to predict stiffness

in all vessels. The parameter set is subsequently extended to include a tapering
factor, ζ, for the large vessels in the network, as there was evidence of vessel radii
decreasing along their length, but this was not quantified during the segmentation
process. Since the parameters are on different scales (Eh

r0
∈ [2.424 × 105, 6.85 ×

106], r1, r2, c1 ∈ [−2, 2], and ζ ∈ [0, 1.2]), to avoid having an ill-conditioned
problem induced by a high condition number in the Hessian matrix, we rescale
the parameters to have the same order of magnitude (Yang et al., 2010). Certain
parameter configurations violate the model assumptions; these are marked by
setting RSS to a high value (1010). The RSS is calculated for pressure and we
aim to find the set of parameters that minimise the RSS. The initial parameter
values are uniformly drawn from a Sobol sequence to ensure a good coverage of
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the multidimensional parameter space (Bratley et al., 1988). The algorithm is
iterated until it satisfies the convergence criterion, i.e. |θi − θi+1| < 10−11. One
forward simulation of the mathematical model takes 13 seconds to complete.
The optimization problem required 3 hours on average to reach convergence of
parameter estimates.

5 Results and Discussion

Regardless of the initial value, the algorithm converged for both the healthy and
the hypoxic mouse studied. Figure 1 shows our optimised pressure waveform, plot-
ted alongside the measured and the reference pressure for the 4D optimization
problem. Panel (d) shows the pressure fit for the hypoxic mouse. The optimized fit
predicts data better than nominal parameter values, supported by a significantly
smaller RSS than the one between the reference and the measured pressure (panel
(b)). For the healthy mouse (panel (c)), the simulated pressure closely follows the
measured pressure except near the peak, where an offset is registered. Neverthe-
less, in this case too, a clear improvement is achieved over the reference pressure.
We hypothesise that this peak shift is a consequence of (i) the model specify-
ing the elastic behaviour of the blood vessels and/or the boundary conditions,
(ii) uncertainty of the geometry measurements which are not specific to a given
mouse, (iii) a combination of (i) and (ii). The overall model prediction appears
better for the hypoxic than the healthy mouse. When the tapering parameter
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FIGURE 1. (a) The arterial network for the fluid dynamical model, (b) Com-
parison of RSS between reference and optimised pressure simulations, (c) & (d)
Comparison of simulated pressure using reference and optimised parameters val-
ues for the healthy and hypoxic mice.

is included in the analysis, a reduction of 31% is registered in the RSS for the
control mouse. These results are summarised in Figure 2. Panel (b) illustrates the
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optimised pressure waveform for the 5D problem plotted alongside that for the
4D case and the measured pressure is superimposed. While the deviation from
the measured data has decreased, the offset in the peak value is still present. In
order to select between the two competing models, the 5D model, which includes
a tapering parameter, and the 4D one, model selection using the Akaike Infor-
mation Criterion - AIC (Akaike, 1971) and Bayesian Information Criterion - BIC
(Schwarz, 1978) can be performed. However, the estimate of the error variance,
σ2 needed to calculate the log likelihood of the data (5) is not available1. Hence,
we take the inverse approach and calculate what error variance would make us
favour the 5D model over the 4D model. Calculations indicate that if σ2 < 21, i.e.
signal-to-noise ratio, SNR > 2.40, then the 5D model is preferred according to
the AIC; if σ2 < 6.06, i.e. SNR > 8.30, then the 5D model is favoured according
to the BIC.
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FIGURE 2. (a) Comparison of RSS between the optimised pressure simulations
for the healthy mouse, (b) Comparison of simulated pressure using 4D and 5D
optimised parameters values for the healthy mouse.

In conclusion, parameters have successfully been inferred for this fluid-structure
model. Future work will include improvements in the model to capture a more
realistic elastic behaviour of the vessel wall. This may address the alignment issue
observed near the peak pressure for the healthy mouse by better controlling the
steepness of the pressure. Additionally, to account for the uncertainty associated
with the geometry measurements, we will estimate them as part of the inference
procedure. Finally, we also aim to apply the statistical methods presented here
to a population of mice, as well as to data from human patients.

Acknowledgments: This work is part of the research programme of the Cen-
tre for multiscale soft tissue mechanics with application to heart & cancer (SofT-
Mech), funded by the Engineering and Physical Sciences Research Council (EP-
SRC) of the UK, grant reference number EP/N014642/1. Olufsen, Haider and
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University of Wisconsin, Madison.

1In principle, we could infer the variance, but due to the slight model mis-
match apparent from Figures 1 and 2, the results would be misleading.
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Abstract: The likelihood function is often intractable in discrete-valued time
series models. Several simulation-based methods to approximate the likelihood
have been proposed in the literature. Although simulation methods may make
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series of counts. Maximization of the pairwise likelihood is carried out with a
pairwise version of the expectation maximization algorithm.
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1 Pairwise fitting of parameter-driven models

Parameter-driven models (Cox, 1981) are often considered to extend general-
ized linear models for time series analysis of counts. The observations Yt are as-
sumed to be independent random variables conditionally on a latent process Ut,
t = 1, . . . , n. The conditional mean of the observations is E(Yt|Ut) = g(xT

t β+Ut),
where g(·) is a link function, xt is a vector of covariates with associated regres-
sion parameters β and Ut is an autoregressive and moving average process. For
these models, maximum likelihood estimation is usually intractable because the
likelihood is the n-dimensional integral

L(θ; y) =

∫
Rn

n∏
t=1

f(yt|ut; θ)f(u1, . . . , un; θ)du1 . . . dun (1)

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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where y = (y1, . . . , yn)T and the model parameter θ includes the regression pa-
rameters β and the parameters of the latent process. Several simulation-based
strategies for approximate likelihood inference have been suggested in the litera-
ture, see, for example, Davis and Dunsmuir (2016) and the references therein.

In this paper, we focus on an alternative non-simulation approach based on the
idea of pairwise likelihood (Varin et al., 2011) that allows for the replacement of
the n-fold integration in (1) with a set of two-dimensional integrals. We consider
estimators obtained by maximizing the pairwise likelihood of order d that involves
only pairs of observations that are far apart no more than d lags,

L(d)
p (θ; y) =

n∏
t=l+1

d∏
l=1

∫
R2

f(yt−l|ut−l; θ)f(yt|ut; θ)f(ut−l, ut; θ)dut−ldut.

It can be shown that the distance d that maximize the efficiency of the esti-
mators derived from the pairwise likelihood depend on the order of the latent
autoregressive and moving average process.

Instead of a direct maximization of the pairwise likelihood, we develop a pairwise
version of the expectation maximization algorithm. The expectation step of the
algorithm requires to compute the conditional expected value of a set of bivariate
complete log-likelihoods,

Q(θ|θ̂(i)) =

n∑
t=l+1

d∑
l=1

E
{

log f(yt−l, yt, Ut−l, Ut; θ)
∣∣∣yt−l, yt; θ̂(i)

}
.

The above function can be efficiently approximated with double Gauss-Hermite
quadrature. The maximization step is replaced with a conditional maximization
of each model parameter with the other parameters fixed at their previous values.
The virtue of the conditional maximization is that simple closed-form expressions
for the maxima are available, thus making the implementation of the algorithm
particularly convenient.

Simulation studies not shown in this short paper indicate that the pairwise fitting
method compare well in terms of statistical and numerical efficiency with popular
approaches for inference in parameter-driven models implemented in R (R Core
Team, 2016).

2 Application

We illustrate our fitting method using the meningo.age data set included in the
R package surveillance (Höhle et al., 2016). The data concern monthly counts
of meningococcal infections in France during the period 1985–1997 subdivided
into four age groups, see Figure 1. The total number of monthly observations is
n = 156.

The standard analysis of this type of surveillance data assumes that infection
counts Yt for each age group are marginally distributed as independent Pois-
son random variables with mean exp(ηt) specified in way to account for annual
seasonality and linear trend,

ηt = β0 + β1 cos

(
2π

t

12

)
+ β2 sin

(
2π

t

12

)
+ β3

t

156
. (2)
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FIGURE 1. Monthly counts of meningococcal infections in France for the period
1985–1997. Source: R package surveillance (Höhle et al., 2016).

In order to handle for the presence of serial correlation, we use the pairwise
expectation maximization algorithm for fitting the parameter-driven model that
assumes that Yt follows a Poisson distribution with mean exp(ηt+Ut), where the
linear preditor ηt is specified as in (2) and Ut is an autoregressive model of order
one.

The parameter estimates and the corresponding standard errors obtained with
the standard analysis and the parameter-driven model are displayed in Table 1.
Results of the standard analysis indicate significant seasonality and decreasing
linear trend for all age groups. The fitted parameter-driven models confirm the
conclusions of the standard analysis for all age groups apart from infants (age
< 1), where there is significant autocorrelation and no evidence of a decreasing
trend of infections. The application illustrates how ignoring serial correlation in
surveillance data can lead to misleading inference about sensible quantities such
as trends.
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Curie grant agreement no. 699980.
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TABLE 1. Parameter estimates (standard errors) for models fitted to the montlhy
counts of meningococcal infections in France for the period 1985–1997.

Standard Poisson regression

age < 1 age 1− 5 age 5− 20 age > 20

β0 1.64 (0.07) 2.37 (0.05) 2.71 (0.05) 1.95 (0.06)
β1 0.17 (0.06) 0.16 (0.04) 0.12 (0.04) 0.21 (0.05)
β2 0.37 (0.06) 0.31 (0.04) 0.26 (0.04) 0.43 (0.05)
β3 −0.43 (0.13) −0.75 (0.10) −0.71 (0.09) −0.31 (0.11)

Parameter-driven

age < 1 age 1− 5 age 5− 20 age > 20

β0 1.60 (0.13) 2.33 (0.07) 2.67 (0.07) 1.93 (0.07)
β1 0.16 (0.08) 0.15 (0.05) 0.11 (0.05) 0.21 (0.05)
β2 0.37 (0.07) 0.31 (0.06) 0.25 (0.05) 0.43 (0.05)
β3 −0.42 (0.25) −0.72 (0.12) −0.69 (0.11) −0.28 (0.13)
φ 0.73 (0.35) 0.32 (0.37) 0.21 (0.24) 0.48 (0.43)
σ 0.19 (0.07) 0.21 (0.06) 0.23 (0.04) 0.13 (0.06)
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Abstract: We discuss the problem of estimating a changepoint expressed as a
linear function of covariates in piecewise constant regression models. Parameters
involved in the change-point function are unbounded, therefore conventional grid
search techniques result to be unfeasible for estimation. We propose an itera-
tive algorithm which is able to work in this framework, and illustrate it by an
application to a real dataset.
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1 Introduction

Changepoint detection is a commonly addressed problem, especially in Econo-
metrics, Biology, Genetic and Bioinformatics. A piecewise constant regression
model with a single changepoint can be expressed as

µi = β0 + β1I(xi > ψ), (1)

where the mean value µ of the response variable Y changes abruptly at the value
ψ of the covariate x. Most of the algorithms and applications developed are con-
cerned with estimation of the number and locations of several changepoints. The
most widespread approach is grid search based on dynamic programming (Jack-
son et al., 2005), which can yield the global solution with a O(n) computational
cost for any number of breaks (Maidstone et al., 2016).

In this paper we consider the problem of possible heterogeneity in the change-
point, which means to replace in (1) ψ with ψi. Some papers address the problem
by introducing random effects in the model (Muggeo et al. 2014, Jackson and
Sharples 2004). However, no papers address the problem of modelling possible
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heterogeneity due to covariates, namely when ψi = ψ(vvvi; θ). Grid search algo-
rithms are difficult to use, since the parameter θ has unbounded support. In this
paper we consider an abrupt change model with covariate-dependent changepoint,
ψ(vvvi; θ) = θ0 + θ1vi and introduce a heuristic, iterative algorithm for estimation.

2 Methods

We consider the following model where the mean level of the response Y exhibits
a jump at given values ψ of the explanatory variable x. However, ψ is supposed
to depend linearly on a single additional covariate v:

µi = β0 + β1I(xi > θ0 + θ1vi). (2)

If the point (v, x) lies below the straight line ψ = θ0 + θ1v, the mean level of Y is
β0, while it shifts instantaneously to β0 + β1 above. Estimating (2) by searching
for θ̂1 and θ̂2 on a grid is obviously very difficult, since these parameters do not
have a finite support. We therefore propose to use the identity

I(xi > θ0 + θ1vi) =
1

2

xi − θ0 − θ1vi
|xi − θ0 − θ1vi|

+
1

2
(3)

for xi 6= θ0 + θ1vi, which substituted in (2) gives

µi = β0 + β1

(
1

2
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)

= β0 + β1
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)
+

+ (−β1θ0)
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|xi − θ0 − θ1vi|

)
+ (−β1θ1)

(
1

2

vi
|xi − θ0 − θ1vi|

)

= β0 + β1zi + γ0wi0 + γ1wi1, (4)

where
γ0 = −β1θ0 and γ1 = −β1θ1. (5)

Note the ‘working’ covariates

zi =

(
1

2

xi

|xi − θ̃0 − θ̃1vi|
+

1

2

)
,

wi0 =

(
1

2

1

|xi − θ̃0 − θ̃1vi|

)
,

and

wi1 =

(
1

2

vi

|xi − θ̃0 − θ̃1vi|

)
(6)

enter model (4) linearly, with θ̃0 and θ̃1 meaning approximate values.

Formulas above suggest the following simple iterative algorithm:

1. choose starting values θ̃0 and θ̃1;
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2. compute the working covariates (6);

3. estimate the working linear model (4) and extract β̂1, γ̂0 and γ̂1;

4. update the parameter values via θ̂0 = −γ̂0/β̂1 and θ̂1 = −γ̂1/β̂1;

5. set θ̃0 = θ̂0 and θ̃1 = θ̂1 and iterate 2 to 4 until convergence.

A possible strategy for initializing the algorithm is to set starting values θ̃1 =
0, and θ̃0 = x̄, where x̄ is the sample mean of the xis. Unfortunately, simple
application of the aforementioned algorithm will not work properly. In fact, the
likelihood typically exhibits many local optima. Besides, denominators of the
working covariates (6) go to zero when xi ≈ θ̃0 + θ̃1vi, namely when points
(vi, xi) are close to the approximate straight line. In the next section we illustrate
a simple point scaling that improves feasibility of the algorithm.

3 Scaling v and x values

The idea is moving points (vi, xi) away from the straight line x = θ̃0 + θ̃1v. Note
that, when θ̃1 = 0, we can simply scale the covariate x, since the approximate
change-point θ̃0 is unique. Therefore, we operate a rotation of the points (vi, xi)
to reduce to this suitable situation. At this aim, we consider the angle defined
by the approximate straight line, namely ρ̃ = arctan(θ̃1), and apply the following
transformation: (

v∗i
x∗i

)
= Λ̃

(
vi
xi

)
, (7)

where Λ̃ is the rotation matrix

Λ̃ =

(
λ̃11 λ̃12

λ̃21 λ̃22

)
=

(
cos(ρ̃) sin(ρ̃)
− sin(ρ̃) cos(ρ̃)

)
. (8)

Rewriting the rotated covariate x∗ according to (7) gives

x∗ = θ̃∗0

λ̃21v + λ̃22x = θ̃∗0

λ̃22x = θ̃∗0 − λ̃21v

and

x =
θ̃∗0

λ̃22

− λ̃21

λ̃22

v,

so that

θ̃0 =
θ̃∗0

λ̃22

and θ̃1 = − λ̃21

λ̃22

, (9)

and, conversely,
θ̃∗0 = λ̃22θ̃0 and θ̃∗1 = 0. (10)

Note that the slope of the rotated line θ̃∗1 is 0 by construction, and this makes
easier to operate the scaling. We use a scaling factor c ∈ (0, 1) and compute a
lower, θ̃∗−0 , and a upper, θ̃∗+0 , ‘threshold’ value:

θ̃∗−0 = θ̃∗0 − c(θ̃∗0 − x∗(1)), θ̃∗+0 = θ̃∗0 + c(x∗(n) − θ̃∗0).
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We therefore consider the standard linear trasformation

x′i = x∗(1) + (x∗i − x∗(1))(1− c) (11)

for x∗i ∈ [x∗(1), θ̃
∗
0 ], and

x′i = θ̃∗+0 + (x∗i − θ̃∗0)(1− c) (12)

for x∗i ∈ (θ̃∗0 , x
∗
(n)]. Figures 1 and 2 show the scalement mechanism through an

example on a set of n = 100 randomly generated covariate pairs, assuming v ∼
N (2, 32) and x ∼ N (5, 62). Supposing the starting straight line given by xi =
8 + 2vi (Figure 1, left panel), the rotated straight line, on the rotated points,
is x∗ = 3.58 (Figure 1, right panel). The left panel in Figure 2 represents the
rotated points without scaling x∗, namely when c = 0, while the right panel
shows the effect of a scaling factor c = 0.1; note the scaling induces a point-free
interval (dashed lines) in the neighbourhood of θ̃∗0 (solid line). Finally, we use x′,
v′ = v∗ and the rotated straight line to compute auxiliary covariates (6) and fit
the working linear model (4).

We stress that, despite the multiple transformations induced to the covariates,
estimates of the mean levels β0 and β1 are substantially unaffected, while the
straight line parameter estimates, of course, are. In particular, the rotation only
induces a reparametrization according to (9) and (10), while the scaling should
also favour to skip some spurious optima. Note that c should be reduced (halved
for example) throughout iterations any time the likelihood decreases.

4 Real data example

To illustrate, we apply the proposed algorithm to the airquality dataset shipped
with the R environment. The dataset consists of 154 daily observations concerning
some air quality values in New York from May 1, 1973 to September 30, 1973.
Tropospheric ozone is an atmospheric pollutant, and its concentration represents
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FIGURE 1. Example of starting straight line in a toy dataset (left panel) and
rotated points and straight line (right panel).
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FIGURE 2. Only rotated (left panel) vs rotated and scaled data (right panel).
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FIGURE 3. Airquality dataset: wind-temperature scatterplot with point size
proportional to the ozone level and estimated linear change-point (dashed line).

a common variable of interest in environmental science. The ozone levels may
depend on many factors, including atmospheric agents, such as temperature and
wind. Therefore we model the mean levels of ozone (Y , parts per billion) as a
function of temperature (x, degrees Fahrenheit) and wind (v, average speed in
miles per hour). Figure 3 displays the wind-temperature scatterplot with point
sizes proportional to the ozone levels for the n = 116 complete records. From a
visual inspection the concentration of the pollutant seems to increase abruptly
in the top-left region of the plot; in particular, a threshold temperature value
appears to be approximately 80 degrees. Estimating model (2), assuming the Yis
to be independent and Gaussian, could yield additional information.

To initialize the algorithm we choose ψ̃ = 80 (θ̃1 = 0) as starting guess. The fitted
regression equation is µ̂i = 26.18+57.82 I(xi > 72.83+1.24vi). Figure 3 displays
the estimated straight line on the scatterplot. The mean ozone level appears to
increase abruptly from about 26 to 84 p.p.b as temperature goes beyond some
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‘critical’ value. In the absence of wind, the ‘critical’ value is about 73 degrees.
Wind seems to have a ‘positive’ effect in limiting the ozone levels: in fact, as the
wind increases, temperature has to increase further to cause a ‘jump’ in the ozone
levels. The BIC provides good evidence supporting the choice of this regression
model.
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Abstract: Although increasingly complicated (moderated) mediation models are
being employed in practice, most of existing mediation literature has not dealt
with model diagnostics. We propose a Bayesian approach to the detection of influ-
ential observations (or sets of observations). Importance sampling with weights
which take advantage of the dependence structure in mediation models is uti-
lized in order to estimate the case-deleted posterior means of the parameters.
The method is applied to the ordinal measurements of patients’ willingness to
recommend hospitals collected on patients in a large European study to answer
the research question whether the outcome depends on recorded system-level
features in the organization of nursing care, and whether the related effect is me-
diated by two measurements of nursing care left undone and possibly moderated
by nurse education.

Keywords: Bayesian mediation models; Influential observations, Importance
sampling.

1 Introduction

Recent advances in the literature on mediation models extended the simple three
variable (outcome, mediator, regressor) mediation model to complex models with
multiple mediators, non-continuous outcome, multi-level setting and other gen-
eralizations. The Bayesian approach, which we will also adopt in this paper, is
often utilized in such complicated models because the generalizations are more
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Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
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straightforward. However, no general model diagnostic tool for identification of
influential observations is readily available for these models and we deem the
development of such instruments as necessity. In this paper, we propose the use
of importance sampling with weights which take advantage of the dependence
structure in mediation models in order to estimate the case-deleted posterior
means of the model parameters and other characteristics hence allowing for iden-
tification of influential observations. Suitable importance weights can be used for
leave-one-out diagnostics, as well as leaving out all observations from a specific
hospital. The methods shown here on one specific mediation model can be used
in the same fashion in any mediation model with or without latent variables.

2 The RN4CAST Study and the Research Question

The Registered Nurse Forecasting (RN4CAST) study (Sermeus et al., 2011) is
a cross-sectional survey of patients and nurses conducted in 11 European coun-
tries, in which the patients and nurses are further clustered in hospitals and nurs-
ing units. The data collected in 2009 – 2010 during this FP7-funded project con-
tain information on various hospital characteristics such as nurse staffing, nurse
education, number of beds, etc. On top of that, the nurses were interviewed on
various aspects of the nursing care such as their well-being, satisfaction with their
job, their willingness to recommend the hospital and overtime work. The patients
provided information on their satisfaction with hospital care and hospital rating.

In our previous work (Rusá et al., 2017), we presented a multi-level moder-
ated mediation model with ordinal outcome in order to evaluate on how the
patients’ willingness to recommend the hospital (patient’s satisfaction) relates
to the system-level features in the organization or nursing care and whether the
association is mediated by two measurements of nursing care left undone and
possibly moderated by nurse education. In this paper, we aim to explore if there
exist hospitals which are influential with respect to such a model. In particular,
we want to investigate the change in the indirect effects.

3 Multi-Level Moderation Mediation Model with
Ordinal Outcome

We denote the patient outcome (patients’ willingness to recommend the hospital)
by Yijk which represents the value of the outcome measured on an ordinal scale
0, . . . , L on the i-th patient from hospital j and country k. It is assumed that
there exist unknown thresholds α = (α1, . . . , αL)T, and a latent variable Y ?ijk
such that

Yijk = l, iff αl < Y ?ijk ≤ αl+1, l = 0, . . . , L,

−∞ = α0 < α1 < . . . < αL < αL+1 =∞.

The purpose of the model studied in Rusá et al. (2017) was to ascertain whether
there was a significant effect of nurse staffing, the quality of nurse work envi-
ronment and other hospital characteristics (Xjk) on the patient outcome (Yijk)
and if it was mediated by two mediators of care left undone (M1,jk and M2,jk).
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Moreover, we assessed the moderating effect of nurse education (these terms are
included in the covariate vector Xjk).

In order to deal with the multi-level structure of the RN4CAST data, we included
the hospital-level random effects (Ujk). Since countries were not sampled but
chosen and there are just a handful of countries, we have considered their effects
as fixed. Consequently, the considered model equation for the latent outcome
variables had the following form:

Y ?ijk = βk + X>jk βX + M>
jk βM + Ujk + εijk, (1)

Mt,jk = γt,k + X>jk γt,X + ξt,jk, t = 1, 2, (2)

Ujk
i.i.d.∼ N

(
0, σ2

hospital

)
, εijk

i.i.d.∼ N
(
0, σ2

ε

)
,

ξjk =
(
ξ1,jk, ξ2,jk

)> i.i.d.∼ NT
(
0, Σξ

)
.

We assume that Ujk, εijk, ξ1,jk, ξ2,jk are mutually independent. For βk, βX , βM ,
γ1,k, γ2,k, γ1,X , γ2,X , we used vague normal priors. As for Σξ, we will parametrize
it using the variance of ξ1,jk denoted by σ2

ξ1, the variance of ξ2,jk denoted by
σ2
ξ2 and their correlation ρ. For the standard deviations σhospital, σε σξ1, σξ2,

we specify improper uniform priors on (0,∞). A noninformative prior was con-
sidered for ρ: ρ ∼ U(−1, 1) (a uniform distribution on (−1, 1)). The following
noninformative prior was used for the thresholds (Song and Lee, 2012, p.117):
p(α2, . . . , αL−1) ∝ C, for α1 < α2 < . . . < αL−1 < αL. The samples from
the posterior distributions were obtained using the Stan software. The infer-
ence is based on MCMC methods, mainly the Hamiltonian Monte Carlo and
the Metropolis algorithm.

4 The Detection of Influential Observations

Besides the estimation of the parameters in our model, it may be of interest to
assess the influence of some (sets of) observations on the parameter estimates. In
case of our application, it makes sense to evaluate the change in the estimates of
indirect effects based on the data without a specific hospital. To this end, impor-
tance sampling has been utilized in the literature for different sorts of models,
see e.g. Bradlow and Zaslavsky (1997). We have generalized this approach to our
moderated mediation model with ordinal outcome as sketched below.

Let θ1 and θ2, respectively, be the vectors containing all the model parameters
from equations (1) and (2) including the augmented data, respectively. The im-
portance weights needed to evaluate the influence of a hospital j in a country k
are defined as

w?jk (θ,Y ,m) =
[
p
(
Yjk|Y ?

jk,α
)
p
(
Y ?
jk|θ1,Ujk

)
p (mjk|θ2)

]−1
, (3)

where θ = (θ1, θ2) and Y ?
jk contains all latent data Y ?ijk in hospital j in a coun-

try k. Further, m and Y ?, respectively, contain all the mediator measurements
mjk and all latent data Y ?

jk, respectively. It can be shown that we can use the

standardized importance weights w
(n)
jk ∝ w

?
jk

(
θ(n),Y ,m

)
, n = 1, . . . , N to esti-

mate the hospital-deleted posterior mean of some function h(θ) using the MCMC
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sample θ(n) from the corresponding posterior distribution as
∑N
n=1 w

(n)
jk h(θ(n))

and the value of the cumulative distribution function of h(θ) without hospital j

in country k at a point a as
∑N
n=1 w

(n)
jk I{h(θ(n)) ≤ a}.

However, it turns out that such weights might be too unstable which could lead
to erroneous conclusions. This motivates us to define more flexible weights which
allow us to choose a suitable function g

(
Y ?
jk,Y ,m

)
such that some terms in (3)

almost cancel out when we multiply the original weights (3) with g
(
Y ?
jk,Y ,m

)
.

To be more specific, let

w?(g)jk (θ,Y ,m) =
[
p
(
Yjk|Y ?

jk,α
)
p
(
Y ?
jk|θ1,Ujk

)
p (mjk|θ2)

]−1

g
(
Y ?
jk,Y ,m

)
, (4)

for some g (θjk,Y ,m) > 0. Then we can suggest more appropriate and stable
importance weights, e.g. we can set

g
(
Y ?
jk,Y ,m

)
= p

(
Y ?
jk|µ̄jk

)
, (5)

where µ̄jk is the posterior mean of µjk = βk + X>jk βX + M>
jk βM + Ujk.
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intervals (whiskers) compared to the original point estimate (black solid line) and
CI (dashed lines).
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Let us note that the estimate computed with the importance weights (4) (that

is
∑N
n=1 w

(n)

(g)jkh(θ(n))) still converges in probability to the case-deleted posterior

mean of h(θ).

To illustrate the method described above, we computed the hospital-deleted es-
timates of the indirect effect of nurse working environment for all Belgium hos-
pitals. The hospital-deleted estimates based on the importance weights (4) with
g defined as in (5) and the original estimate are depicted in Figure 1 together
with the corresponding 95%-credible intervals. We can conclude that no estimate
of the indirect effect is excessively influenced by any Belgium hospital. Similarly,
we can estimate the country-deleted indirect effect with the importance weights
given by the product of the importance weights corresponding to the hospitals in
the the country. The estimates of the country-deleted indirect effects are shown
in Figure 2. We conclude that none of these estimates differ from the posterior
mean based on the whole dataset considerably so the model is stable with respect
to the influence of particular hospitals and countries.

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Country

C
as

e−
de

le
te

d 
es

tim
at

e

BE CH DE ES FI GR IE PL

FIGURE 2. The estimate of the indirect effect of nurse working environment
on the patient outcome without country k (red points) and the credible inter-
vals (whiskers) compared to the original point estimate (black solid line) and CI
(dashed lines).
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1 Introduction

Varying coefficient models (VCMs, Hastie and Tibshirani (1993)) are useful in the
presence of an effect modifier, a variable that “changes” the effect of a covariate
of interest on the response. In practice, VCMs gain flexibility with respect to
standard linear models by allowing one or more regression coefficients to vary
over a covariate such as time or space. Consider the simple case where there are
n observational units indexed by i = 1, . . . , n and one covariate xi whose effect on
the response yi depends on another variable zi; the latter could be a continuous
variable (e.g. temperature) or a time/space index (day, region, etc). Assuming yi
belonging to the exponential family, the linear predictor of a generalized VCM is

ηi = α+ f(zi)xi i = 1, . . . , n. (1)

We follow a Bayesian hierarchical framework where the varying coefficient f(zi),
z1 ≤ ... ≤ zn, in Eq. (1) is described by a vector of random effects θ =
(θ1, . . . , θn)T distributed at prior as a Gaussian Markov Random Field (GMRF,
Rue and Held (2005)). A GMRF is a multivariate normal distribution with mean
vector µ and a sparse precision Q(τ ) that depends on some hyper-parameters τ

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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and whose non zero pattern specifies conditional dependencies among neighbour-
ing random effects.

2 PC priors for varying coefficient models

Model (1) turns into a generalized linear regression model when the varying
coefficient f(z) is constant over z. We denote this model as the base model.
Therefore, the VCM in equation (1) can be seen as a flexible extension of the
base model. If we consider f(z) in terms of the vector of random effects θ =
(θ1, . . . , θn)T introduced in Section 1, the base model can be obtained setting the
hyper-parameters τ to a particular value (in Section 2.1 an example is discussed).

Elicitation of priors for precision parameters is a long standing topic in the liter-
ature on hierarchical Bayesian models. Simpson et al. (2016) recently introduced
a new framework for building priors in Bayesian hierarchical additive models,
denoted as Penalized Complexity (PC) priors. PC priors are computed based on
specific principles in which a model component is seen as a flexible parametriza-
tion of a base model. The idea is to penalize model complexity, defined in terms
of distance from the base model, in such a way that the base model is favoured
unless the available data support a more flexible one. Let ξ denote the flexibility
parameter and the base model be at ξ = 0, the complexity introduced by ξ > 0
is measured using the Kullback-Leibler divergence (Kullback and Leibler, 1951),

KLD(f ||g) =

∫
f(x; ξ) log

(
f(x; ξ)

g(x; ξ = 0)

)
dx (2)

for flexible model f and base model g. The PC prior is defined as an expo-
nential distribution on the (transformed) KLD distance scale d(ξ) = d(f ||g) =√

2KLD(ξ),
π(d(ξ)) = λ exp(−λd(ξ)) (3)

The PC prior in the original parameter scale ξ follows by a change of variable
transformation. For more details on PC priors we refer to the paper by Simpson
et al. (2016). In the next section we focus in particular on the PC prior for the
precision of a random walk, which is a suitable smoothing prior in the context of
VCM.

2.1 The random walk case

A useful parametrization for the varying coefficient in Model (1) is θi = β + δi,
where δi indicates deviation from the constant slope β at value zi. We focus on the
simple case of a random walk of order 1 (RW1) prior on θ = (θ1, . . . , θn)T, condi-
tionally on precision τ , the joint density is specified as π(θ|τ) ∝ τ (n−1)/2 exp

(
− τ

2

∑n−1
i=1 (θi+1 − θi)2).

The RW1 is a first-order intrinsic Gaussian Markov Random Field (Rue and Held
(2005) ch. 3) and describes deviations from an arbitrary overall level. In the con-
text of a VCM it is natural to interpret the latter as the constant slope β. In this
sense, the RW1 characterizes a varying coefficient in a very intuitive way: it is a
prior that shrinks towards a natural base model given by f(zi) = β, ∀i = 1, ..., n,
with τ controlling the amount of shrinkage. When τ−1 = 0 we have f(zi) = β,
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which implies the linear regression model, ηi = α + βxi. For τ−1 > 0, f(zi) in-
corporates higher degree of complexity w.r.t. the constant slope, leading to the
flexible VCM. For a generic Gaussian Random effect conditional on τ , the PC
prior for τ is the Gumbel type 2 with density (Simpson et al. 2016),

π(τ) = 0.5λτ−1.5 exp(−λτ−0.5); (4)

The parameter λ in Eq. (4) can be selected through a user-defined scaling ap-
proach. The user can encode the information available (at prior) on the degree of
flexibility of the VCM model with respect to the base model. Simpson et al (2015)
suggest eliciting the probability of a tail event regarding the marginal standard
deviation, i.e. Pr(1/

√
τ > U) = a, which yields λ = − log(a)/U .

2.2 An illustrative example

We use a well known example from the seminal paper by Hastie and Tibshirani
(1993). The data set includes 88 measurements from ethanol-fuelled engines on
nitric oxide and nitrogen dioxide concentration (NOx), equivalence ratio (E) and
compression ratio (C). An initial exploratory analysis suggests that the effect of
E on NOx is highly non-linear and that the effect of C on NOx may depend on
E. Hastie and Tibshirani (1993) proposed the following model:

NOx = f1(E) + f2(E)C + ε,

where both the intercept and slope are continuous functions of E, with ε a normal
error with noise variance σ2. Both f1 and f2 are modelled with a RW1 prior
conditional on precisions τ1 and τ2, respectively. To avoid scaling issues inherent
in RW models, the precision matrix of the RW1 has been rescaled as described
in Sørbye and Rue (2013). We assign the PC prior in Eq. (4) to each τi, with
the λi selected following the practical rule of thumb suggested by Simpson et al.
(2016): given the scale of the varying intercept and varying slope are expected
to be different, we scale the PC prior for τ1 such that Pr(U1 > 3) = 0.01 (i.e.
λ1 ≈ 1.5), and the one for τ2 such that Pr(U2 > 0.3) = 0.01 (i.e. λ2 ≈ 15). Note
that the higher λi, the greater the penalty for deviating from the base model.
PC priors can be implemented in INLA (Rue et al., 2009). We further assume
π(σ2) = InverseGamma(a, b), with a = 1 and b = 5 · 10−5, since the posterior for
the noise variance is usually robust to the prior.

Fig. (1) displays the fitted varying intercept and slope, with clear indication of
variation over the range of the effect modifier E. The different scale of f1 and f2

justifies the use of different λ’s for the two components. From Table (1) we see
that the posterior π(τ2|y) is robust for different parametrization of the PC prior.
Similar results, not shown here, hold for π(τ1|y).

3 Concluding remarks

Elicitation of a prior for the hyper-parameters τ is a crucial aspect for practi-
tioners who wish to specify a Bayesian VCM model, as τ regulates the degree
of flexibility of the VCM w.r.t. the base model. Regardless the chosen model for
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FIGURE 1. Fitted varying intercept (a) and slope (b).

TABLE 1. Posterior summaries for the precision of f2(E), τ2, for different PC
prior parameters (first column).

PC prior parameters; π(τ2|y): 0.025quant mean 0.975quant

U2 = 0.3 ; a = 0.01 (λ2 = 15) 16.76 69.25 189.22
U2 = 0.2 ; a = 0.01 (λ2 = 23) 16.69 69.1 188.8
U2 = 0.1 ; a = 0.01 (λ2 = 46) 16.61 68.94 188.52

the varying coefficient, a suitable PC prior shrinking to a sensible base model
can always be defined through the application of predefined principles. PC priors
avoid over-fitting by construction allowing the VCM model to arise only if data
requires it. This is a desirable property as varying coefficients are typically over-
parametrized models needing regularization. It is worth investigating the use of
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PC priors in more complex models involving spatially varying coefficients.
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1 Posterior intercepts

Consider variance component models of type

µij = E(yij |zi) = h(xT
ijβ + zi), (1)

where µij is the expected response for unit j in cluster i, xij are the fixed ef-
fect covariates which may depend on i, j, or both, and zi is the random effect
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tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
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operating at the cluster level. If no assumption on the random effect distribu-
tion is made, then estimation can be carried out via ‘nonparametric maximum
likelihood’ (Aitkin, 1999). Briefly, the marginal likelihood is approximated by a
discrete mixture, the parameters of which are estimated alongside with the fixed
effect parameters via the EM algorithm, yielding estimates β̂, ẑ1, . . . , ẑk with
masses π̂1, . . . , π̂K . Denote by θ̂ the collection of these estimates, and by yi = (yi·)
the set of response values for cluster i. Aitkin (1999) suggested to estimate the
mean of the posterior distribution zi|yi via ‘Empirical Bayes Predictions’

z̃i =

K∑
k=1

wikẑk, (2)

where wik = P̂ (k|θ̂, yi) are the posterior probabilities (‘responsibilities’) that ob-
servation i stems from component k, which can be computed via Bayes’ theorem
from the parameter estimates θ̂ of the last M step. The quantity of interest are
these posterior intercepts, z̃i.

2 PIAAC data

The PIAAC survey of adult skills was carried out from 01/08/2011 to 31/03/2012
by the OECD in 24 countries (or sub–country entities), and was designed to as-
sess the proficiency of adults in the key competencies of literacy, numeracy, and
problem–solving in technology–rich environments. We focus here on the ‘liter-
acy’ output variable, with six possible outcomes for an assessed individual. We
dichotomized this variable as ‘people reaching level 3 or above’, with ‘level 2 and
below’ being considered as low–skilled, which corresponds to the key European
Commission policy marker used to demarcate poor basic skills in the complemen-
tary PISA survey carried out at 15–years of age (Eurostat, 2016). As covariates
we will use gender, as well as a factor for age (covering the intervals 16–24, 25–
34, 35–44, 45–54, and 55+), though we have also explored more complex models
using employment status and reading habits which are not reported here. This
leads to a (rescaled) logistic regression model yij ∼ Bin(nij , µij)/nij where nij
is the (effective) sample size of the jth subpopulation (defined by the covariate
combination of interest) for country i, and function h(·) in (1) is the logistic func-
tion. Data were extracted using the PIAAC explorer. A model with age*gender
interaction and K = 5 turned out to capture the upper-level heterogeneity well
(Table 1 right).

3 Uncertainty of posterior intercepts

3.1 Analytic approximation

We initially approach the problem analytically, considering the weights wik in (2)
as constants (which, strictly, they are not, since they depend on the parameters
estimated in the last M-step). It follows then from (2) that

Var(z̃i) =

K∑
k=1

w2
ikVar(ẑk) +

∑
j 6=k

wijwikCov(ẑj , ẑk) (3)
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where the variances and covariances are available from the fitted model according
to standard GLM theory. Clearly, the covariance terms cannot be naively omitted
since the positions of the ẑ′ks are strongly correlated. However, as

∑K
k=1 wik = 1

for all i, it is clear that 0 ≤ wijwik ≤ 1/4 for all pairs j 6= k. In addition, it
is often (but not always) the case that after EM convergence observations are
classified to one of the components with probability equal or close to 1, in which
case wijwik ≈ 0. [To exemplify this point, Table 1 gives an excerpt of the matrix
W = (wik) for the gender*age model with K = 5 components.] In either case, it
is clear that the product wijwik will be very small for all (or almost all) i, j, k
with j 6= k, so that the ‘naive’ approximation

Var(z̃i) ≈
K∑
k=1

w2
ikVar(ẑk) (4)

will usually be a good one. Confidence intervals for the posterior intercepts are
then obtained from either (3) or (4) via z̃i±q

√
Var(z̃i) where q is an appropriate

quantile for which we use the 97.5% Gaussian quantile, 1.96.

3.2 NPML–Bootstrap

In order to assess the variability in a potentially more realistic way, we also
developed a bootstrap routine which proceeds in two layers. Specifically, for i =
1, . . . , n,

(i) from the set of mass points ẑ1, . . . , ẑk draw a masspoint ži with probability
wik;

(ii) generate new y̌ij ∼ Bin(nij , µ̌ij)/nij , where µ̌ij is defined in the natural
way via (1), using β̂ and ži.

Having y̌ij , we refit the model, yielding a new set of n posterior intercepts. Re-
peating these steps M times we have a bootstrap sample of estimates for posterior
intercepts. Therefore, by taking the standard deviation of these we have an esti-
mate for their variability.

3.3 Results

Figure 1 (left) gives the z̃i along with ‘full’ confidence intervals (3) and boot-
strapped confidence intervals (using N = 9999). The analytic and simulation–
based intervals are very similar, with minor differences only recognizable for a
small subset of countries. The naive intervals (4) cannot be visually distinguished
from the full intervals. Therefore, we provide in Figure 1 (right) the ratio of
the widths of the naive and full intervals, as well as the bootstrapped and full
intervals. All ratios are very close to 1, with slightly larger deviations for the
bootstrapped intervals. We also see that five groups of countries can be robustly
distinguished (since the corresponding intervals do not overlap), with Japan being
the sole best–performing country.
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TABLE 1. Left: Excerpt of matrix W = (wik) (4.d.p.) for age*gender model
with K = 5; right: −2 logL as a function of K.

k 1 2 3 4 5

Australia 0 0 0 1 0
Austria 0 0.0023 0.9977 0 0
Canada 0 0 1 0 0
. . .
Japan 0 0 0 0 1
Netherlands 0 0 0 1 0
. . .

ẑk -0.490 0.011 0.273 0.622 1.307
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FIGURE 1. Left: Posterior intercepts [black dots] with analytic (‘full’) [inner
interval; red in the online version] and bootstrapped intervals [outer; turquoise];
right: relative width of intervals.

4 Uncertainty of posterior probabilities

4.1 Sampling from posterior likelihood

A potential issue with the methodology discussed so far is that by plugging the
ML parameter estimates θ̂ into the expression for wik, the uncertainty in those
estimates is ignored. Hence, the ‘certainty’ of mass point allocation when taking
the wik at face value can be considered as overstated. To address this problem,
Aitkin et al. (2014) suggested the following procedure based on the concept of
posterior likelihood (Aitkin, 2010):

a) Assuming flat priors for θ, the posterior distribution p(θ|y1, . . . , yn) is pro-
portional to the likelihood, L(θ). Hence, one can take M random draws
θ̂[m], m = 1, . . . ,M , from L(θ).
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b) Compute w
[m]
ik = P (k|θ̂[m], yi), m = 1, . . . ,M .

For our purposes, one would then proceed further,

c) Apply step (i) in the algorithm in subsection 3.2 using w
[m]
ik instead of wik

in the m–th bootstrap repetition.

However, the implementation is non–straightforward and will require a computa-
tionally expensive MCMC analysis, involving Gibbs samplers for each k, alternate
draws between different types of model parameters, and ad–hoc solutions to the
starting value and the label switching problems. Also, having already carried out
a full EM procedure, a full–blown MCMC analysis only for the sake of analyzing
the posterior intercepts feels rather out of scale. Hence, a simpler alternative idea
is considered below.

4.2 Sensitivity assessment via EM process trail

As stated above, an EM algorithm has already been executed. As such, in this
process, a series of ‘draws’ from the full likelihood L(θ) has been obtained. Assume
that, in EM iteration s = 1, . . . , S, we have obtained parameter estimates θ̂[s]

with associated weight matrices W [s] and likelihoods L[s] ≡ L(θ̂[s]). Hence, we
possess S draws from L(θ), including the final iteration, which corresponds to
the MLE θ̂[s] ≡ θ̂. While it is clear that these S draws in no way represent the
correct shape of L(θ), the matrices W [s] can still be used to assess the sensitivity
of the NPML–Bootstrap to imprecision in the wik

′s, especially as some of the
estimates along the EM process trail correspond to really ‘bad’ likelihoods (that
is, estimates which have a likelihood of effectively 0 to be sampled in part a) of
the Aitkin routine).

4.3 Results

For the data and model at hand, the number of required EM iterations turned
out to be S = 6, and Figure 2 (left) shows L(θ̂[s]) as a function of s. Figure 2
(right) shows the interval length of the NPML–bootstrapped confidence intervals

when using w
[s]
ik , s = 1, . . . , 5 relative to that using wik ≡ w[6]

ik . It is clear that for
all s corresponding to appreciable likelihoods the difference is less than 10%, and
even for posterior weights corresponding to really poor likelihoods the increase is
generally not more than 50%, indicating robust upper bounds for the uncertainty
in this process.

The present paper has demonstrated the utility of bootstrap methods to char-
acterize the sometimes substantial uncertainty in cluster–level estimates which
commonly arises in league-table comparisons. While no claim is made that the
relative magnitudes of the different intervals will in general behave in the manner
of this particular case study, the tools proposed to arrive at this judgement are
applicable for arbitrary two–level problems.
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1 Introduction and preliminaries

The data generating process yielding respondents to produce an ordinal evalua-
tion over m categories out of their latent perception can be effectively modeled
as the combination of two unobserved components: the actual feeling towards
the item, and the uncertainty accounting to the inherent indeterminacy of every
decision process, see Iannario and Piccolo (2010). Then, the response variable Ri
of the i-th subject has probability distribution given by:

Pr(Ri = r|xi) = πPr(Yi = r|xi) + (1− π)Pr(Ui = r), r = 1, . . . ,m. (1)

where Pr(Yi = r|xi) gives the preference part of the model, and Pr(Ui = r)
corresponds to the uncertainty - see Tutz et al. (2016). In particular, CUB mod-
els (D’Elia and Piccolo, 2005) structure the response variable Ri as a mixture
between a shifted Binomial with parameter ξ for the preference part-br(ξ)- and
a uniform distribution over the support {1, . . . ,m}:

Pr(Ri = r|ξi, π) = πbr(ξi) + (1− π)
1

m
, r = 1, . . . ,m,m > 3. (2)

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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The starting point of the extension proposed here are the findings in Gottard et
al.(2016), where the authors introduce varying uncertainty in CUB
models, experimenting with alternative choices to the uniform distribution. In
this context, a dedicated analysis to response-styles is pursued, by presenting
an extension of CUB models where the uncertainty component itself is designed
to deal with symmetrical response styles, either with reference to extreme or to
middle-scale categories. Similar considerations are explored in Tutz and Schnei-
der (2016) with the Beta-Binomial distribution. Our proposal here is to adjust
the uncertainty distribution by making use of the transformation:

Pr(Ui = r) =
Pr(Si = r) + c

1 +mc
, (3)

where Pr(Si = r) is a suitable probability distribution specifying the response
styles attitude, and c 6= 0 is a chosen constant. A flexible tool to work on this task
turns out to be a combination of the uniform distribution-needed to maintain the
focus on heterogeneity and indecision due to the item- with the discretized Beta
distribution.

Let X ∼ Beta(α, β) be a Beta distributed random variable, with density:

fX(x) =
1

B(α, β)

∫ x

0

tα−1(1− t)β−1 dt, x ∈ [0, 1],

and the Euler Beta Function defined by:

B(α, β) =

∫ 1

0

tα−1(1− t)β−1 dt =
Γ(α)Γ(β)

Γ(α+ β)
.

Then we say that a discrete random variable D = D(α, β) over the support
{1, . . . ,m} has the Discretized Beta distribution (of parameters α, β) if:

Pr(D = r|α, β) = Pr

(
r − 1

m
≤ X ≤ r

m
|α, β

)
, r = 1, . . . ,m,

that is, if D is obtained from X ∼ Beta(α, β) by dividing its range into m equal
sub-intervals and then by integrating over them. When α = β, the distribution
is symmetric; in this case, when 0 < α < 1, the distribution is convex with two
modes located at the extreme categories, whereas the distribution is concave and
concentrated around the middle categories if α > 1. When α = β = 1, D collapses
to the discrete uniform distribution on the given support.

By choosing c = 1
m

in (3), and D as model for the (symmetric) response style
component, we propose to adjust the uncertainty specification in CUB models
by using a C ombination of a Lifted U niform and a shifted B inomial (CLUB, for
short) distribution:

Pr(R = r|ξ, π, α) = πbr(ξ)+(1−π)

(
Pr(D = r|α) + 1

m

2

)
, r = 1, . . . ,m. (4)

Figure 1 shows, for fixed π and ξ parameters and m = 7, the effect on the
CUB probability distribution (black solid lines) of including the response style
component as determined by CLUB models, both for α < 1 (top panels) and for
α > 1 (bottom panels).
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FIGURE 1. Extension from CUB to CLUB

Estimation of CLUB models is performed via Maximum Likelihood methods
(ML) and requires a specific implementation of the EM algorithm -McLachlan
and Krishnan (1997). Since CUB models are nested into CLUB (for α = 1), the
Likelihood Ratio Test is performed to check if the improvement of the fit is signif-
icant. Also, the symmetrized Kullback-Leibler divergence is computed to assess
the discrepancy between observed and fitted distributions. Analytical derivation
of the variance-covariance matrix of parameter estimates can be cumbersome due
to the unavailability of a closed form for the discretized Beta distribution. Thus,
standard errors are obtained either from numerical procedures or by sampling
techniques like the bootstrap. The whole analysis is run in the R environment:
the code is available upon request from the Authors, and makes use of Package
CUB -Iannario et al.(2016)- for CUB models estimation.

2 An application to Sport preferences

The performances of CLUB models are discussed on a survey collected at Uni-
versity of Naples Federico II in May 2016. The questionnaire has been filled by
n = 647 respondents, asked, among others questions, to rank their preferences
for 8 sports: Football, Jogging, Volleyball, Tennis, Boxing, Swimming, Cycling
and Basketball. Thus, marginally, each of these variables corresponds to rating
measurements on a m = 8 points scale, of the type: Rate your preference for the
given sport, with 1 = absolutely preferred, and 8 = not at all preferred. The fre-
quency distributions of the ordinal variables Football and Jogging are U -shaped,
thus giving evidence for an extreme category response styles, for which CLUB
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models provide an impressive fit. For all items but Boxing and Swimming, there
is empirical evidence that supports the inclusion of a middle categories response
styles. Figure 2 displays, for each sport variable, the barplots of the observed fre-
quency distributions, over-plotted against both the estimated CLUB distribution
and the estimated CUB distribution.

FIGURE 2. Frequency distributions of sport variables, with CLUB and CUB
estimated probabilities

Table 1 reports parameter estimates (standard errors in parentheses) for both
CLUB and the nested CUB models fitted to the sport variables, the corresponding
log-likelihoods and likelihood ratio test statistics for the null H0 : α = 1 against
the alternative H1 : α 6= 1, which will be asymptotically χ2

1 distributed. Non
significant values at level 0.05 are highlighted in bold.,

Sport CLUB Loglik CLUB CUB Loglik CUB Loglik saturated LRT

π̂ ξ̂ α̂ π̂ ξ̂

Football 0.098
(0.032)

0.928
(0.050)

0.100
(0.040)

-1195.342 0.217
(0.024)

0.99
(0.009)

-1266.47 -1192.766 142.25

Jogging 0.019
(0.026)

0.010
(0.084)

0.638
(0.097)

-1334.546 0.057
(0.022)

0.004 -1339.187 -1332.782 9.282

Tennis 0.118
(0.046)

0.259
(0.056)

2.087
(0.291)

-1317.944 0.275
(0.049)

0.392
(0.033)

-1328.925 -1304.701 21.96

Basket 0.181
(0.079)

0.351
(0.061)

0.543
(2.352)

-1303.905 0.414
(0.048)

0.430
(0.021)

-1309.782 -1299.535 11.75

Cycling 0.208
( 0.033)

0.114
(0.020)

0.713
(3.490)

-1314.433 0.267
(0.049)

0.322
(0.040)

-1329.76 -1311.405 30.65

Volleyball 0.227
(0.038)

0.833
(0.0267)

2.920
(0.593)

-1313.173 0.319
(0.046)

0.685
(0.028)

-1320.619 -1310.847 14.89

Swimming 0.199
(0.036)

0.847
(0.029)

1.180
(0.200)

-1327.975 0.202
(0.037)

0.830
(0.026)

-1328.448 -1327.271 0.946

Boxing 0.165
(0.037)

0.092
(0.040)

1.440
(0.307)

-1331.424 0.177
(0.040)

0.157
(0.036)

-1332.456 -1322.767 2.065

TABLE 1. Parameter estimates for both CLUB and CUB models

Table 2 reports the (normalized) dissimilarity index between the observed (rela-
tive) frequency distribution of each of the sport variables and the estimated prob-
ability distributions both for CLUB and CUB models. Similarly, the symmetrized
Kullback-Leibler divergence is computed. Both these indexes are strongly reduced
when switching from CUB to CLUB. The better performances of the new proposal
are supported also by the striking closeness between the maximized log-likelihood
and the saturated one (see Table 1).
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Sport Dissimilarity Symm. Kullback-Leibler

CLUB CUB CLUB CUB

Football 0.028 0.166 0.004 0.107

Jogging 0.026 0.050 0.003 0.010

Tennis 0.074 0.095 0.020 0.038

Basket 0.045 0.068 0.007 0.016

Cycling 0.042 0.100 0.005 0.029

Volleyball 0.039 0.065 0.004 0.015

Swimming 0.021 0.029 0.001 0.002

Boxing 0.071 0.082 0.013 0.015

TABLE 2. Dissimilarity and Symmetrized Kullback-Leibler divergence between
estimated probabilities and observed (relative) frequencies

2.1 CLUB models with covariates

CLUB model estimation can be enhanced by the inclusion of subjects’ charac-
teristics zi to explain the occurrence and the effect of the response styles, to be
linked to parameter α by means of a log link:

log(αi) = ν0 + ν
′
zi, i = 1, . . . , n.

For illustrative purposes, let Z be a dichotomous factor with level Z = 0 if
respondent prefers individual sports and Z = 1 if he/she prefers team sports.
Then, for Volleyball preferences:

log(αi) = 1.315
(0.242)

−0.933
(0.352)

Zi, i = 1, . . . , n,

implying that the tendency to place Volleyball in the middle of the ranking is
strongly associated with preferences for individual sports: indeed, α decreases
from α(0) = 3.723 when Z = 0 to α(1) = 1.46 when Z = 1 (parameter esti-
mates are significant according to the Wald test, and the log-likelihood attains
an estimated maximum of −1310.07; see Table 1 for comparisons). For Jogging
preferences, instead, one has:

log(αi) = −0.764
(0.196)

+ 0.735
(0.261)

Zi, i = 1, . . . , n,

implying that the tendency to place Jogging at the extreme ranks is strongly
associated with preferences for individual sports: indeed, since α increases from
α(0) = 0.466 when Z = 0 to α(1) = 0.971 when Z = 1 (again, parameter esti-
mates are significant according to the Wald test, and the log-likelihood attains
an estimated maximum of −1330.07; see Table 1 for comparisons).

3 Conclusions and future developments

The case study here discussed, as well as a simulation study run to validate the
proposal, confirms the adequacy of CLUB models to properly identify response-
style effects that are otherwise hidden by the uncertainty measure. Mis-specification
yields biased estimates of the feeling parameter. The framework here explored to
deal with response styles can be combined in a more general setting, currently
under scrutiny, to analyze repeated measurements while modeling subjective het-
erogeneity.
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Abstract: Generalised partial credit models are ubiquitous in many applications
in the health and medical sciences that use item response theory. Such polyto-
mous item response models have a great many uses ranging from assessing and
predicting an individual’s ability to ordering the items to test the effectiveness of
the test instrumentation. By implementing these models in a full Bayesian frame-
work, computed through the use of Markov chain Monte Carlo methods, this ar-
ticle extends their inferential capability in three distinct ways. First, the models
are extended to include covariate effects thus allowing simultaneous estimation of
regression and item parameters. Secondly, full Bayesian methods for ranking the
items using the Fisher information criterion (FIC) are developed. This allows us
to fully propagate and ascertain uncertainty in the inferences by calculating the
item specific FIC which facilitates the item ordering. Lastly, we propose a Monte
Carlo method for predicting the ability score of a new individual by approximat-
ing the relevant Bayesian predictive distribution. Data from a Model Disability
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Survey carried out in Sri Lanka by the World Health Organization (WHO) and
the World Bank are used to illustrate the methods. The proposed approaches are
shown to provide simultaneous model based inference for all aspects of disability
which can be explained by environmental and socio-economic factors.

Keywords: Bayesian Methods, Education Testing, Hierarchical Modelling, Item
ranking, Item Response Theory

1 Extended abstract

This paper sets out to achieve three extended inferential tasks when the GPCMs
are employed. The first extension enables estimation of the item parameters ad-
justed for the covariate effects. Inference for the covariate effects has also been
illustrated with the WHO and the World Bank Model Disability Survey data.
A Bayesian approach based on a single model, in contrast to a stage-wise pro-
cedural estimation method, allows us to accurately assess the uncertainties not
only for the item parameters but also for the regression parameters. This paper
illustrates the methods with the main effects model only, but the methods can
also be applied to higher order interaction models.

The second inferential extension task ranks the items so that a brief version of
the disability survey with fewer items can be prepared. Using an expected FIC
we have developed a method for ranking the items. It is up to the practitioner to
decide how many items can be afforded in the reduced survey and we acknowledge
that there may be other practical considerations which may influence the final
item choice. The proposed method will guide item selection based on a desired
percentage of information that must be present in the reduced survey.

The third inferential extension is the MCMC based methodology to predict the
ability scores of new individuals whose data are observed after model fitting
has already been performed. The methodology uses all the relevant covariate
information of each new individual so that the best possible Bayesian estimates
are obtained. The proposed prediction methodology has been empirically verified
by re-estimating the ability scores of a large number (1000) of new individuals
by fitting the model to the full data set. Close agreement between the predicted
scores and the estimated scores based on all the data shows the effectiveness of
the new methodology.

These three methodological extensions allow us to extract a lot more information
from the data than what has been possible before. Using a unified model it is
concluded that the main effects of the three covariates: gender, age and income
are significant in the presence of, hence accounting for, the latent ability, item
discriminatory and item difficulty parameters. In addition, the main advantage
of the unified model also lies in its ability to make coherent inference on item
ordering and ability score prediction for new individuals. By eliminating a stage-
wise procedure for the three different inferential tasks, the developed Bayesian
methodology proposes a rigorous and coherent inference framework wherever
GPCM models are to be used in practice. This framework ensures coherency
by having the correct and mutually consistent levels of uncertainty in the three
different inferential tasks.
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Abstract: Ignoring the response style in the modelling of ordinal responses in
psychological measurement can lead to poor and considerably biased estimates
of item parameters. This work focuses on the modelling of a tendency to extreme
or middle categories in item response data with Likert scales. An extension of the
Partial Credit Model is proposed that explicitly accounts for this specific response
style. The proposed model contains person-specific response style parameters
which are estimated using the framework of generalized mixed linear models.
The method is applied to a real data example to illustrate the effect of ignoring
response styles.
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1 The Partial Credit Model

Let the categories 0, . . . , k represent graded agree-disagree attitudes with a natu-
ral symmetry like strongly disagree, . . . , strongly agree where Ypi ∈ {0, 1, . . . , k},
p = 1, . . . , P , i = 1, . . . , I denotes the ordinal response of person p on item i.
Then the partial credit model (PCM) as proposed by Masters (1982) is denoted
by

log

(
P (Ypi = r)

P (Ypi = r − 1)

)
= θp − δir, r = 1, . . . , k

where θp is the person parameter and (δi1, . . . , δik) are the item parameters of
item i. It can be seen that the model is locally (given response categories r − 1,
r) a binary Rasch model with person parameter θp and item difficulty δir.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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2 The Partial Credit Model with Response Style

Response styles that account for a tendency to extreme categories or a tendency
to middle categories are modeled by modifying the parameter δir. An additional
person parameter γp is introduced that describes the response style of the person.
The resulting partial credit model with response style (PCMRS) has the form

log

(
P (Ypi = r)

P (Ypi = r − 1)

)
= θp + (m− r + 0.5)γp − δir, r = 1, . . . , k

for an odd number of categories (k is even) and

log

(
P (Ypi = r)

P (Ypi = r − 1)

)
= θp + (m− r)γp − δir, r = 1, . . . , k

for an even number of categories. Here, m represents the middle category where
is m = k/2 for an odd number of categories and m = [k/2] + 1 for an even
number of categories. The parameter γp can be seen as a shifting of thresholds.
If γp is positive , the thresholds δir shift away from each other and, therefore,
result in a higher tendency for person p to middle categories. The extreme case
γp → ∞ yields P (Ypi = m) → 1. If γp is negative one has the reverse effect;
the person has a tendency to the extreme categories. For illustration we show
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FIGURE 1. Probabilities P (Ypi = r) against θp for positive, negative γp and
γp = 0; in the upper panels the number of categories is three, in the lower panels
it is four.

in Figure 1 the probabilities of response categories as functions of the person
abilities for varying response style parameter γp in the case k = 3 (four response
categories). It is immediately seen that for γp = −1.5 the extreme categories have
much higher probabilities than for γp = 0. The inverse is seen for γp = 1.5. It is
noteworthy that the probabilities of adjacent categories are now equal, that is,
P (Ypi = r) = P (Ypi = r − 1), if θp = δ̃ir where δ̃ir = δir − (m− r + 0.5)γp is the
new (person-specific) threshold parameter. The basic concept, explicit modelling
of a tendency to middle or extreme categories, has been used before by Tutz and
Berger (2016) who considered just one item and modelled the effect of covariates.

The model is estimated using marginal likelihood estimation. For the person
parameters, a two-dimensional normal distribution N(0,Σ) is assumed. The di-
agonals of the matrix Σ contain the variance of the response style parameters σ2

γ

and the variance of the person effects, σ2
θ , the off diagonals are the covariances

between response style and location effects, covγθ. Therefore, one also allows for a
correlation between both person parameters. In the marginal likelihood approach,
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the common density of the person parameters is integrated out numerically by
Gauss-Hermite integration.

3 Illustrative example

In our applications we use data from the standardiziation sample of the Freiburg
Complaint Checklist (FCC) (Fahrenberg, 2010). The FCC is a questionnaire that
is used to assess physical complaints of adults, we will focus on the scale tenseness.
The data set contains 2070 participants (2032 complete cases). Each of the 9 items
from the scale tenseness is measured on a 5-point response scale that refers to
the frequency of the complaint: “never”, “about 2 times a year”, “about 2 times
a month”, “approximately 3 times a week” or “almost every day”.

Figure 2 shows the estimates for the item parameters. The solid lines represent
estimates for the PCMRS and the dashed lines represent estimates for the PCM.
The estimates for the PCMRS are more stable across the categories. Figure 3
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FIGURE 2. Estimates of item parameters for items on tenseness (FCC), sep-
arately for each item. Solid line represents estimates for PCMRS, dashed line
represents estimates for PCM.

shows the response curves, exemplary for the item “Clammy hands”, for three
different response style parameters (columns) along the person parameter θp.
Overall, the last category has very high probabilities, whereas the first category
has very low probabilities. In particular, for a person with a rather high tendency
to the extremes (γp = −σ̂γ), the probability for the last category is above 0.6
throughout the whole range of person parameters.

In a regular PCM, the estimated variance of the person parameters σ̂2 = 0.546
while the estimated covariance matrix between person and response style param-
eters for the PCMRS is

Σ̂ =

(
σ̂2
θ ˆcovγθ

ˆcovγθ σ̂2
γ

)
=

(
0.449 0.263
0.263 1.172

)
.
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FIGURE 3. Response curves for item “Clammy hands” (FCC) along person pa-
rameter θ for categories 1, 3 and 5 and different response styles. Solid lines rep-
resent estimates for PCMRS, dashed lines represent estimates for PCM.

The variance (i.e. magnitude) of the response style effects is quite high. Therefore,
ignoring the response style in such a case would lead to severely biased item
estimates. The covariance of 0.263 between both person parameters refers to a
noteworthy correlation of 0.36.

4 Concluding Remarks

The proposed PCMRS model has several advantages, in particular in comparison
to mixture models as for example proposed by Eid and Rauber (2000). Mixture
models assume that respondents come from different latent classes. Different item
response models are fitted within different classes, some may represent the sub-
stantive trait, some may represent response style behaviour. One of the problems
with mixture models is always the number of classes, which is unknown. Typically
one gets quite different models if one fits, for example, two or three classes, since
all the parameters change when considering one more class. If one has chosen a
number of classes it is still difficult to interpret the difference between classes and
explain what feature is represented by a class, it might be a response style or some
other dimension that is involved when responding to items. Since the classes are
not pre-specified, for example, by explicitly modelling response style behaviour,
there is much uncertainty involved and the interpretation of the model within
classes often tends to be vague. In contrast, in the PCMRS model the explicit
modelling of the response style allows to decide if it is present, and if, how strong
it is.
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Abstract: We extend the ordinal regression model for continuous scales by
introducing non-parametric terms in the linear predictor. The model parameters
are estimated using constrained optimisation of the penalised likelihood and the
penalty parameters are automatically selected via maximisation of their marginal
likelihood. An application of the model in a study on alternative chemotherapy
treatments for advanced breast cancer is shown. The outcome of interest, the
quality of life of patients, is modelled with fixed effects, smoothing terms and
individual random effects and its association with the treatment arm over the
chemotherapy cycle is estimated. The methodology has been implemented in an
R package, ordinalCont, available on CRAN.
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1 Introduction

Continuous self-rating scales are commonly used to evaluate the intensity of out-
comes which are intangible and difficult to measure, such as pain and quality of
life. Two examples of such scales are the Visual Analogue Scale (VAS) and the
Linear Analog Self-Assessment (LASA) scale, used in the pain literature and in
quality of life (QoL) studies respectively. Subjects are typically given a linear
scale of 100 mm and asked to put a mark where they perceive themselves. The
relevance of continuous self-rating scales in the pain literature has been described
in Heller et al. (2016), where the frequent use of suboptimal methods in the anal-
ysis of VAS and the superior power of ordinal regression analysis (Manuguerra
and Heller, 2010) are discussed. In this paper we extend the formulation of the
ordinal regression model for continuous scales, including fixed effects, random
effects and smoothing terms, explain how to compute the constrained maximum
penalised likelihood (MPL) estimates of the regression coefficients and show how

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
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to automatically select the optimal smoothing parameters. We also show an ex-
ample in which the new formulation of the model allows for a more insightful
analysis of the data.

2 Methods

2.1 Ordinal regression for continuous scores

In the ordinal regression model for continuous scales, the covariates are modelled
on a latent scale W . This is linked to the observed ordinal scale V by an increasing
function g (the “g function”) such that W = g(V ). We assume a stochastic model
for W of the form of W (η) = h?(η) + ε, where h?(η) is the deterministic part
of the model that depends on the covariates η, and ε is a random error term.
In the following, we will assume the standard logistic distribution for ε, but
other distributions, such as the normal, can be used. The cumulative distribution
function for the score V can then be written as:

γ(v|η) = P (W ≤ g(v)|η) = P (ε ≤ g(v)− h?(η)) =
eh(v,η)

1 + eh(v,η)
(1)

where h(v, η) = g(v)−h?(η) and g(v) =
∑
u

θuΨu(v) is modelled with monotonic I-

splines (Ramsey, 1988). This guarantees an increasing g function when θu ≥ 0, ∀u.
Assuming p fixed effects, r random effects and s smoothing terms, the predictor
can be written as:

h?(η) = Xβ +

r∑
j=1

Zjbj +

s∑
l=1

Φl(yl)ϑl =

T∑
m=1

Amηm (2)

where XT =
{
XT

1 , . . . , X
T
p

}
is a p × n design matrix for the fixed effects, Zj is

the design matrix for the jth random effect and Φl is the matrix containing the
basis functions (B-splines) evaluated at the values of the covariate yl. Here η is
the set of parameters

{
ηT

1 , . . . , η
T
t

}T
=
{
βT, bT, ϑT

}T
, with βT =

{
β1, . . . , βp

}
,

bT =
{
bT1 , . . . , b

T
r

}
, ϑT =

{
ϑT

1 , . . . , ϑ
T
s

}
, t = p+ r + s and Am is the mth element

in
{
X1, . . . , Xp, Z1, . . . Zr,Φ1, . . .Φs

}
.

2.2 Penalised likelihood estimation

The log-likelihood for subject i is obtained by differentiating equation (1):

`0i = log
( m∑
u=1

θuΨ′u(v)
)

+ h(v, η)− 2 log
(

1 + eh(v,η)
)

(3)

The model parameters we want to estimate are η =
{
ηT

1 , . . . , η
T
t

}T
and θ ={

θ1, . . . , θm
}T

. Their constrained MPL estimates are defined by

(η̂, θ̂) = arg max
η,θ

{
`p =

n∑
i=1

`0i − λgJg(θ)−
t∑

m=1

λmJm(ηm)
}

(4)
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where the J ’s are penalty functions, such as roughness penalties, the λ’s are
smoothing parameters and the first p terms in the last sum account for penalty
terms relative to the fixed effects, and are then zero. The roughness penalties
can be written in general as J(θ) = θTRθ where the R terms are square matrices
with j, k elements given by

∫
Ψ′′j (y)Ψ′′k(y)dy. For the random effect terms, R is a

unit matrix and the penalty term is J(b) = bTRbb = bT b, which implies normally
distributed random effects b with variance σ2

b = 1
2λb

.

2.3 Estimation of model parameters

The estimation procedure iterates through two steps repeated until convergence.
First, given the current values of the λ’s, η and θ are estimated, then given
the current value of θ and η the λ’s are estimated. We comment that this is a
constrained optimisation as θ ≥ 0.

The Karush-Kuhn-Tucker (KKT) necessary conditions for the constrained MPL
estimation of θ and η are:

∂`p
∂ηm

= 0 for any m

∂`p
∂θu

= 0 if θu > 0 and
∂`p
∂θu

< 0 if θu = 0

(5)

Equations (5) are solved iteratively, with the unconstrained parameters η es-
timated using a Newton method and the positively constrained parameters θ
estimated using the multiplicative iterative (MI) algorithm (Ma, 2010).

η: Newton step Given the estimated values of η and θ at iteration k, the
values of each ηm ∈ η at iteration k+ 1 are obtained with the Newton algorithm:

η(k+1)
m = η(k)

m + ω(k)
(
∇2
ηm`p(η

(k), θ(k))
)−1(

∇ηm`p(η
(k), θ(k))

)
(6)

where ω(k) ∈ (0, 1] is a line search step size that guarantees that `p(η
(k+1), θ(k)) ≥

`p(η
(k), θ(k)).

The first and the second derivative of the penalised log-likelihood (4) with respect
to η are:

∇ηm`p = ATm

(
1n − 2γ(v)

)
− 2λmRmηm

∇2
ηmηn`p = ATmDAm − 2δm,n

(
λmRm

) (7)

whereD is the diagonal matrix with diag(D) = −2 eh

(1+eh)2
and δm,n = 1 if m = n,

and 0 otherwise.
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θ: MI algorithm Given the estimated values of η at iteration k + 1 and θ at
iteration k, the values of θ at iteration k+ 1 are obtained with the MI algorithm.
When θ > 0, by the second KKT condition (5):

∇θ`p = ΨT
(

1n − 2γ(v)
)

+ Ψ′TE − 2λθRθθ = 0 (8)

where E is a diagonal matrix with diag(E) = 1
g′(v)

and 0 otherwise.,

Following Ma (2010), it is easy to derive the updating algorithm:

θ(k+1) = θ(k) + ω
(k)
θ s(k)∇θ`p(η(k+1), θ(k)) (9)

where s(k) = θ(k)

2ΨTγ(v)+2λθ [Rθθ]
+ and a line search of size ω(k) ∈ (0, 1] is introduced

to guarantee that `p(η
(k+1), θ(k+1)) ≥ `p(η(k+1), θ(k)).

2.4 Automatic smoothing parameter estimation

Fixing the values of η to the most current estimate, the optimal smoothing pa-
rameters are the roots of the partial derivatives with respect to each λm of the
marginal posterior computed integrating out θ and η from (4). The log-posterior
can be written as:

Φ =

n∑
i=1

`0i−
(pθ

2
log(σ2

θ)+
1

2σ2
θ

θTRθ
)
−

t∑
m=1

(pm
2

log(σ2
m)+λmη

T
mAmηm

)
(10)

and the marginal log-posterior is obtained integrating out θ and η:

Φmarg = log

∫
exp

(
Φ(θ, η;σ2

θ , σ
2
η)dθdη

)
(11)

Exact solution to this interval is infeasible but it can be approximated following
Laplace:

Φmarg = −pθ
2

log(σ2
θ)−

t∑
m=1

pm
2

log(σ2
m)+`p(θ̂, η̂;σ2

θ , σ
2
η)− 1

2
log
∣∣∣−Q(θ̂, η̂;σ2

θ , σ
2
η)
∣∣∣

(12)

where Q(θ, η;σ2
θ , σ

2
η) = ∇2

θη`p(θ, η;σ2
θ , σ

2
η). Solving

∂Φmarg

∂σ2
θ

= 0 (13)

∂Φmarg

∂σ2
ηm

= 0 (14)

for σ2
θ and σ2

ηm we obtain the desired smoothing parameters estimates:
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σ2
θ =

θTRθθ

pθ − tr
(

(G−Qθ −
∑
Qm)−1Qθ

)
(15)

σ2
m =

ηTmRmηm

pm − tr
(

(G−Qθ −
∑
Qm)−1Qm

)
(16)

3 Example

Metastatic breast cancer is the most common cause of cancer death among Aus-
tralian women. The ANZ0001 trial is a randomized trial with three chemotherapy
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FIGURE 1. Effects of treatments over chemotherapy cycles

treatment arms (n = 292 patients with complete quality of life measurements)
concluded in 2005 (Stockler et al., 2011). QoL is assessed at each chemotherapy
treatment cycle on a LASA scale. The treatments Intermittent Capecitabine (IC)
and Continuous Capecitabine (CC) are compared with the standard combination
treatment CMF, each with its own protocol. There is no maximum duration of
treatment, but it is interrupted on disease progression, or when patient intoler-
ance or unacceptable toxicity are recorded. In this analysis we aim to verify which
treatment has a better impact on QoL, and in particular how this impact changes
over chemotherapy cycle. The research questions can be answered by modelling
the overall QoL vij for patient i at chemotherapy cycle j as:

log
γij

1− γij
= g(vij) + xiβ + s(j|ti)

where xi is the age of patient i, s(j|ti) is a smooth term that depends on cycle
number j and the treatment arm ti. In Figure 1, the effects of the three treatments
over chemotherapy cycles are shown. The CC treatment has no clear advantage
over the CMF treatment in terms of QoL, but can be sustained for longer periods,
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while the IC treatment has a positive effect on the QoL, with a peak after about
30 cycles (higher values mean higher quality of life).

All the analyses have been performed in the R Statistical Software (R Core Team,
2016) using the package ordinalCont (Manuguerra and Heller, 2016). The data
set used in the analysis is included in the package.
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Abstract: Recording variables continuously over time is increasingly frequent
in medical and behavioral sciences. Indeed, the use of video and portable devices
permits to study individuals in their natural environment and provide real-time
assessments. The measurement instruments developed for ambulatory use and
the coding schemes used to analyze video recordings have to show reliability and
validity before daily practice implementation. Studies using continuous records
are usually characterized by a large amount of data presenting serial correlation
and a small sample of subjects. We developed a method to derive appropriate
reliability and agreement indexes to analyse this type of data in the presence of
a covariate structure (including time as component) when records are made on a
binary scale. The method is illustrated on a validation study for a new single-unit
activity monitor (CAM) in patients with chronic organ failure.

Keywords: Bayesian methods, transient event, time-event sequential data, reli-
ability, e-Health.

1 Introduction

Continuous recordings, defined as second by second or even closer records in
time, are frequent in medical, behavioral and social sciences. Indeed, complex
behaviors can be quantified by observers on video recordings or data can be
collected with the use of handled portable electronic data-entry and storage de-
vices (e.g. e-Health). In both cases, the reliability and the validity of the coding
scheme/measurement instrument have to be assessed before using the continuous
recordings in daily practice.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
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For example, the following study was designed to validate a new single-unit ac-
tivity monitor (CAM) in patients with chronic organ failure (Annegarn et al.,
2011). This new monitor was developed to implement daily physical activity as
an outcome measure of cardiopulmonary rehabilitation. In the study, the ac-
tivity (non-weight bearing posture (NWBP), weight-bearing posture (WBP) or
dynamic activity (DA)) of 10 patients in rehabilitation was recorded during one
hour of daily routine by the CAM. In the present paper, we restrict attention
on the distinction between non-weighted bearing postures (NWBP) and the two
other activities (WPB+DA). The CAM was wore at two different places of the
body simultaneously for comparative purposes, namely on the leg and on the
trunk. The patients were also videotaped by a researcher during the one hour
time period. The video, considered as criterion standard, was then analyzed sec-
ond by second by a researcher blinded to the values obtained by the CAM. The
aim of the study was to determine (1) the agreement level between the video
assessments and the CAM, wore on the leg or on the trunk and (2) the body
place providing the highest agreement level with the video.

The existing population-based and unit-specific models developed to determine
agreement in the presence of a covariate structure and repeated measurements
have to be ruled out to analyze the present study. Population-based models are
not practicable. The large amount of repeated measurements (3600 in the CAM
study) and the small number of subjects involved (10 in the CAM study) do not
permit to obtain stable parameter estimates. In the same way, the only unit-
specific approach permitting to directly model agreement according to predictors
in the presence of repeated measurements (Vanbelle and Lesaffre, 2015) is not
manageable because of the large amount of observations. We therefore developed
a partial-Bayesian approach, based on this latter work, to model agreement ob-
tained on continuous recordings over time in the presence of a covariate structure.

2 Method

Instead of considering each time point separately, we group them into small time
intervals. The cumulative distribution of the outcome over one interval (i.e. num-
ber of time points under NWBP) is binomial given three assumptions: (1) the
intervals have fixed length, (2) the probability of being engaged in NWBP is con-
stant within each time interval and (3) the observations within a time interval
are independent. The first assumption holds by definition of the intervals. We
assume that the second assumption holds because the time intervals are small.
The third assumption does not hold as observations close in time are very likely
to be correlated. To account for this correlation, we assumed that the cumulative
distribution of the outcome within each interval follows a beta-binomial distribu-
tion. We make the same assumption for the cumulative distribution of agreement
between the CAM and video assessments within each interval.

Then, based earlier work, we consider the likelihood formed by the cumulative
distribution of the probability to observe NWBP with the CAM and the video
and the cumulative distribution of the agreement. Models relating these cumula-
tive distributions to covariates (namely time, body place) are then fitted jointly
with a partial-Bayesian approach using Markov chain Monte Carlo (MCMC).
The MCMC calculations were performed using JAGS. Vague independent priors
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were considered for all model parameters. The dependency between the probabil-
ities over the one hour observation period was taken into account using random
effects. Marginal posterior probability distributions were obtained by averaging
over these random effects. The length of the time intervals was fixed to 30 seconds.

3 Results

The probability to be engaged in a NWBP is displayed in Figure 1 over the
one hour observation period. It can be remarked that the probability of being in
NWBP varies over time and differs markedly between CAM-trunk on one hand
and CAM-Leg and video on the other hand.

FIGURE 1. CAM study. Probability of being in a NWBP in the sample (light
gray). Data were summarized every 5 seconds for the clarity of the graph. Pos-
terior marginal probability of being in a NWBP using a binomial (gray) and
beta-binomial (black) model. The plain line corresponds to the video, the dotted
line to the CAM-leg and the dashed line to the CAM-trunk

The evolution of the agreement level between the CAM and the video, quantified
through Cohen’s kappa coefficient, is depicted in Figure 2 over the one hour
observation period. Two important results have to be noted. First, the agreement
level between the CAM and the video decreases over time. This is an indication
of a possible inappropriate observation period. The observation period was either
too short to obtain stable agreement estimates or too long for the researcher to
avoid fatigue effects when rating the video recordings. Secondly, the agreement
level is higher between the CAM-leg and the video than between the CAM-trunk
and the video. The new CAM device should therefore best be placed on the leg
than on the trunk to detect non-weight bearing postures.

4 Discussion

We developed a method to model the agreement in the presence of continu-
ous recordings and a covariate structure. To this end, we summarized the data
into small time intervals. The difference between the results obtained with the
binomial and the beta-binomial models supports the need to take the depen-
dency between observations within time intervals into account. Taking the aver-
age probability over a time interval corresponds to temporal aggregation, a kind
of smoothing technique used in time series analysis. We should be careful about
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FIGURE 2. CAM study. Agreement (Cohen’s kappa coefficient) on NWBP in
the sample (light gray). Data were summarized every 5 seconds for the clarity of
the graph. Posterior marginal mean for the agreement level between CAM-Leg
and video (dashed line) and between CAM-trunk and video (plain line) using a
binomial (gray) and beta-binomial (black) models.

the choice of the interval length not to hide important patterns in the evolution
of the outcome and the agreement over time. The dependency between time in-
tervals is currently taken into account using a random intercept in the models.
However, the use of autoregressive models is currently under study.

Acknowledgments: This research is part of project 451-13-002 funded by the
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Abstract: We consider Bayesian inference for very flexible multinomial logit
models with choice and unit specific covariates where we allow for global as well
as category specific fixed and random effects. To achieve model identification we
use a sum-to-zero constraint on the category specific fixed and random coeffi-
cients. In contrast to the conventional identification strategy where one of the
outcome categories is chosen as baseline and the corresponding category specific
parameters are fixed to zero, the sum-to-zero constraint allows for a symmetric
prior of the category specific effects of all outcome categories. By augmenting the
model with latent utilities posterior inference using MCMC methods is straight-
forward. In our empirical analysis we use panel data from EU-SILC in Austria
2004 – 2007 to analyse labor supply of households. Inference is particularly chal-
lenging as due to the fact that data are collected using a rotating panel design,
panels are very short with a maximum of 4 observations per household.

Keywords: random utility model, sum-to-zero identification, discrete choice
model, longitudinal data, EU-SILC

1 Mixed Effects Multinomial Logit Model

We consider modelling of longitudinal discrete choice data using covariate in-
formation. Covariates can be either choice or subject specific and we allow for
choice-specific effects of subject-specific covariates. Additionally, to model both
heterogeneity between subjects as well as dependence within subjects we include
a subject-specific random intercept and allow for random effects of choice specific
covariates. We assume that each subject i, i = 1, . . . , N chooses one of m+ 1 un-
ordered alternatives {0, . . . ,m} at occasion t = 1, . . . , Ti and denote this choice
by Yit. The probability that alternative k is chosen by subject i at occasion t is
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then modelled by a multinomial logit model as

P(yit = k) =
exp(xfitkα+ xitβk + xritkζi + ξik)
m∑
l=0

exp(xfitlα+ xitβl + xritlζi + ξil)
k = 0, . . . ,m (1)

Here xit denotes the vector of subject specific covariates with choice specific
effects βk; α is the vector of fixed effects of the choice specific covariates xfitk and
ζi the vector of random effects of the choice specific covariates xritk. Finally ξik
is the category specific random intercept of subject i.

As the same choice probabilities would result for choice specific effects βk + β̃
and subject specific random intercepts (ξik + ξ̃),

P(yit = k) =
exp(xfitkα+ xit(βk + β̃) + xritkζi + (ξik + ξ̃))
m∑
l=0

exp(xfitlα+ xit(βl + β̃) + xritlζi + (ξil + ξ̃))
,

the model is not identified. To achieve identification the usual strategy is to
choose one of the categories, e.g. category 0 as reference category and set the
corresponding category specific effects to zero, i.e.

β0 = 0 and ξi0 = 0.

However this identification strategy causes problems in the interpretation of the
estimated subject- and category-specific random intercepts ξik . Though no ran-
dom intercept is explicitely included for the reference category 0, this is implicitely
the case as the probability that subject i chooses category 0 depends on all other
category-specific random intercepts ξik, k = 1, . . . ,m due to the fact that

m∑
k=0

P(yit = k) = 1.

An alternative identification strategy, which is symmetric with respect to all
categories, is to impose a sum-to zero constraint on the category-specific effects
(Burgette and Hahn, 2013),

m∑
k=0

βk = 0 and

m∑
k=0

ξik = 0

In a Bayesian approach this constraint can be imposed by specifying a reduced
rank Normal prior distribution on the corresponding effects, where the sum to
zero constraint holds a priori with probability 1.

2 Prior Distributions

To specify the prior on the fixed effects, we define the vector of the category
specific regression coeffcients for each covariate j as βj = (β0,j , . . . , βm,j)

T and
let em+1 = (1, 1 . . . , 1)T . We assume that the vectors βj are a priori independent
for j = 1, . . . , d. The sum-to-zero constraint on βj given as

m∑
k=0

βk,j = eTm+1β
j = 0 (2)
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is imposed by specifying a reduced rank Normal prior

βj ∼ N (bj , δ
β
j Cm),

where the mean vector bj is restricted to sum to zero

eTm+1bj = 0.

δβj is a scale factor and the matrix Cm has a compound symmetry structure

Cm =
m+ 1

m
Im+1 −

1

m
em+1e

T
m+1 =

=


1 − 1

m
. . . − 1

m

− 1
m

1 . . . − 1
m

...
...

. . .
...

− 1
m
− 1
m

. . . 1

 .

With this specification the sum to zero constraint (2) holds a priori with proba-
bility 1, as E(eTm+1 · βj) = eTm+1 · bj = 0 and

V(eTm+1 · βj) = δβj eT
m+1Cmem+1 = O.

For the subject-specific vectors of random intercept ξi = (ξi0, ξi1, . . . , ξim)T we
assume prior independence across subjects and specify the prior hierarchically as

ξi ∼ N (γ, δξCm)

γ ∼ N (0, δγCm)

δξ ∼ G−1(ν,Q)

Note, that the specification of this reduced rank prior yields a sparse parameter-
isation of the covariance matrix of the category specific random intercepts where
only one parameter, the scale parameter δξ has to be estimated from the data.

Finally, for the global fixed and random effects we specify standard multivariate
Normal priors.

3 Posterior Inference

Posterior inference is performed by MCMC methods, where we use the repre-
sentation of the model in terms of random latent utilities, first introduced by
McFadden (1974). Let uitk denote the latent utility of category k for subject i at
timepoint t

uitk = xfitkα+ xitβk + xritkζi + ξik + εitk, k = 0, . . . ,m

where εitk are i.i.d extreme value distributed random variables. If yit is defined
as the category with maximum utility

yit = k ⇔ uitk = max
l
uitl

the marginal distribution of yit is given by the multinomial logit model in equation
(1). MCMC iterates between sampling the latent utilities and the effects in the
multinomial logit model, for which we use the data augmented independence MH
sampler with a multivariate proposal density described in Fussl et al. (2013).
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4 Application

The goal of our empirical analysis is to provide a microsimulation model for
labour supply of couples with children in Austria, which allows to evaluate the
consequences of interventions like changes in tax system, social security contri-
butions or social transfers (e.g. parental leave benefits) on labour supply of the
households. We use a unitary model with discrete choices, i.e. we assume that
choices on labour supply are made on the unit level of the household.

For the analysis we use data from EU-SILC (European Survey on Income and
Living Conditions) from 2003 – 2006. EU-SILC has a four year rotating panel
design and provides longitudinal microdata on income, poverty, housing, labor
and living conditions. The data for our analysis comprises 4218 observations of
2289 households which are observed in at least one but not more than four years.
Figure 1 shows the labour supply (in working hours) of men and women.
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FIGURE 1. Working hours of males (left) and females (right) in couple house-
houlds with children (in the first panel year).

We exclude non-working men from the analysis and – as the vast majority of men
is working full-time – define three choices with respect to the labour supply of
women as not working (N), working part-time (P), and working full time (F). A
challenging feature of the data is their structure as an unbalanced panel with 1079
households observed only at one time point and only 167 households observed
in all four panel time points. Additionally only one choice is observed for the
majority of households (1936 of 2289), whereas all three possible labour supply
choices were observed in only 12 households. For the three possible labour supply
choices we fit a multinomial logit model where we include household income and
household leisure time, both measured on the log-scale, as choice-specific covari-
ates with fixed effects. Additionally we include the following global covariates:
indicators for age of the youngest child (categorized; baseline: 0-3; 3-5, 6-10; over
10) and the number of further children in each of these age groups and model
their effects as category-specific. To account for heterogeneity of households with
respect to their labour supply choice we include a household specific random
intercept.
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FIGURE 2. Random effects for groups defined by observed working status of
mothers (not working (N)/working part-time (P)/ working full-time (F); blue:
N; green: P; red: F; magenta:N/P; yellow: N/F; cyan: P/F; black: N/P/F)

As expected, the global effect of household income is positive, thus increasing
the utility of part-time as well as full time work , and the effect of leisure time
is negative. The utilities for both part-time as well as full-time work of mothers
increase with the age of the youngest child and decrease with the number of
children. Heterogeneity among mothers is considerable with an estimated random
intercept variance of 4.8. Figure 2 shows bivariate plots of the random intercepts,
in different colors for clusters of households defined by the observed labour supply,
e.g. for households observed only with the mother non-working (shown in blue)
the mean random intercept is positive for not working (N), roughly zero for part-
time working (P) and negative for full-time working (F).

Predicted household choices, which are determined as the category with the high-
est mean posterior probability, are compared to the observed choices in the sample
in Table 1. Results indicate good insample predictive performance of the model
with 92.2% choices predicted correctly.

TABLE 1. Comparison of predicted to observed choices in the sample

actual choice
predicted choice non-working part-time full-time Sum

non-working 1711 106 46 1863

part-time 71 1436 66 1573

full-time 12 31 739 781

Sum 1794 1573 851 4218
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Abstract: We survey effect measures for models for ordinal categorical data
that can be simpler to interpret that the model parameters. For describing the
effect of an explanatory variable while adjusting for other explanatory variables,
we present probability-based measures, including a measure of relative size and
effect measures based on an instantaneous rate of change. We also survey sum-
mary measures of predictive power that are analogs of R-squared and multiple
correlation measures for quantitative response variables. We suggest new mea-
sures of effect and of predictive power. In a longer companion paper available
at www.stat.ufl.edu/~aa/articles/agresti_tarantola.pdf, we illustrate the
measures for an example and provide R code for calculating them.

Keywords: Cumulative link models; Cumulative logits; Marginal effects; Pro-
portional odds; R-squared

1 Introduction

Popular models for ordinal categorical response variables are generalized linear
models that employ non-linear link functions. As a consequence, the model effect
parameters relate to measures, such as odds ratios and probits, that are not easily
understood by non-statisticians. This article surveys simpler ways to interpret the
effects of explanatory variables and to summarize the model’s predictive power.

Section 2 presents alternative ways to summmarize the effect of an explanatory
variable. These include simple comparisons of the probability of extreme-response
outcomes at extreme values of an explanatory variable, measures of instantaneous
effect on the extreme-response probabilities, and measures for comparing groups
that result directly from latent variable models that induce the standard ordinal
models. Section 3 surveys measures of predictive power, including measures that

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).

www.stat.ufl.edu/~aa/articles/agresti_tarantola.pdf
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resemble those for ordinary linear models, possibly estimated for a latent vari-
able model. We also propose a multiple correlation measure that generalizes the
Spearman correlation. A companion paper (Agresti and Tarantola 2017) available
at www.stat.ufl.edu/~aa/articles/agresti_tarantola.pdf illustrates exist-
ing and newly-proposed measures with an example, gives further details and
references, and provides R code for the analyses.

2 Ordinal Effect Measures for Individual Explanatory
Variables

For an ordinal response variable y with c categories, we consider models in which
the explanatory variables may be a mixture of quantitative and categorical vari-
ables. We denote explanatory variable values by x = (x1, . . . , xp)

T . To discuss
ways of summarizing effects for a categorical explanatory variable, we refer also
to a separate indicator variable z that distinguishes between two groups. The
most popular models are special cases of the cumulative link model

link[P (y ≤ j)] = αj − βz − β1x1 − · · · − βpxp , j = 1, . . . , c− 1, (1)

for link functions such as the logit and probit. The nonlinear link function natu-
rally produces effects on the link scale. For example, for cumulative logit models
with this proportional odds structure, β is the difference between logits of cumu-
lative probabilities for the two groups, and −β1 is the change in the cumulative
logit per each 1-unit increase in x1, adjusting for the other explanatory variables.
This leads to odds ratios as natural effect measures. For instance, exp(−β1) is
a multiplicative effect of each 1-unit increase in x1 on the cumulative odds of
response ≤ j vs. > j, for each j.

Such effect measures are not easy to interpret by scientists who need to un-
derstand the effects in more real-world terms. In addition, with nonlinear link
functions, effects often behave in a way that is counterintuitive to those who are
mainly familiar with ordinary linear models. In logistic regression models, for ex-
ample, if an explanatory variable is added to the model that is uncorrelated with
x1, the partial effect of x1 is typically different than in the model without the
other explanatory variable, whereas it would be identical in an ordinary linear
model fitted by least squares. Probability-based effects summarized in this paper
are easier to understand and are typically more stable.

2.1 Extreme-category range-based probability summaries

In practice with ordinal responses, the highest and lowest response categories
often represent a noteworthy state, such as the best or worst outcome. It is
informative to report how P (y = 1) and P (y = c) change as explanatory vari-
ables change. As any explanatory variable increases, cumulative link models that
contain solely main effects imply monotonicity in these probabilities. A simple
summary of the effect of an explanatory variable reports the way that estimates
of P (y = 1) and P (y = c) change over the range of values of that explanatory
variable, when other explanatory variables are set at particular values such as
their means.

www.stat.ufl.edu/~aa/articles/agresti_tarantola.pdf
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2.2 Marginal effect measures

A second type of simple summary for ordinal responses considers the rate of
change in P (y = 1) and P (y = c), as a function of the explanatory variable. We
express the model (1) as

F−1[P (y ≤ j)] = αj − βz − xTβ, j = 1, . . . , c− 1, (2)

where F−1 is the inverse of a standard cdf, x is a column vector of explanatory
variable values (excluding z), and β is a column vector of parameters for x. Let
f(y) = ∂F (y)/∂y.

For a quantitative explanatory variable xk, the rate of change in P (y = 1) at
a particular value of xk, when other explanatory variables are fixed at certain
values x∗, is ∂P (y = 1|x = x∗)/∂xk. Some books, such as Long and Freese (2014),
refer to such an instantaneous effect as a marginal effect. For the cumulative link
model, the marginal effect of xk is −f(αj − βz − xTβ)βk on P (y = 1) and
f(αj −βz−xTβ)βk on P (y = c). For the n sample observations, we can find the
marginal effect of xk at each of the n observed values of the explanatory variables,
and then average them. This is called an average marginal effect (AME). For
categorical explanatory variables, we can find the difference between P (y = 1)
(and/or P (y = c)) when z = 1 and when z = 0, for the n sample observations on
x, and average the obtained values.

For binary data, Mood (2010) pointed out that such measures have behavior
reminiscent of effects in ordinary linear models. For example, they are roughly
stable when we add an explanatory variable to the model that is uncorrelated
with the variable for which we are describing the effect.

2.3 A probability summary for ordered comparison of groups

We next present an alternative way to summarize the effect of a categorical ex-
planatory variable on an ordinal response y, suggested by Agresti and Kateri
(2017). We discuss this in the context of comparing two groups (z = 0 and
z = 1). We regard the ordinal response as crude measurement of an underlying
continuous latent variable y∗ that is the response variable in an ordinary linear
model. Anderson and Philips (1981) showed that the cumulative link model (2)
is implied by a model in which a latent response has conditional distribution
with standard cdf given by the inverse of the link function. Let y∗1 and y∗2 denote
independent underlying latent variables for y, representing the underlying distri-
butions when z = 1 and when z = 0 respectively. At a particular setting x for
other explanatory variables, P (y∗1 > y∗2 ;x) is a summary measure of relative size.
This measure is most meaningful when the groups are stochastically ordered.

The normal latent variable model with y∗ ∼ N(βz+β1x1 + · · ·+βpxp, 1) implies
model (2) with probit link. For this model,

P (y∗1 > y∗2 ;x) = P

[
(y∗1 − y∗2)− β√

2
>
−β√

2

]
= Φ

(
β√
2

)
. (3)

This is true regardless of the x value, so we denote it by P (y∗1 > y∗2). For the
logit link, Agresti and Kateri (2017) showed that

P (y∗1 > y∗2) ≈ exp(β/
√

2)

[1 + exp(β/
√

2)]
, (4)
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for the β coefficient of z in the cumulative logit model. For a log-log link, which
is relevant when we expect underlying latent variables to have extreme-value
distributions, Agresti and Kateri noted that

P (y∗1 > y∗2) =
exp(β)

[1 + exp(β)]
,

for the β coefficient of z in the cumulative link model with log-log link. Ordinary
confidence intervals for the β model parameter induce confidence intervals for the
stochastic superiority measure.

Agresti and Kateri suggested that practitioners can more easily interpret P (y∗1 >
y∗2) than parameters such as odds ratios and differences in probits that naturally
result in cumulative link models. They also proposed related measures for the
observed y scale that need not relate to latent variables.

3 Summary Measures of Predictive Power

Next we discuss ways to summarize how well we can predict y using the fit of
the chosen ordinal model. Measures of predictive power can be useful for com-
paring different models, such as to see whether it helps substantively to add an
interaction term.

3.1 Concordance index

Consider all pairs of observations that have different outcomes on y. The con-
cordance index estimates the probability that the predictions and the outcomes
are concordant, that is, that the observation with the larger y-value also has a
stochastically higher set of model-fitted probabilities. Appealing features of the
concordance index are its simple structure and its generality of potential applica-
tion. Because it utilizes ranking information only, however, it cannot distinguish
between different link functions or linear predictors that yield the same stochastic
orderings.

3.2 R-squared type measures

An alternative approach to summarizing predictive power adapts standard mea-
sures for quantitative response variables. A way to construct such a measure
without assigning arbitrary scores to the categories of y is to estimate R2 for the
linear model for an underlying latent response variable. McKelvey and Zavoina
(1975) suggested this measure for the cumulative probit model, for which the
underlying latent variable model is the ordinary normal linear model. Let y∗i de-
note the value of the latent variable for subject i. The R2 measure for the latent
variable model has the usual proportional reduction in variation form

R2 =

∑
i(y
∗
i − ȳ∗)2 −

∑
i(y
∗
i − ŷ∗i )2∑

i(y
∗
i − ȳ∗)2

=

∑
i(ŷ
∗
i − ȳ∗)2∑

i(y
∗
i − ȳ∗)2

,

the estimated variance of ŷ∗ divided by the estimated variance of y∗. After fitting
a cumulative link model we can estimate the variance of ŷ∗ by the variance of
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the linear predictor ŷ∗ = β̂z + β̂1x1 + · · · + β̂pxp without the intercept. We
cannot observe the latent variable or its sample variance, but we can estimate
that variance by the estimated variance of ŷ∗ plus the variance of the latent
variable distribution, which is 1 for the probit link and π2/3 = 3.29 for the logit
link (i.e., standard logistic distribution).

An alternative proportional-reduction-in-variability approach uses a
likelihood-based measure. Denote the maximized log-likelihood values by LM for
the working model fit and L0 for the null model (i.e., containing only intercept
terms). The pseudo R-squared measure is

1− LM
L0

.

A weakness of such a measure is that the scale is not the same as for y. Interpret-
ing the numerical value is difficult, other than in a comparative sense for different
models.

3.3 Multiple correlation measures

Some statisticians prefer correlation measures over related R2 measures, because
of the appeal of working on the original scale and its proportionality to the effect
size. For example, for the ordinary linear model, for fixed marginal standard
deviations, doubling the slope also doubles the correlation.

We could estimate the multiple correlation for an underlying latent variable
model, such as by taking the square root of the McKelvey and Zavoina (1975)
R2 measure. Another way to form a multiple correlation measure that connects
with models for cumulative probabilities uses as scores the average cumulative
proportions for the marginal distribution of y. For sample proportions {pj} in
that marginal distribution, the average cumulative proportion in category j is

vj =

j−1∑
k=1

pk +

(
1

2

)
pj , j = 1, 2, . . . , c.

Such scores, which are linearly related to the midranks, are sometimes referred
to as ridits. With such created scores, one could construct the correlation for
the n sample observations between the score for the observed outcome category
for a subject and the estimated mean score generated by the model-fitted prob-
ability values for the subject. With ridit scores, this is a multiple correlation
version of the Spearman correlation. In future research, it would be of interest
to study properties of such a measure, including bias reduction in estimating the
population analog.
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Abstract: The hat matrix of a model is valuable. Its trace gives the effective
dimension. In mixed models partial effective dimensions can be defined that make
variance estimation easy and reliable. Efron (2004) casts doubt on the trace of the
matrix and advocates an alternative definition of the effective dimension, based on
a covariance formula. Unfortunately he uses the robust lowess smoother, thereby
blurring the issue.

Keywords: Hat matrix; Penalty; Mixed model; Robustness

1 Introduction

In a linear model we can write ŷ = Hy, where y is an observed vector and H is the
so-called hat matrix (Ye, 1998). It depends only on the explanatory variables and
penalties, if present. The diagonal of H provides the effective (model) dimension:
ED =

∑
i hii. The situation seems clear cut, but one can find several publications

that cast doubt on this definition, e.g Efron (2004) and Janson et al. (2015). Here
I want to show that H deserves its place. Also I show that in mixed models we
can define partial hat matrices and partial effective dimensions. The latter play
a central role in the estimation of variances, as already pointed out by Harville
(1972).

Efron uses the robust lowess smoother, which has a redescending influence func-
tion, effectively making the model strongly non-linear and generating worrying
results. A linear smoother, like locfit or P-splines eliminates all issues.

The effective dimension is a property of a model, when fitted to data, not of the
data themselves. I illustrate that with the Whittaker smoother, varying the order
of the differences in the penalty.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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2 Theory and examples

2.1 The hat matrix

Consider a mixed model with fixed and random components: y = Xβ + Zc + e,
with c ∼ N(0, G) and e ∼ N(0, R). It is well known that one finds estimates for
β and c by solving the system[

X ′R−1X X ′R−1Z
Z′R−1X Z′R−1Z +G−1

] [
β̂
ĉ

]
=

[
X̂ ′R−1y

Ẑ′R−1y

]
. (1)

In many applications one can assume that R = σ2I1 and G = τ2I2, with unknown
σ and τ , and proper sizes of the identity matrices I1 and I2. Then one can write[

X ′X X ′Z
Z′X Z′Z + λI

] [
β̂
ĉ

]
= S

[
β̂
ĉ

]
=

[
X̂ ′y

Ẑ′y

]
=

[
X ′

Z′

]
y, (2)

with λ = σ2/τ2. Because ŷ = [X Z][β̂′ĉ]′, the hat matrix is

H =
[
X Z

]
S−1

[
X ′

Z′

]
. (3)

Another useful matrix is

K =

[
K11 K12

K21 K22

]
= S−1

[
X ′X X ′Z
Z′X Z′Z

]
. (4)

It is easy to show that tr(H) = tr(K) = tr(K11) + tr(K22). Hence the effective
dimension ω = tr(H) can be written as the sum of two components, one for the
fixed and one for the random part.

Generalization is straightforward. If we have two random components: y = Xβ+
Zc+Z̆c̆, with c̆ ∼ N(0, τ̆2I), we have the blocks K11, K22 and K33 on the diagonal
of K. Their traces add up to the effective dimension.

Harville (1977) presents an algorithm for variance estimation that uses traces of
sub-matrices of a matrix I−T . It turns out that I−T is equal to the sub-matrix of
K that corresponds to the random components. The algorithm uses the fact that
c′c/tr(K22) = τ2 and c̆′c̆/tr(K33) = τ̆2. Also σ2 = (y−ŷ)′(y−ŷ)/(n−ED), where
n is the number of observations. These relations hold for the true values of σ2, τ2

and τ̃2, but it immediately suggests an iterative algorithm. Practice has shown
that iterating with these expressions, updating the variances, re-estimating the
coefficients and traces, is reliable and relatively fast. Harville’s algorithm predates
Schall’s (1991) work. It has been used successfully by Rodriguez-Alvarez et al.
(2016) for modeling agricultural field trials with up to ten unknown variances. As
reported by Velazco and others (2017), it never failed on a large set of agricultural
experiments.

Harville’s formula for T is quite complicated, because he starts by explicitly
eliminating the fixed part of the mixed model. Everybody else does it too. This
is an intriguing element of the mixed model folklore, as if the REML paradigm,
correcting for fixed effects, should be explicitly visible to be believed. It is a
complication we can easily avoid, using the matrix K.
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FIGURE 1. Smoothing of kidney data with lowess. Left: data and lowess fit.
Right: estimates of ∂ŷi/∂yi, obtained by data perturbation (red dots) and by
bootstrapping (blue crosses).

2.2 The covariance alternative

Ye (1998) not only used the diagonal of the hat matrix as the effective dimension,
but also an equivalence: ∂ŷi/∂yi = cov(ŷi, yi)/σ

2. Remarkably, it seems to be
more popular than the trace of H. Efron (2004) casts doubt on the hat matrix
by showing a scatterplot of data on kidney function and applying the lowess
smoother. He also presents a plot of ∂ŷi/∂yi. It shows a rather wild pattern and
even a number of negative values. Efron shows how to get alternative estimates,
using the above equivalence and bootstrapping. The covariance in the formula
cannot be computed from the data directly, but by simulating pseudo-data vectors
with mean ŷ and independent errors with standard deviation σ̂ and smoothing
each of them.

In Figure 1 I have reproduced the data, the lowess fit, and the corresponding
estimates of ∂ŷi/∂yi. In the paper Efron does not mention how he obtained
them, but the example also appears in the recent book (Efron and Hastie, 2016),
where numerical differentiation is mentioned. Following this approach, I made a
small change (0.01) to each observation in turn and re-computed the fit.

These surprising results for ∂ŷi/∂yi are caused by the non-linearity of the smoother.
Figure 2 influence function of lowess and its derivative. The latter is negative for
moderately large residuals. Their influence is reduced so aggressively that for
the more extreme observations an increase of the size of the residual moves the
smooth curve in the opposite direction.

If Efron would have used locfit instead of lowess, he would have obtained non-
controversial estimates for the hat diagonal. P-splines would have been even more
attractive, because the hat matrix (or the matrix K) is easily computed. Writing
P-splines with a second order difference penalty as a mixed model (Currie and
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FIGURE 2. Left panel: the lowess smoother has a re-descending influence func-
tion, with a derivative that is negative for moderately large residuals. For stan-
dardized residuals with absolute values between 2.7 and 5, a fitted value will
move towards the smooth trend when the observation moves away from it. Right
panel: estimates of the hat diagonal vs the residuals for lowess smoothing of the
kidney data.

Durban, 2002) and using the simplified Harville algorithm to estimate variances,
we find that very strong smoothing is indicated. This means that effectively we
get a straight line fit. The kidney data turn out to be no good candidate for
smoothing at all: simple linear regression is sufficient.

2.3 The dimension of the model or the data?

The effective dimension is not a property of the data, but of the model, once
penalty parameters have been set. Figure 3 shows simulated data (a sine wave
plus independent errors) and the (optimized) fits obtained with the Whittaker
smoother: ŷ = (I + λD′dDd)

−1y, with Dd the matrix that forms differences of
order d. For d = 1, the effective dimension is much larger than for d = 2 or d = 3,
while the fits look very similar. The reason is that fist order differences do not
allow much flexibility. A further increase of λ would give a smoother fit, but at
the price of a larger bias.

These results have practical consequences. It is attractive to specify a smoother in
terms of the effective dimension of the fitted model, because a penalty parameter
like λ has no intuitive appeal. But a chosen effective dimension might lead to
bias if the penalty is not flexible enough.

In the limit, when λ is very large, the Whittaker smoother fits a polynomial of
degree d−1. The second order penalty can be written as λ

∑
i(zi−2φzi−1+zi−2)2,

with φ = 1. If we change that to φ = cos(2πf/n), the limit is a (co)sine with f
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periods on the domain from 0 to 1, if covered by n observations. Amplitude and
phase are automatically det to values that give the least squares fit to the data.
If the data indeed are a cosine wave plus noise, a very large λ would be indicated,
with an effective dimension equal to 2 (or equal to 3, if the mean is not zero, and
an extra parameter is introduced.) This shows that a good penalty should match
the data, a largely unexplored aspect of smoothing.
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Giovanna Cilluffo1,2, Gianluca Sottile1, Stefania La Grutta2,
Vito M.R. Muggeo1

1 Department of Economical, Business and Statistical Sciences, University of
Palermo (Italy),

2 Institute of Biomedicine and Molecular Immunology A Monroy (IBIM) - Na-
tional Research Council (CNR) of Palermo (Italy)

E-mail for correspondence: giovanna.cilluffo@unipa.it

Abstract: We discuss the score statistic to carry out inference on the regression
coefficients in LASSO regression. The proposed approach relies on the Induced
Smoothing framework and leads to results exhibiting good performance in differ-
ent settings, including the high dimensional one n < p. We focus on interval esti-
mation where few proposals have been discussed in literature with unsatisfactory
results in some settings. We present results from some simulation experiments
and an analysis of the well known prostate cancer dataset.

Keywords: Score Statistics; Induced Smoothing; LASSO; Confidence Intervals.

1 Introduction

The Least Absolutes Shrinkage and Selection Operator (LASSO) represents a
very elegant and relatively widespread solution to carry out variable selection and
parameter estimation simultaneously (Tibshirani 1996). While point estimation
can be performed quite straightforwardly, possible current limitations are compu-
tation of standard errors and consequently inferences, namely reliable hypothesis
testing and confidence intervals. Cilluffo et al. (2016) present a smooth approxi-
mation for the LASSO regression, based on the recent idea of induced smoothing
(IS). The IS-LASSO allows to gain reliable standard errors which satisfactorily
quantify the estimator variance, even for zero coefficient. In hypothesis testing
problems, simulations show good performance of the IS-LASSO Wald statistic
when compared with the two competitors covTest (Lockart et al. 2016) and post-
Sel (Lee et al. 2014). However, the regression coefficient estimator is still biased
for nonzero coefficient, that prevents the Wald statistic to be used for interval

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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estimation. In this paper we discuss an approach based on Score statistic. The
paper is structured as follows: Section 2 describes the basics of the approach and
Section 3 reports some simulation evidence. Section 4 is devoted to a real-data
analysis, while conclusions are reported in the last section.

2 Methods

For the penalized objective 1
2
||y −Xβ||22 + λ||β||1, the IS score is

Ũ(β) = XT (y −Xβ) + λ{2Φ(β/v1/2)− 1p},

where Φ(·) is the cumulative distribution function of the standard Normal, v
is the main diagonal of the covariance matrix of estimates, V , and a/b means
the element-wise ratio of two vectors a and b. V is computed via the sandwich

formula, namely V = H̃−1 I H̃−1 where H̃ = ∂Ũ
∂β

is the hessian, and I is the
Information matrix.

Let β1 and β2 be the interest and nuisance subsets of β, and Ũj , H̃jk and Ijk
(j, k = 1, 2) the corresponding blocks of the Score vector, and of the hessian and
Information matrices. It is well know that score inference on β1 relies on the
profiled score

Ũ1|2 = Ũ1 − H̃12H̃
−1
22 Ũ2, (1)

which can be expressed in matrix notation via

Ũ1|2 = AŨ = [I,−b][ŨT
1 , Ũ

T
2 ]T

where I is the identity matrix, and b = H̃12H̃
−1
22 . The variance is easily obtained

as
V(Ũ1|2) = AV(Ũ)AT with V(Ũ) = I = σ2(XTX).

Unlike the usual inferential contexts where the regularity conditions are met,
E[Ũ ] 6= 0 (at the true parameter value β0 6= 0), and thus the studentized Score
statistic to be used for inference takes the form

S̃1|2 = [Ũ1|2 − E[Ũ1|2]]TV(Ũ1|2)−1[Ũ1|2 − E[Ũ1|2]]
d→ χ2

p1 , (2)

where p1 is the dimension of the interest parameter β1. We propose to use the
studentized Score statistic (2) to carry out hypothesis testing and interval esti-
mation for the regression coefficients in LASSO regression. In particular a (1−α)
confidence interval for β1 is given by

CI1−α = {β̄1 : S̃1|2(β̄1) ≤ χ2
p1;1−α}.

To illustrate, Figure 1 portrays an example of profile score for two coefficients in
a toy dataset.



266 Score inference in LASSO

−3 −2 −1 0 1 2 3

−
30

−
20

−
10

0

β1

U
1|

2

−3 −2 −1 0 1 2 3

−
10

0
10

β6

U
1|

2

FIGURE 1. Illustrating the profile score with corresponding point estimate and
95% confidence intervals in a simulated dataset. The left and right panels refer
to a non-zero and zero coefficient respectively. The functions have been shifted
to guarantee U1|2(β̂) = 0 (thus the dashed horizontal lines do not correspond to
quantiles z.025 and z.975).

3 Simulation Evidence

The proposed Score statistic can be employed for hypothesis testing and in-
terval estimation, but we here focus on interval estimation only. At the best
of our knowledge, the only approach currently available to build confidence
intervals is via selective inference (pSel) due to Lee et al. (2014). Thus we
compare Score-based confidence intervals with respect to those obtained via
the pSel. We consider scenarios fulfilling the theoretical condition for guaran-
tee consistency (Zhao and You 2006) of the LASSO, namely: irrepresentable
condition; number of nonzero coefficients β1, . . . , βk (out of p covariates) such
that k ≤ n/(2 log p) having magnitudes at least cσ

√
2 log p for some unspeci-

fied numerical constant c (Wainwright 2009). We generate data from a linear
regression model y = Xβ + ε with X ∼ Np(0, Ip) and ε ∼ N(0, 1) for five
different scenarios given by some combinations of sample sizes n = 50, 100,
and number of covariates p = 20, 40, 60, 80, 120 with only 5 non-null coefficients
β = (3,−3.1, 4, 3.5,−5, 0, . . . , 0)T. Standard theory of pSel provides inference for
a fixed λ, but because it is unknown in practice, we use cross-validation for choos-
ing λ at each simulation run. Table 1 shows results based on 500 and 100 runs,
respectively in low and high dimensional settings, wherein the tuning parameter
λ has been selected via 5-fold cross validation at each replicate.

Coverage levels referring to the first 10 coefficients are comparable for the nonzero
coefficients at the ‘simpler’ scenario of n = 50 and p = 20, but otherwise pSel
exhibits coverage levels lower than the nominal one, 0.95. Interestingly when
the sample size increases to n = 100 (keeping fixed the ratio p/n) the coverage
levels do not improve. The proposed score-based confidence intervals exhibit good
performance in all scenarios.

We also consider scenarios in which the theoretical conditions are not met, namely
with same combinations of n and p, but σ = 3. Table 2 reports results. Coverage
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TABLE 1. Coverage levels of 95% CIs from Score and pSel for 10 selected param-
eters. Results are based on 500 and 100 replicates in low and high dimensional
setting, σ is equal to 1 and the optimal λ has been obtained via cross validation.

coefficents true value
(n, p) 3 -3.1 4 3.5 -5 0 0 0 0 0
(50,20) Score 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.95 0.96 0.94

pSel 0.94 0.95 0.94 0.95 0.95 1.00 1.00 1.00 1.00 1.00

(50,40) Score 0.96 0.96 0.96 0.97 0.98 0.95 0.98 0.97 0.98 0.96
pSel 0.63 0.63 0.62 0.65 0.64 0.87 0.95 0.96 0.94 0.94

(100,80) Score 0.99 0.98 0.99 0.98 0.97 0.99 0.98 0.98 0.99 0.99
pSel 0.39 0.39 0.39 0.39 0.39 0.91 0.89 0.89 0.86 0.90

(50,60) Score 0.98 0.94 0.99 0.94 0.96 0.95 0.95 0.97 0.93 0.95
pSel 0.76 0.73 0.77 0.75 0.75 1.00 0.99 1.00 1.00 1.00

(100,120) Score 0.98 0.92 0.97 0.96 0.99 0.96 0.97 0.96 0.95 0.96
pSel 0.88 0.85 0.88 0.87 0.89 1.00 0.99 0.96 0.99 1.00

levels from pSel are again lower than the nominal level, even in the simple scenario
of n = 50 and p = 20. In high dimensional settings, pSel performs quite bad.

TABLE 2. Coverage levels of 95% CIs from Score and pSel for 10 selected param-
eters. Results are based on 500 and 100 replicates in low and high dimensional
setting, σ is equal to and the optimal λ has been obtained via cross validation.

true value
(n, p) 3 -3.1 4 3.5 -5 0 0 0 0 0
(50,20) Score 0.96 0.97 0.95 0.97 0.97 0.96 0.97 0.97 0.97 0.94

pSel 0.64 0.64 0.65 0.65 0.64 0.94 0.90 0.92 0.90 0.91

(50,40) Score 0.96 0.97 0.99 0.98 0.99 0.98 0.98 0.98 0.98 0.98
pSel 0.49 0.48 0.49 0.49 0.48 0.74 0.86 0.86 0.88 0.87

(100,80) Score 0.99 0.98 0.98 0.97 0.98 0.97 0.98 0.98 0.99 0.97
pSel 0.33 0.34 0.34 0.34 0.35 0.86 0.84 0.88 0.83 0.84

(50,60) Score 0.99 0.99 0.99 0.99 0.99 1.00 0.97 0.98 0.98 0.99
pSel 0.25 0.24 0.22 0.23 0.25 0.86 0.82 0.86 0.80 0.83

(100,120) Score 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
pSel 0.34 0.32 0.33 0.33 0.33 0.92 0.93 0.90 0.90 0.94

4 Application and conclusion

We apply the IS-Lasso to the well-known Prostate Cancer dataset analyzed in
Tibshirani (1996). Data refer to n = 97 subjects, p = 8 covariates and the
response variable is the log of prostate specific antigen. Table 3 reports the esti-
mates from ordinary LASSO along with p-values and the 95% confidence intervals
returned by pSel and the proposed Score.

Findings are substantially similar between Score and pSel for all but one coef-
ficient. In fact for the variable svi, pSel returns a somewhat ‘large’ p-value and
confidence interval including the zero, while the Score inference provides evidence
for a significant effect of such covariate. However for the remaining coefficients
with the same findings in terms of significance, the Score based confidence inter-
vals are generally narrower. Results for pSel have been obtained via the package
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TABLE 3. Estimates, p-values and 95% confidence intervals for the regression
coefficients in the Prostate Cancer dataset. The widths are reported below each
CI. Estimates come from ordinary LASSO, p-values and confidence interval come
from Score statistic and pSel.

p-value 95% confidence interval
covariate Est Score pSel Score pSel

lcavol 0.517 0.000 0.000 0.394, 0.726 0.395, 0.717
0.332 0.322

lweight 0.349 0.008 0.038 0.122,0.820 -0.057, 0.783
0.698 0.840

age -0.001 0.118 0.203 -0.039, 0.004 -0.039, 0.026
0.044 0.065

lbph 0.053 0.078 0.099 -0.012, 0.228 -0.066, 0.222
0.240 0.288

svi 0.570 0.003 0.077 0.223, 1.141 -0.290, 1.069
0.918 1.359

lcp 0.000 0.265 * -0.283, 0.079 *
0.363 *

gleason 0.000 0.812 * -0.275, 0.346 *
0.622 *

pgg45 0.002 0.424 0.166 -0.005, 0.012 -0.004, 0.010
0.170 0.014

*lcp and gleason variable are not selected by pSel

selectiveInference version 1.2.2 (Tibshirani et al., 2017). An R package to
perform Score-based inference in LASSO regression will be distributed in due
time.

5 Conclusions

The proposed Score statistic seems to be a good inferential tool to build confi-
dence intervals in LASSO regression. The coverage levels of the interval estimators
are pretty close to the nominal level in different scenarios, even when the theo-
retical conditions are not met. While current results are quite promising, further
research is necessary to compare our approach with others not yet considered,
such as the method proposed by Javanmard and Montanari (2014), which use a
desparsifying LASSO to build CI.
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Abstract: Graphical models provide a visualisation of the conditional depen-
dence structure between variables, making them an attractive inference tool.
The improved readability makes this an appealing approach to represent complex
model output to non-statisticians. In this paper, we introduce a novel approach
using graphical models to visualise the output of a mixed effects model with
multivariate response with an application to linguistic data.
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1 Introduction

In this work, we discuss the use of a chain graph model structure to represent
the output from a hierarchical regression model with multivariate response. The
chain graph model is inferred in three parts. The dependency structure of the
covariates is modelled independently using standard structural inference methods
in graphical models. The relationship between the response and explanatory vari-
ables and the dependence structure between response variables is jointly inferred
using a multivariate Bayesian hierarchical model, where the precision estimates of
the residuals and random effects are assumed to conform to an undirected graph-
ical model. We report an application of this model to linguistic data obtained
from the Sounds of the City corpus, consisting of Glaswegian speech recordings
from the 1970’s to the 2000’s. From this data, we look to recover the underlying
chain graph model detailing which factors affect vowel change.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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2 Chain graph model structure

Implementing a chain graph (Lauritzen & Wermuth, 1989) structure allows the
use of directed and undirected edges. Nodes are partitioned into blocks, one for
explanatory variables and one for response variables. Edges within blocks are
undirected and edges between blocks are directed.

The directed edges between blocks are modelled using a Bayesian hierarchical
model. The response is defined as ylij , which is the jth measurement from the ith

group on the lth response. βl is the corresponding vector of regression coefficients.
The random effects coefficients are denoted by bl.

In vector-matrix notation, the likelihood is defined as:

p(y | β,b,Ωε,X) = N
(
y | Xβ + Ub,

(
Ω−1
ε ⊗ I

))
. (1)

As conjugate priors have been specified for each parameter where possible, a
Gibbs sampler can be used for parameter inference.

The presence of a directed edge in the graphical model corresponds to the value
of the respective βji coefficient:

• βji 6= 0→ an edge is present between variable i and response j.

• βji = 0→ no edge is present between variable i and response j.

If any interactions are in the model, a factor graph structure is used to represent
these, with the interacting explanatory variables connecting to a factor node,
which is connected to the relevant response variable.

At each step of the sampler, a new candidate model is proposed by either adding
or removing an explanatory variable. By integrating out β, model evidences are
then computed to determine whether we accept or reject the candidate model.

For random effect parameters b a Gaussian prior is specified of the form:

b | Ωb ∼ N
(
0,
(
Ω−1

b ⊗ I
))
. (2)

To maintain conjugacy, the random effect and model error precision matrices
have G-Wishart (Dobra et al, 2011) hyperpriors placed on them:

Ωb,Ωε|G ∼ WG(νb,Sb). (3)

where G is a defined graph.

The precision estimates from the hierarchical model are taken as input to a zero
mean Gaussian graphical model, defined as:

MG = N (0,Ω−1). (4)

where ωi,j = 0 corresponds to a missing edge between response i and j.

The normalising constant, IG(ν,S), for chordal graphs can be obtained via a
closed form solution by factorising it into a product of density functions:

IG(ν,S) =

∏d
i=1 ITi(ν, STi,Ti)∏d−1
j=1 ISi(ν, SSi,Si)

. (5)

where Ti are cliques and Si the separators of G. In the case of a non-chordal graph,
model selection can be performed by using trans-dimensional MCMC methods
such as those discussed in Mohammadi & Wit (2015).
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FIGURE 1. Spectrogram of the word GOAT spoken by a male Glaswegian
speaker. The three coloured lines show the first three formants of the vowel /o/.

3 Application: vowel change in Glasgow

We apply the methodology to data from the Sounds of the City (Stuart-Smith,
2017) project, which is a study modelling vowel change in the Glaswegian dialect
over the 20th century. Recordings of speakers over various decades are used and
vowel measurements are taken along with phonetic quantities of interest and
social and biological factors.

Acoustically, a vowel can be characterised by its main resonances, known as
formants (Hz). This is illustrated in Figure 1, with the /o/ vowel formants repre-
sented by the three coloured lines. Vowel change is studied in terms of how such
frequencies alter over time.

Figure 2 shows the best posterior model selected for the vowel /o/, found in
words like GOAT, HOPE, etc, selected with posterior probability 0.414.
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FIGURE 2. Best posterior model selected for the GOAT vowel.

From the graphical model, we observe the following significant predictors:

• Age for F1; younger speakers are leading the change in vowel quality. Shifts
in F1 relate to raising of the vowel quality, so /o/ becoming more like /u/.

• Shifts in F2 relate to fronting/backing of the vowel quality according to
the nature of following consonant.

• Decade and Gender for F3, evidence of vowel change over time and addi-
tional differences due to speaker gender.

4 Conclusions & future work

In this work, we have extended beyond previous modelling of sociolinguistic data,
by considering multiple formants within the one model, accounting for the high
correlation between formants. This approach can also be extended beyond lin-
guistic data, with several academic trials using datasets with similar multivariate
and nested features.

In order to promote the usability of our method, we aim to turn it into an online
application, allowing users to input their own data.
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Abstract: Wilson and Einbeck (2015, 2016) propose a test for zero-modification
relative to a stated model. The basis of the test is that the number of observed
zeros follows a Poisson-binomial distribution. The decision to reject, or otherwise,
the non zero–modified model is made by either (i) computing the mid p-value
corresponding to the number of observed zeros, or (ii) comparing the number of
observed zeros to the relevant “traditional” quantile of the appropriate Poisson–
binomial distribution. In general either approach will result in the same decision,
but occasionally discrepancies may occur. In this paper we investigate the use of
mid-distribution quantiles in approach (ii) above, and show that this reduces the
possibility of discrepancies.
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1 Introduction

Wilson and Einbeck (2015) proposed a new and intuitive test for zero-modification
that uses the observed number of zeros, n0, in a given sample y = y1, y2, . . . , yn
from count variables Yi and a set of covariates xi, i = 1, 2, . . . , n to establish
whether the distributional assumption Yi|xi ∼ G(yi|µi) where µi is a pre-specified
parametric function of the xi is consistent with N0, the distribution of the num-
ber of zeros under G. This is achieved by referencing the value of n0 to the
appropriate Poisson-Binomial distribution (Chen and Liu, 1997).

To illustrate, consider the case where G is a Poisson model, and thus pi =
p(0|µi) = e−µi and let Ti be a random variable which takes the value 1 if yi = 0
and 0 otherwise. Clearly Ti is a Bernoulli random variable with parameter pi and
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tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
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thus N0 may be formulated as the sum over independent Bernoulli experiments
T1, T2, . . . , Tn.

Based on this simple observation, consider the special case that there are no
covariates, that is µ1 = µ2 = · · · = µn = µ. In this case, the pi’s are equal also,
and so the distribution of N0 is a binomial distribution Bin(n, p), where p = e−µ,
and thus has mean np and variance np(1−p). Based on this distribution, one can
immediately compute quantiles corresponding to a given significance level, and
use these as critical values for the test; alternatively one may determine the p-
value corresponding to n0, and reject or otherwise the Poisson model based upon
this. If the µi do depend on covariates, N0 is the sum of n independent Bernoulli
random variables T1, T2, . . . , Tn, and hence is a Poisson-Binomial distribution
with parameters p1, p2, . . . , pn and one proceeds by computing quantiles or p-
values relative to this distribution, using, for example, the R package poibin

(Hong, 2013).

Wilson and Einbeck (2016) proposed the use of mid p-values

α̂T,0.5(t) = P0[T > t] + 0.5P0[T = t] = 0.5 (P0 [T ≥ t] + P0[T ≥ t+ 1])

which Franck (1986) argues are more appropriate when the test statistic is dis-
crete. Note that if T were continuous, then P0[T = t] = 0 and the mid p-value is
equivalent to the “traditional” p-value. It may be shown that the attainment rate
of the proposed test when mid p-values are employed is superior to that when
traditional p-values are used.

Wilson and Einbeck (2015) utilise the “traditional” quantile Q(p) = inf{t |
F (t) ≥ p} where F (x) = P (X ≤ x) is the cumulative distribution function of
a random variable X. This may lead to discrepancies. An example, based upon
the one-sided version of the test (i.e. we are testing for zero-inflation only), is the
following:

1.1 Trajan Data

The data are the number of roots produced by n = 270 micropropagated shoots
of the columnar apple cultivar Trajan. During the rooting period, all shoots were
maintained under identical conditions, but the shoots themselves were cultured
on media containing different concentrations of the cytokinin BAP, in growth
cabinets with an 8 or 16 hour photoperiod. Full details of the experiment are to
be found in Marin (1993). A striking feature of the data is that although almost
all shoots produced under the 8 hour photoperiod rooted, only about half of those
produced under the 16 hour photoperiod did. Overall n0 = 64 shoots produced
zero roots, of which only 2 were from the shorter photoperiod.

These data were analysed by Ridout and Demétrio (1992) and Ridout et al.
(1998). If the model of the null hypothesis is a negative binomial (type–II) model,
where both the mean and the size parameter are modelled by photoperiod, then
a (mid) p-value of 0.0871 for the test of Wilson and Einbeck (2015, 2016) is
returned, indicating non-rejection of the negative binomial model at α = 0.05.
The traditional 5th and 95th quantiles of the distribution of N0 are 47 and 66;
the interval [47, 66] is referred to as a 90% fluctuation interval. As n0 = 64 is
interior to this interval we conclude that n0 is consistent with such a model (and
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inconsistent with the zero-inflated model) at a level of significance of α = 0.05. An
80% fluctuation interval however is [49, 64], and thus based upon this fluctuation
interval we would fail to reject the negative-binomial model in favour of the
strictly zero-inflated model at a level of significance of 0.10, but we would do so
under the “p–value criterion”.

2 Quantiles based on mid-distribution functions

Let X be a discrete random variable with distinct values v1 < v2 < · · · < vd, let
P (X = vi) = pi. Ma et al. (2011) recommend the following quantile function for
discrete distributions:

Q(p) = F−1

mid(p) =



v1 if p < p1/2

vk if p = πk, k = 1, . . . , d

λvk + (1− λ)vk+1 if p = λπk + (1− λ)πk+1

0 < λ < 1, k = 1, . . . , d− 1

vd if p > πd

Where πk =
∑k−1
i=1 pi + pk/2, that is, πk is a lower-tailed mid-p-value.

2.1 Example: Mid Quantiles for a Binomial Distribution

Let X ∼ Bin(7, 0.35), and thus X has pmf and cdf:

x 0 1 2 3 4 5 6 7

P (X = x) 0.049 0.185 0.298 0.268 0.144 0.047 0.008 0.001
P (X ≤ x) 0.049 0.234 0.532 0.800 0.944 0.991 0.999 1.000

and hence the “traditional” 90th quantile of X is 4.

We determine the “mid–quantile” as follows:

v5 = 4, v6 = 5, p5 = 0.144, p6 = 0.047.

Hence π4 = 0.800 + 0.144/2 = 0.8720, π5 = 0.944 + 0.047/2 = 0.9675.

Note that 0.9 = 0.707π4 + (1− 0.707)π5, hence:

Q(0.9) = F−1

mid(0.9) = 0.707v4 + (1− 0.707)v5 = 3.213

2.2 Example: Simulated Poisson Data

The 25 data of Table 1 are a random draw from a random variable W that is
believed to follow a Poisson distribution. It is wished to test this belief.

It is estimated, using the adaptive mixture estimator of Wilson and Einbeck
(2016), that the mean of W is µ = 1.171, and hence under the null (Poisson)
model P (W = 0) = exp(−1.171) = 0.310. Hence the observed number of zeros in
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TABLE 1.
0 1 2 3
16 4 4 1

random samples of size 25 drawn from W will be Bin(25, 0.310) distributed. The

“traditional” 2.5th and 97.5th quantiles of such a distribution are 7 and 16 re-
spectively, and hence a 95% fluctuation interval for the number of observed zeros
under the Poisson distribution is [7, 16] indicating non-rejection of the Poisson
model at a level of significance of α = 0.05, consistent with the traditional p-value
of 0.064, but inconsistent with the mid p-value of 0.045. The 95% fluctuation in-
terval based upon the mid quantiles is however [6.52, 15.57], consistent with the
mid p-value. These results are summarised in Table 2.2.

TABLE 2. n = 25, H0:Poisson

n0 = 16 p-value 95%FI

traditional 0.064 [7, 16]
mid 0.045 [6.52, 15.57]

2.3 Example: Trajan Data Revisited

Here we re-compute the 80% fluctuation interval for the negative binomial model
fitted to the Trajan data of Section 1.1 using the mid-distribution quantiles de-
fined above. (Recall, here we are testing for strict zero-inflation, and thus the up-
per bound of the fluctuation interval serves as a test statistic for a one-sided test).
We find that π47 = 0.073 and π48 = 0.101, thus 0.1 = 0.069π47+(1−0.069)π48 and
hence Q(0.1) = (0.069× 47) + ((1− 0.069)× 48) = 47.931. Similarly π63 = 0.882
and π64 = 0.913, thus 0.9 = 0.419π63 + (1 − 0.419)π64 and hence Q(0.9) =
(0.419×63)+((1−0.419)×64) = 63.581. Thus, using the mid-distribution quan-
tile we obtain a 80% fluctuation interval of (47.931, 63.581), and hence n0 = 64
is exterior to the confidence interval, and we reject the negative-binomial model
in favour of the zero-inflated negative binomial model under both criteria. These
results are summarised in Table 2.3.

TABLE 3.

n0 = 64 p-value 90% FI 80% FI

traditional 0.1010 [47, 66] [49, 64]
mid 0.0871 [46.902, 65.679] [47.931, 63.581]

3 Conclusion

Decisions based upon mid-distribution quantiles as defined above will agree with
those based upon mid p-values unless p < p1/2 or p > πd. With respect to the test
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proposed in Wilson and Einbeck (2015, 2016) these exceptions correspond to the
observed data either containing no zeros, or consisting entirely of zeros, and hence
the adoption of quantiles based upon mid-distribution functions results in fluc-
tuation intervals that nearly entirely removes discrepancies that may sometimes
occur between decisions based upon fluctuation intervals and mid p–values. Given
that the power and attainment rates of the test when based upon mid p-values are
excellent, such alignment is desirable. The adoption of such quantiles is straight-
forward. In this paper we only discuss the use of mid-distribution quantiles in
relation to the test of Wilson and Einbeck (2015, 2016), but their application to
other tests with discrete test statistics is worthy of investigation.
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Abstract: Media-based event data i.e., data comprised from reporting by me-
dia outlets are widely used in research in political science. However, events of
interest (e.g., strikes, protests, conflict, etc.) are often underreported by these pri-
mary and secondary sources, producing incomplete data that risks inconsistency
and bias in subsequent analysis. While general strategies exist to help ameliorate
this bias, these methods do not make full use of the information often available
to researchers. Specifically, much of the event data used in the social sciences
is drawn from multiple, overlapping news sources (e.g., Agence France-Presse,
Reuters, etc.). Therefore, we propose a novel maximum likelihood estimator that
corrects for misclassification in data arising from multiple sources. In the most
general formulation of our estimator, researchers can specify separate sets of
predictors for the true-event model and each of the misclassification models char-
acterizing whether a source fails to report on an event. As such, researchers are
able to accurately test theories on both the causes of and reporting on an event of
interest. Simulations evidence that our technique regularly outperforms current
strategies that either neglect misclassification, the unique features of the data-
generating process, or both. We also illustrate the utility of this method with a
model of repression using the Social Conflict in Africa Database.
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1 Misclassification

Misclassification is likely to occur with media-based event data, where primary-
or secondary-source reports fail to include the occurrence of an actual event. To
introduce our method, consider two news outlets, 1 and 2, providing reports, Y1

and Y2, on the event of interest YT. However, we possess two incomplete reports
Y1 6= YT and Y2 6= YT, explained by pr(Y1 = 1|X,Z1) and pr(Y2 = 1|X,Z2),
where Z1 and Z2 are predictors of the (mis-)reporting of an event (e.g., distance to
reporting office) by that source, which are otherwise unrelated to YT. Following
convention in the applied literature, we aggregate these sources to reduce the
individual missingness by Ysum = 1(Y1 + Y2 ≥ 1). If Ysum = YT, the data are
complete and we find that

pr(YT = 1|X,Z1,Z2) = pr(YT = 1|X) = F (βtX), (1)

where F (·) is specified up to the parameter β. We are interested in Eq. 1. How-
ever, where Ysum 6= YT, we are unable to simplify as in 1. This means that
when observed outcomes are misclassified, fitting Equation 1 will result in biased
estimates of X on YT. We make the following assumptions:(a) Y1 and Y2 are in-
dependent given (YT,X,Z1,Z2). (b) Ysum = 1 implies YT = 1 with probability
1. (c) YT = 0 implies that Ysum = 0 = Y1 = Y2 with probability 1.

If we treat Ysum as the response variable, the problem is related to one studied
by Carroll and Pederson (1993), and Hausman et al. (1998). The misclassifi-
cation probabilities are pr(Ysum = 0|YT = 1,X,Z1,Z2) = γ(X,Z1,Z2), and
pr(Ysum = 1|YT = 0,X,Z1,Z2) = 0, which follows from Assumption (b). In
Hausman et al. (1998) these misclassification probabilities do not depend of co-
variates, and are instead simply an unknown constant to be estimated. There-
fore, we generalize Hausman et al. (1998)’s estimator to allow for misclassification
probabilities that are dependent upon the covariates. We have that

pr(Ysum = 0|X,Z1,Z2) = {1− γ(X,Z1,Z2)}{1− F (X, β)}+ γ(X,Z1,Z2);

pr(Ysum = 1|X,Z1,Z2) = {1− γ(X,Z1,Z2)}F (X, β).

However, the data are not (Ysum,X,Z1,Z2), but (Y1,Y2,X,Z1,Z2), that is, we
have multiple sources of data. As such, there may be different misclassification
rates, which is the fundamental difference between our estimator and existing
approaches. Rather than neglect this information, thereby failing to use all of the
data, we define

α1(X,Z1) = pr(Y1 = 0|YT = 1,X,Z1);

α2(X,Z2) = pr(Y2 = 0|YT = 1,X,Z2).

Here by Assumption (b) we have that pr(Y1 = 1|YT = 0,X,Z1) = pr(Y2 =
1|YT = 0,X,Z2) = 0.

Under Assumption (a-c), we have

pr(Y1 = 0,Z2 = 0|X,Z1,Z2) = 1− F (X, β) + α1(X,Z1)α2(X,Z2)F (X, β);

pr(Y1 = 0,Z2 = 1|X,Z1,Z2) = α1(X,Z1){1− α2(X,Z2)}F (X, β);

pr(Y1 = 1,Z2 = 0|X,Z1,Z2) = {1− α1(X,Z1)}α2(X,Z2)F (X, β);

pr(Y1 = 1,Z2 = 1|X,Z1,Z2) = {1− α1(X,Z1)}{1− α2(X,Z2)}F (X, β).

Thus, we can construct the likelihood function.
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TABLE 1. Simulation Study Results

Naive Hausman Hausman Multi-Source Multi-Source
Probit Const Pr w/ Cov Const Pr w/ Cov

β0 = −1

Bias 0.074 −0.663 −0.023 −0.048 0.003
Std 0.051 0.227 0.106 0.060 0.063
SE 0.055 0.175 0.096 0.067 0.063
MSE 0.008 0.490 0.012 0.006 0.004
CP(%) 77.4 3.7 95.8 91.3 95.8

β1 = 1

Bias 0.397 −0.379 −0.035 0.287 −0.010
Std 0.055 0.258 0.158 0.092 0.094
SE 0.057 0.218 0.132 0.079 0.095
MSE 0.161 0.210 0.026 0.091 0.009
CP(%) 0.0 56.9 94.0 11.1 96.3

2 Simulations

We consider the following five methods: Näıve Probit: pr(Ysum = 1|X) =
Φ(β0 + β1X). Hausman, Constant Probabilities: the approach outlined in
Hausman et al. (1998), which fits pr(Ysum = 1|X) = {1 − pr(Y = 1|YT =
1, X)}Φ(β0 + β1X). Hausman with Covariates: our generalization of Haus-
man et al. (1998), pr(Ysum = 0|YT = 1, X, Z1, Z2) = γ(X,Z1, Z2) = Φ(η00 +
η01X + η02Z1 + η03Z2), giving event probabilities pr(Ysum = 1|X,Z1, Z2) =
{1− γ(X,Z1, Z2)}Φ(β0 + β1X). Multi-Source, Constant Probabilities: our
multi-source method, pr(Y1 = 0|YT = 1, X, Z1) = Φ(η10) and pr(Y2 = 0|YT =
1, X, Z2) = Φ(η20). Multi-Source with Covariates: our general multi-source
method, pr(Y1 = 0|YT = 1, X, Z1) = Φ(η10 + η11X + η12Z1) and pr(Y2 = 0|YT =
1, X, Z2) = Φ(η20 + η21X + η22Z2). We generated N = 1000 Monte Carlo tri-
als, with sample size n = 1000. X,Z1 and Z2 from N(0, 1) distribution. YT
from Bernoulli{F (X,β) = Φ(β0 +Xβ1)}, where Φ denotes the CDF of the stan-
dard normal distribution. Next, generate misclassification probabilities by using
α1 = Φ(η10 + η11Xi + η12Zi,1) and α2 = Φ(η20 + η21Xi + η22Zi,2), then generate
Yi,1 = Yi,T (1 − Bernoulli(α1)) and Yi,2 = Yi,T (1 − Bernoulli(α2)). Given Y1 and
Y2, generate Ysum using Ysum = 1(Yi,1 + Yi,2 ≥ 1). We set β0 = −1 and β1 = 1,
(η10, η11, η12, η20, η21, η22) = (−0.7, 1, 1,−1.4, 1, 1).

3 Application

we estimate a model of repression in Africa using the four methods. Our outcome
data is taken from SCAD (Salehyan et al. 2012), which generates event data on
forty-seven African countries using key word searches of Associated Press (AP)
and Agence France-Presse (AFP) news wires.
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TABLE 2. Model of Repression in Africa

Naive Hausman Hausman Multi-Source Multi-Source
Model Probit Const Pr w/ Cov Const Pr w/ Cov

GDPpct−1 0.020 0.020 −0.164 0.022 −0.292
(0.062) (0.062) (0.125) (0.072) (0.145)

Popt−1 0.407 0.407 0.314 0.458 0.330
(0.053) (0.053) (0.085) (0.063) (0.095)

Demot−1 −0.655 −0.655 −0.739 −0.757 −0.819
(0.151) (0.151) (0.261) (0.172) (0.315)

Constant −8.011 −8.011 −4.679 −8.568 −3.857
(1.000) (0.994) (1.624) (1.161) (2.063)

N 1092 1092 1092 1092 1092

4 Conclusion

Traditionally researchers devote less attention to measurement error in the out-
come, however, here we have highlighted the severity of the bias induced by differ-
ential misclassification in binary outcomes. Our simulations show that misclassi-
fication can produce substantial bias when researchers employ either: i) strategies
which assume no misclassification or ii) strategies which assume non-differential
misclassification. We show how researchers possessing more than one source of
data-generating information can achieve this desired result. Specifically, we de-
rive an estimator for applications in which researchers have at least two sources
of potentially misclassified data on a single outcome of interest. Under few as-
sumptions, our estimator returns unbiased estimates of the risk probability and
allows for source-specific misclassification estimates. We illustrated the utility of
this method in a model of state repression in Africa, observing that predictor
effects change dramatically when misclassification is ignored.
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Abstract: In many longitudinal studies information is collected on the times of
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bivariate survival function.
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1 Introduction

In many longitudinal studies, subjects can experience recurrent events. This type
of data has been frequently observed in medical research, engineering, economy
and sociology. In medical research, the recurrent events could be multiple occur-
rences of hospitalization from a group of patients, multiple recurrence episodes
in cancer studies, repeated heart attacks or multiple relapses from remission for
leukemia patients. In this work we consider the estimation of the marginal and
joint distribution / survival functions of the gap times under univariate random
right censoring. These issues have received much attention recently. Among oth-
ers they were investigated by Lin, Sun and Ying (1999), de Uña-Álvarez and
Meira-Machado (2008) or de Uña-Álvarez and Amorim (2011).

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
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2 Nonparametric estimators

In the context of recurrent event data, each individual may go through a well-
defined event several times along his history. Assume that each study subject
can potentially experience K consecutive events at times T1 < T2 < ... < TK ,
which are measured from the start of the follow-up. In this work we are primarily
interested in the gap times Y1 := T1, Y2 := T2 − T1, ..., Yk := Tk − Tk−1,
k = 2, ...,K. For simplicity we assume K = 2.

Then, (Y1, Y2) is a vector of gap times of successive events, which we assume to
be observed subjected to (univariate) random right-censoring. Let C be the right-
censoring variable, assumed to be independent of (Y1, Y2). Because of this, the

observed data consists of (Ỹ1i, Ỹ2i,∆1i,∆2i), 1 ≤ i ≤ n, which are n independent

replications of (Ỹ1, Ỹ2,∆1,∆2), where Ỹ1 = Y1∧C, ∆1 = I(Y1 ≤ C), Ỹ2 = Y2∧C2,
∆2 = I(Y2 ≤ C2) with C2 = (C − Y1)I(Y1 ≤ C) the censoring variable of the
second gap time. Here and thereafter, a ∧ b = min(a, b) and I(·) is the indicator
function.

Let Fk, k = 1, 2 denote the distribution function of the k-th event time Tk.
Since Tk and C are independent, the Kaplan-Meier product-limit estimator (Ka-

plan and Meier, 1958) based on the pairs (T̃ki,∆ki)’s, consistently estimates the
distribution of the time to the k-th event. Because Y2 and C2 will be in gen-
eral dependent, the estimation of the marginal distribution of the second gap
time is not a simple issue. The same applies to the joint distribution function
F12(t1, t2) = P (Y1 ≤ t1, Y2 ≤ t2) and the joint survival function S12(t1, t2) =
P (Y1 > t1, Y2 > t2). Some estimators for these quantities will be presented be-
low.

Below we present several different approaches for estimating the bivariate distri-
bution function of (Y1, Y2). An estimator based on Inverse Probability of Censor-
ing Weights was first introduced by Lin, Sun and Ying (1999):

F̂ IPCW
12 (t1, t2) =

1

n

n∑
i=1

I(Ỹ1i ≤ t1)∆1i

Ĝ1(Ỹ1i)
− 1

n

n∑
i=1

I(Ỹ1i ≤ t1, Ỹ2i > t2)

Ĝ(Ỹ1i + t2)
.

where G̃1 and G̃ stand for the Kaplan-Meier estimator (of the censoring distri-

bution) based on the (Ỹ1i, 1−∆1i)’s and (T̃2i, 1−∆2i)’s, respectively.

A simple estimator based on the Kaplan-Meier weights was later introduced by
de Uña-Álvarez and Meira-Machado (2008). The idea behind their estimator is to
weight the data by the Kaplan-Meier weights (Wi) pertaining to the distribution
of the total time (in this case, T2) of the process:

F̂ KMW
12 (t1, t2) =

n∑
i=1

WiI(Ỹ1i ≤ t1, Ỹ2i ≤ t2).

A related estimator based on presmoothing (F̂ PKMW
12 ) was later proposed by de

Uña-Álvarez and Amorim (2011).

Given that P (Y1 ≤ t1, Y2 ≤ t2) = P (Y2 ≤ t2 | Y1 ≤ t1)P (Y1 ≤ t1) we also
consider the landmark estimator (LDM) for which to estimate P (Y2 ≤ t2 | Y1 ≤
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t1) the analysis is restricted to the individuals with an observed first event time
less or equal than t1. This is known as the landmark approach (van Houwelingen
et al. 2007). The corresponding estimator (LDM) is given by

F̂ LDM
12 (t1, t2) =

n∑
i=1

W
(t1]
i I(Ỹ2i ≤ t2)× F̃KM1 (t1)

where FKM1 is the Kaplan-Meier estimator of the distribution of the first time
and W

(t1]
i denote the Kaplan-Meier weights of the distribution of T2 computed

from the given sub sample
{
i : Ỹ1 ≤ t1

}
.

In this work we also introduce new estimators which are constructed using the
cumulative hazard of the total time given a first time but where each observation
has been weighted using the information of the first duration. The proposed
estimator (WCH - weighted cumulative hazard) is given by F̂ WCH

12 (t1, t2) = P̂ (Y1 ≤
t1)(1 − P̂ (Y2 > t2 | Y1 ≤ t1)) where P̂ (Y1 ≤ t1) is estimated by the Kaplan-

Meier estimator of the first event time and P̂ (Y2 > t2 | Y1 ≤ t1) =
∏
v≤t2(1 −

Λ̂Y2|Y1≤t1(dv)),

where

Λ̂Y2|Y1≤t1(dv) =

∑n
i=1 I(Ỹ1i ≤ t1, Ỹ2i = v,∆2i = 1)/Ĝ(Ŷ1i + v)∑n
i=1 I(Ỹ1i ≤ t1, Ỹ2i ≥ v,∆1i = 1)/Ĝ(Ŷ1i + v)

.

Finally we compare the aforementioned methods with the estimator of the bivari-
ate distribution which is obtained using Nearest Neighbor Estimation (NNE).

Now, we consider the estimation of the bivariate survival function S(t1, t2) =
P (Y1 > t1, Y2 > t2). For this quantity, the estimator constructed using the
Kaplan-Meier weights was built assuming the following equality S(t1, t2) = 1 −
P (Y1 ≤ t1) − P (Y1 > t1, Y2 ≤ t2) where the first probability on the right hand
side is estimated using the Kaplan-Meier estimator of the first event and the
second probability is estimated using Kaplan-Meier weights pertaining to the
distribution of the total time (i.e., T2) in a similar way as introduced above. The
weighted cumulative hazard estimator of the bivariate survival function is given
by ŜWCH

12 (t1, t2) = P̂ (Y2 > t2 | Y1 > t1)(1− P̂ (Y1 ≤ t1)) where P̂ (Y2 > t2 | Y1 > t1)
is obtained using the same ideas given above. This is the Wang and Wells (1998)
estimator.

Finally, landmark-based estimators can be introduced to estimate the bivariate
survival function. Given that P (Y1 > t1, Y2 > t2) = 1 − P (Y2 ≤ t2 | Y1 >
t1)(1 − P (Y1 ≤ t1)) the idea is to estimate P (Y2 ≤ t2 | Y1 > t1) by restrict-
ing the analysis to the individuals with an observed first event time greater or
equal than t1. The corresponding estimator (LDM) is given by ŜLDM

12 (t1, t2) =

1−
∑n
i=1 W

[t1)
i I(Ỹ2i ≤ t2)×(1− F̃KM1 (t1)) where W

[t1)
i denote the Kaplan-Meier

weights of the distribution of T2 computed from the sub sample
{
i : Ỹ1 > t1

}
.

3 Example of Application

Our methodology is motivated by the re-analysis of the German breast cancer
data. In this study, patients were followed from the date of breast cancer diagnosis
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until censoring or dying from breast cancer. From the total of 686 women, 299
developed a recurrence and 171 died. These data can be viewed as arising from
a model with two consecutive events: ‘Alive with Recurrence’ and ‘Dead’. In
this section, we present plots for the proposed methods to estimate the bivariate
distribution function and bivariate survival function of the two gap times, Y1 =
“Time to recurrence” and Y2 = “Time from recurrence to death”.

Figure 1 reports estimated probabilities for a fixed value of t1 = 365 (days), along
time. Plot shown in the left hand side (bivariate d.f) show that all proposed
methods behave quite similar something that is not true with regard to the
estimation of the bivariate survival function (right hand side).
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FIGURE 1. Estimates of the bivariate d.f. and bivariate s.f. using the proposed
methods. Breast cancer data.

4 Simulation Studies

In this section, we investigate the performance of the proposed estimators through
simulations. To simulate the data we consider the bivariate exponential distri-
bution with marginal exponentials with rate parameter 1. This corresponds to
the so-called FarlieGumbelMorgenstern copula, where the single parameter con-
trolling for the amount of dependence between the gap times. An independent
uniform censoring time C was generated, according to models Uniform(0, 4) and
Uniform(0, 3). For each simulated setting we derive the analytic expression of
F12(t1, t2) and S12(t1, t2) for several (t1, t2) pairs, corresponding to combinations
of the percentiles 20%, 40%, 60%, and 80% of the marginal distributions of the
gap times (i.e., 0.2231, 0.5108, 0.9163, 1.6094). Sample sizes n = 100, n = 250,
and n = 500 were considered.

Results reveal that the all proposed methods for estimating the bivariate dis-
tribution function perform quite well, though the performance of all methods is
poorer at the right tail (i.e., larger values of t1 and t2) where the censoring effects
are stronger. At these points the standard deviation (SD) is in most cases larger.
The SD decreases with an increase in the sample size and with a decrease of the
censoring percentage. All methods proposed in this work obtain in all settings a
negligible bias.

Attained results for the bivariate survival function reveal that the weighted cumu-
lative hazard estimator (WCH) is the recommended approach. This is illustrated
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in Figure 2 in which we show the boxplots of the estimates for the bivariate
distribution function.
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FIGURE 2. Boxplot with estimated probabilities S12(t1, t2). On the top results
for the pair (0.2231, 0.2231) (left) and (0.2231,0.9163) (right); on the bottom
results for the pair (0.9163, 0.5108) (left) and (1.6094,1.6094) (right).
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effects. We apply the models to lung cancer data using the mpr package in R.

Keywords: frailty; multi-parameter regression; survival; time-dependent effects

1 Introduction

Consider the following basic hazard model

h(t) = λh0(t ; γ) (1)

where λ > 0 controls the overall size of h(t), and h0(t ; γ) is a non-negative
function with shape parameter γ > 0 characterising its time-evolution. Survival
data may exhibit heterogeneity beyond that of (1). Thus, we introduce a latent
variable, U ∈ [0,∞), representing this heterogeneity and consider the conditional
hazard function

h(t |U) = U λh0(t ; γ).

Furthermore, we assume that U follows a one-parameter gamma distribution
such that E(U) = 1 and V ar(U) = ν, i.e., the Gamma Frailty (GF) model
(cf. Duchateau and Janssen (2007)). Since U is unobservable, so too is the con-
ditional hazard; in fact, we observe the marginal hazard,

hm(t) =
λh0(t ; γ)

1 + ν λH0(t ; γ)
(2)

where H0(t) =
∫ t

0
h0(u)du. Note: when ν = 0, we have hm(t) = h(t).

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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2 Multi-Parameter Regression Modelling

Naturally, we wish to consider the effect of covariates on the hazard function.
Although it is standard practice to allow one distributional parameter to depend
on covariates (the “interest” parameter), more flexibility is achieved by allow-
ing multiple parameters to depend on covariates simultaneously – we refer to
this as Multi-Parameter Regression (MPR) (Burke and MacKenzie, 2016) – and,
therefore, we suggest the following:

log λ = xTβ, log γ = xTα,

where x = (1, x1, . . . , xp)
T is a vector of covariates, and β = (β0, β1, . . . , βp)

T and
α = (α0, α1, . . . , αp)

T are the corresponding vectors of scale and shape regression
coefficients. We could go even further and let the frailty variance, ν, depend on
covariates, but this is beyond the scope of the current paper. This regression
specification leads to the marginal hazard function

hm(t |x) =
ex
T β h0(t ; ex

Tα)

1 + ν exT β H0(t ; exTα)
(3)

which is quite general as it covers a variety of models:

• PH: Proportional Hazards model when ν = 0 and xTα = α0. If h0(t) is
non-parametric, we have Cox’s (1972) semi-parametric model.

• PH-GF: The Gamma Frailty extension of the PH model when xTα = α0.
See Duchateau and Janssen (2007).

• MPR: The Multi-Parameter Regression extension of the PH model when
ν = 0. See Burke and MacKenzie (2016) for details.

• MPR-GF: The GF extension of the MPR model is given by (3) without
constraining any parameters.

Let x(−j) = (1, x1, . . . , xj−1, 0, xj+1, . . . , xp)
T be the covariate vector with its jth

element set to zero so that we may write

xTβ = xjβj + xT(−j)β, xTα = xjαj + xT(−j)α,

i.e, we explicitly express the linear predictor as a term involving xj and all other
terms. This is useful when considering the hazard ratio for xj :

ψj(t) =
hm(t |xj = 1)

hm(t |xj = 0)
= exp(βj)︸ ︷︷ ︸

PH

· ηj(t)︸ ︷︷ ︸
MPR

· ρj(t)︸ ︷︷ ︸
GF

(4)

where

ηj(t) =
h0(t ; e

αj+x
T
(−j)α)

h0(t ; e
xT
(−j)α)

and

ρj(t) =
1 + ν e

xT(−j)β H0(t ; e
xT(−j)α)

1 + ν e
βj+x

T
(−j)β H0(t ; e

αj+x
T
(−j)α)

.

Thus, the leading term in ψj(t) is the familiar PH constant, exp(βj), the second
term, ηj(t), appears due to the MPR extension, and the third term, ρj(t), appears
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due to the GF extension. This general formulation is very useful as it allows us
to compare the various models and, in particular, to consider the nature of time-
dependent hazard ratios.

The presence of frailty is a standard explanation for observing time-dependent
effects in practice (Aalen, 2008, chap. 6). However, frailty on its own is not
very flexible in that context: we gain a single additional parameter, ν, which
is unlikely to capture the time-dependence arising for each covariate, xj , j =
1, . . . , p. Furthermore, frailty imposes time-dependence on all hazard ratios (i.e.,
ρj(t) always depends on time), and, in the absence of the MPR extension (i.e.,
setting xTα = α0), the hazard ratios also must converge to one with time.

Hazard ratios are constant in the basic PH model since h0(t ; γ) is common to all
individuals. Thus, compared with frailty, a more fundamental explanation for the
appearance time-dependent hazard ratios is perhaps simply that hazard functions
take on different shapes for different individuals, i.e., γ depends on covariates.
In contrast to the GF extension, the MPR extension produces an additional
parameter per covariate, αj , j = 1, . . . , p, which allows flexibility in modelling
the hazard ratios for each of these covariates separately. Moreover, when αj = 0,
we see that ηj(t) = 1 and, therefore, in the absence of frailty (i.e., setting ν = 0),
the hazard ratio reduces to the usual PH constant, i.e., the MPR extension does
not impose time-dependence on all hazard ratios.

The MPR and GF extensions offer alternative explanations for non-PH effects.
However, we may contemplate the general MPR-GF model and whether or not
both extensions are required simultaneously in practice.

3 Analysis of Lung Cancer Data

We applied the above models to a lung cancer dataset collected in Northern
Ireland between October 1991 and September 1992 (see Burke and MacKenzie,
2016) using the mpr package in R (Burke, 2016). We consider only single-factor
treatment models here and specialise to the case where h0(t) = γ tγ−1 (Weibull
baseline).

A brief summary of the models appears in Table. 1 where, interestingly, the most

TABLE 1. Summary of Treatment Models.

PH PH-GF MPR MPR-GF

ν̂ —– 0.91 —– 0.74

AIC 57.7 25.3 20.4 0.0

BIC 33.9 6.3 15.6 0.0

complex model (MPR-GF) minimises both AIC and BIC. Thus, it appears that
both extensions (MPR and GF) can be supported simultaneously in practice;
the improved fit is evident when we compare the fitted models to the Kaplan-
Meier curves (not shown). The hazard ratios arising from the various models
(not shown) clearly display the flexibility achieved by modelling the shape of the
hazard function. Note that the estimated frailty variance, ν̂, is smaller in the case
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of the MPR-GF which we may expect as more variation is explained under this
model compared with the simpler PH-GF model.

4 Discussion

The class of models considered here allows us to compare various approaches.
From a practical perspective, frailty as an explanation of time-dependent effects
is somewhat contrived, whereas the MPR approach directly extends the PH model
more fundamentally without latent assumptions. However, in practice, combining
MPR and frailty is useful: in our application, the MPR-GF model is best in
terms of AIC and BIC. Thus, the GF extension of the PH model fails to absorb
all unexplained variation (e.g., due to covariate-dependent hazard shape) but,
equally, unexplained variation still exists beyond the MPR model.
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ing a well-known CGD recurrent infection data set with different cluster sizes.

Keywords: Copula model; Frailty model; Marginal likelihood; Profile likelihood.

1 Introduction

A dependence among individual survival times within a cluster can be modelled
using frailty or copula. Here, the frailty is an unobserved random effect act-
ing multiplicatively on the individual hazard rate (Vaupel et al., 1979) and has
been widely used for modelling the dependence among clustered survival data
in biomedical studies (Duchateau and Janssen, 2008; Ha, Jeong and Lee, 2017).
The copula is a convenient way to study the dependence between random vari-
ables; following Sklar’s (1959) theorem, a copula expresses the joint distribution
of random variables as a function of marginal distributions of each variable (Joe,
1997). In particular, copula is useful for modelling a dependency in finance risks
(Kim and Jung, 2016).

In this paper we consider clustered survival data where the size of each cluster may
be different. Let Ti1, . . . , Tini be survival times (time-to-events) for the jth (j =
1, . . . , ni) observation of the ith (i = 1, 2, . . . , q) cluster. The survival data may be
correlated because Tij ’s are observed on the same cluster. Here q is the number
of clusters and ni is the number of individuals in cluster i (i.e. cluster size). Let

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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xij = (xij1, . . . , xijp)
T be the p covariates corresponding to Tij . The observable

random variables are Yij = min(Tij , Cij) and δij = I(Tij ≤ Cij), where Cij is the
censoring time. We assume the non-informative and independence for censoring.
In this paper we compare two popular models (i.e. semi-parametric marginal
copula and conditional frailty models) using profile likelihood approaches. The
proposed method is illustrated using a practical CGD example (Fleming and
Harrington, 1991).

2 Likelihood-based procedure for copula models

Under the Archimedean copula family, the joint survival function of Ti1, . . . , Tini
for cluster i given xij can be expressed as

S(ti1, . . . , tini |xij) = ϕθ[ϕ
−1
θ {S1(ti1|xi1)}+ · · ·+ ϕ−1

θ {Sni(tini |xini)}],

where Sj(tij |xij) is a marginal survival function for Tij given xij (j = 1, 2, . . . , ni).
Here, the generator ϕθ of Archimedean copula can also be expressed as a Laplace
transform of a positive distribution function Gθ(y); e.g., for the Clayton copula
ϕθ(s) = (1+θs)−1/θ for θ ≥ 0. Thus, the joint survival function above for cluster
i can be rewritten as

S(ti1, . . . , tini |xij) =

∫
exp

[
−y

ni∑
j=1

ϕ−1
θ {Sj(tij |xij)}

]
dG(y). (1)

Here we assume the marginal survival function is obtained from the Cox’s pro-
portional hazards (PH) model:

λij(t|xij) = λ0(t) exp(xTijβ), (2)

where λ0(·) is an unspecified baseline hazard and β = (β1, . . . , βp)
T is a p × 1

vector of regression parameters corresponding to covariates xij . Since ϕθ is the
Laplace transform of Gθ, following Prenen et al. (2017) and the derivative of (1),
the Clayton copula-based log-likelihood for all q clusters has a closed form:

`c =

q∑
i=1

[ ni∑
j=1

δij

{
log fij − logϕ′θ{ϕ−1

θ (Sij)}
}

+ logϕ
(di)
θ

{ ni∑
j=1

ϕ−1
θ (Sij)

}]

=
∑
ij

δij{log λij + θΛij} −
q∑
i=1

[
(di + θ−1) log(1 + S∗i+)−

di−1∑
l=0

log(1 + lθ)

]
,

where di =
∑ni
j=1 δij , Sij = Sj(yij |xij), fij = fj(yij |xij) and S∗i+ =

∑ni
j=1(S−θij −

1). Here λij = log λ0(yij)+xTijβ and Λij = Λ0(yij) exp(xTijβ) with the baseline cu-
mulative hazard Λ0(t) are from the marginal Cox model (2). For the estimation of
copula models with the the model (2), we present the two-stage semi-parametric
estimation procedure (Shih and Louis, 1995). Since the functional form of λ0(t)
in (2) is unknown, we consider a step function for Λ0(t) (Breslow, 1972). That
is, in the first stage, β is estimated by maximizing the Breslow partial likelihood
(`p(β)) and Λ0 is estimated by the Breslow’s estimator. In the second stage, θ is
estimated by maximizing a profile likelihood based on the estimates (β̂ and Λ̂0)
obtained from the first stage,

`c(θ) = `c|β=β̂,Λ0=Λ̂0
.
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In this paper, we also propose a likelihood ratio test (LRT) for testing the absence
of association parameter θ, H0 : θ = 0. However, care is necessary because such
a null hypothesis is on the boundary of the parameter space (θ ≥ 0). Thus, the
standard chi-square distribution can not be applied. The null distribution for
the LRT statistic follows an asymptotic chi-square mixture distribution, i.e. a
mixture of χ2

0 and χ2
1 with equal weights of 0.5, (Stram and Lee, 1994). Thus, it

is calculated as
LRc = −2{`p(β̂)− `c(θ)},

leading that the p-value is calculated from p = 1
2
P (χ2

1 > LRc). Here `p(β̂) is the

partial log-likelihood evaluated at β = β̂ under H0 : θ = 0.

3 Likelihood-based procedure for frailty models

Let Ui be a shared frailty (random effect) of the ith cluster. The semi-parametric
frailty model (Duchateau and Janssen, 2008) is described as follows. The condi-
tional hazard function of Tij given xij and Ui = ui takes the form of

λij(t|xij , ui) = λ0(t) exp(xTijβ)ui, (3)

where λ0(·) is an unspecified baseline hazard. Popular distributions for the frailty
Ui are gamma and log-normal; for the gamma frailty model E(Ui) = 1 and
var(Ui) = θ. Following Nielsen et al. (1992), the marginal joint survival function
is given by

Sm(ti1, . . . , tini |xij) =

∫
exp

[
−ui

ni∑
j=1

ϕ−1
θ {Sjm(tij |xij)}

]
dGθ(ui), (4)

where Sjm(tij |xij) =
∫
S(tij |xij , ui)dGθ(ui) with distribution function Gθ(·) of

Ui. As mentioned by Goethals (2008) and Prenen et al. (2017), the two joint
survival functions (1) and (4) are similar in that both joint functions take the
form of the same copula, but Sj(tij |xij) 6= Sjm(tij |xij), which gives a major
difference between both models. We find that the marginal log-likelihood for all
q clusters under frailty models (3) is obtained by by replacing fij and Sij in `c
by the corresponding functions fmij and Smij ; under gamma frailty model (3), it
has also a closed form:

`m =
n∑
i=1

[ ni∑
j=1

δij

{
log fmij − logϕ′θ{ϕ−1

θ (Smij )}
}

+ logϕ
(di)
θ

{ ni∑
j=1

ϕ−1
θ (Smij )

}]
.

=
∑
ij

δij(log λFij)−
q∑
i=1

[
(di + θ−1) log(1 + θΛFi+)−

di−1∑
l=0

log(1 + lθ)

]
,

where λFij = log λ0(yij) + xTijβ and ΛFi+ =
∑ni
j=1 Λ0(yij) exp(xTijβ) are from the

frailty models (3). Following Ha et al. (2010), we propose the use of a simple grid
search method to implement the likelihood method. In the inner loop, given θ,
(β,Λ0) are obtained by solving the estimating equations ∂`m/∂(β,Λ0) = 0 via the
Newton-Raphson method. In the outer loop, given (β,Λ0), the profile likelihood
`m(θ) = `m|β=β̃,Λ0=Λ̃0

is maximized for θ. Here β̃ and Λ̃0 are the estimates
obtained from `m. We can again use the LRT for testing the absence of θ in the
frailty models, which is equivalent to test ui = 0 for all i (i.e. the absence of frailty
effect). Here, the corresponding LRT is given by LRm = −2{`p(β̂)− `m(θ)}.
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TABLE 1. Results of fitting copula and frailty models for the CGD data.

Treatment Association Profile likelihood

Model β̂ (SE) θ̂ (p-value) `(θ̂)

Clayton copula −1.086(0.268) 0.804(< .001) −347.86
Gamma frailty −1.138(0.345) 1.383(< .0001) −345.84
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FIGURE 1. Profile likelihoods (PL) for association parameter θ in the CGD data;
gPL, `m(θ) under gamma frailty model; cPL, `c(θ) under Clayton copula model.

4 An illustrated example

Fleming and Harrington (1991) provided a clustered survival data set on a placebo-
controlled randomized trial of gamma interferon (γIFN) in chronic granulomatous
disease (CGD). Here 128 patients had recurrent infections with ni = 1 ∼ 8, and
we consider a main covariate, i.e. Treatment (0 = placebo, 1 = γ-IFN). Table
1 shows both models give similar significance, but different estimates for θ (see
also Figure 1) as compared to β̂.
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Abstract: Tree methods (recursive partitioning) are a popular class of nonpara-
metric methods for analyzing data. One extension of the basic tree methodology
is the survival tree, which applies recursive partitioning to censored survival data.
This has mainly been designed for right-censored data. We discuss application of
the conditional inference survival tree method to two important but less standard
data types, left-truncated and right-censored (LTRC) data and interval-censored
data. Further, we show that LTRC trees can be used to analyze survival data
with time-varying covariates, essentially building a time-varying covariates sur-
vival tree. Implementation of the methods is easy, and simulations and real data
analysis results show that the proposed methods work well from both a predictive
point of view and in uncovering tree structure in the underlying survival process.
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1 Introduction

Right-censored data are often studied using a (semi-)parametric model such as
the Cox proportional hazards (PH) model or accelerated failure time model.
However, the parametric assumptions imposed by these models are often either
not met or unrealistic in practice, and more flexible nonparametric methods are
desired. One such method is the survival tree.

Various authors have proposed tree methods for right-censored data. Hothorn et
al. (2006) (hereafter HHZ), in particular, implemented a survival tree using the
log-rank test as the splitting method. They embedded the survival tree algorithm
into a large framework of conditional inference trees, which has the desirable prop-
erty of selecting the splitting variable in an unbiased way (an unbiased tree has

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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the property that when there is no relationship between the response and any co-
variates all covariates have the same probability of being the split variable). Like
other proposed methods, this method is designed for the most basic setup of sur-
vival outcome – right-censored data with time-independent covariates. However,
other types of survival data such as left-truncated and right-censored (LTRC)
data, interval-censored (IC) data, and survival data with time-varying covariates
arise commonly in practice.

In this paper, we discuss extension of the conditional inference survival tree
method to LTRC and IC data. The resulting methods are easy to implement
in practice. Through data reformulation, the LTRC survival tree method can
then also be used to fit survival data with time-varying covariates.

2 Conditional inference trees for survival data

The conditional inference tree algorithm of HHZ is based on the idea of sepa-
rating the two steps of choosing the variable for splitting and then choosing the
split point of that variable. The splitting variable is chosen based on conditional
distributions that are constructed assuming that the response and covariates are
independent. After the splitting variable is selected, the split point can be deter-
mined by any criterion. The association of Y and a covariate Xj is measured by
linear statistics of the form

Tj(Ln, w) = vec

(
n∑
i=1

wigi(Xji)h (Yi)
T

)
∈ Rpjq

(equation 3.1 in HHZ), where gj : Xj → Rpj is a nonrandom transformation of
covariate Xj and h : Y×Yn → Rq is the influence function of the response Y . For
a univariate numeric response Y , the choice of influence function is the identity,
i.e. h (Yi) = Yi.

2.1 Log-rank score for right-censored data

HHZ discussed the construction of a conditional inference survival tree for right-
censored data. Subjects can be represented as a triple (ti, δi,xi), i = 1, 2, ..., n,
where ti is the observed event time or censored time for the ith subject, δi = 1 if
ti is the event time and δi = 0 if ti is the censored time and xi is the covariate
vector for the ith subject. We assume that censoring is noninformative given xi.
The response variable for the ith subject is Yi = (ti, δi). The influence function
for such a bivariate response is the so-called log-rank score. The main function
of the log-rank score is to assign a univariate value Ui (scalar) to the bivariate
response Yi = (ti, δi), so the algorithm can then execute in the same way as in
the univariate numeric response case.

2.2 Log-rank score for LTRC and IC data

Pan (1998) extended the rank invariant tests of Peto and Peto (1972) to left-
truncated and interval-censored data, with the log-rank score being

Ui =
Ŝ(li) log Ŝ(li)− Ŝ(ri) log Ŝ(ri)

Ŝ(li)− Ŝ(ri)
− log Ŝ(Li).
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Here, Li is the left-truncation time and (li, ri) is the interval in which the true
event time lies. The log-rank scores for LTRC and IC data can be derived from
this score equation as special cases, which are then used in the general conditional
inference tree framework. The log-rank score for an LTRC observation (Li, Ri, δi)
is

Ui = 1 + log Ŝ(Ri)− log Ŝ(Li) if δi = 1

and
Ui = log Ŝ(Ri)− log Ŝ(Li) if δi = 0.

Note that Ŝ is the nonparametric maximum likelihood estimator (NPMLE) of the
survival function, constructed based on the product-limit estimator, i.e. Kaplan-
Meier (KM) estimator. Details are given in Fu and Simonoff (2017a), and im-
plementation of the method is provided in the R package LTRCtrees, which is
available at CRAN.

A crude but common approach to IC data is to impute the midpoint or endpoint
of the censoring interval as the actual survival time, but it is known that this can
lead to bias and incorrect inferences (Lindsey and Ryan, 1998). The appropriate
conditional inference tree, however, is easily defined using the log-rank score for
an IC observation, which is given by

Ui =
Ŝ(Li) log Ŝ(Li)− Ŝ(Ri) log Ŝ(Ri)

Ŝ(Li)− Ŝ(Ri)
,

where Li and Ri are the lower and upper boundaries of the censoring interval for
the ith observation, respectively. Once again Ŝ is the NPMLE of the survival func-
tion, here constructed using the EM-algorithm as proposed by Turnbull (1976).
If the event time is observed, so Li = Ri and the interval (Li, Ri) reduces to a
point, the corresponding log-rank score is Ui = 1 + log Ŝ(Li). More details are
given in Fu and Simonoff (2017b), and an R function that implements the method
is provided in the R package LTRCtrees.

3 Properties of the trees

Simulations show that when the true structure is a tree, the LTRC and IC trees
perform significantly better than the Cox PH model, regardless of sample size,
censoring distribution and left-truncation rate, as would be expected. Further,
when the true structure is a complex nonlinear relationship the trees can outper-
form the Cox PH model, and never perform significantly worse than the Cox PH
model, demonstrating that the trees have more robust performance than does the
Cox PH model. The IC trees are uniformly better than building a tree based on
imputing the midpoint or endpoint of the censoring interval as the actual survival
time.

4 Real data examples

4.1 LTRC data

The assay of serum free light chain data in the R package survival is used as a
data example. An analysis could use age as a covariate and time from enrollment
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in the study as the response, but as noted by Klein and Moeschberger (2003),
age should actually be used as a left-truncation point, since the real response of
interest should be the subject’s life length, not the time from enrollment in the
study.

Figure 1 gives conditional inference trees with the actual death/censoring time as
response. The tree that accounts for the left truncation (left panel) identifies the
top FLC decile (FLC=10) as the most important covariate of overall survival,
the same split used in the original analysis based on subject area knowledge. In
contrast, the tree that ignores the left-truncation (right panel) only uncovers the
effect of FLC for males.
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FIGURE 1. Survival trees for the serum FLC data, accounting for the left-trun-
cation (left) and ignoring it (right), respectively.

4.2 IC data

The Signal Tandmobiel R© study is a longitudinal prospective oral health study
that was conducted in the Flanders region of Belgium for which data are provided
as the tandmob2 data set in the R package bayesSurv. The response variable is
the time to emergence of tooth 24, which is interval-censored since emergence is
only identified at scheduled dentist visits.

Figure 2 gives the IC tree for the emergence time of the tooth. Decay and gender
are associated with earlier emergence time. More orthodontic removal of decidu-
ous teeth is associated with earlier emergence time, which could reflect a reverse
causality effect. There are province effects for some children, apparently due to
misclassification effects of certain examiners.

5 Adapting LTRC trees to time-varying covariate
data

Fu and Simonoff (2017a) also described how LTRC trees can be used to construct
trees for time-varying covariate data. The general strategy is to first split each
subject into several “pseudo-subjects,” inside which covariates are constant. So,
for example, if a covariate changes at time points t1 and t2 with the event time T ,
the subject is split into three pseudo-subjects over the intervals (0, t1), [t1, t2), and
[t2, T ]. This results in three created LTRC pseudo-subjects with time-independent
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FIGURE 2. IC tree for the emergence time in years after the age of 5 of tooth
24 (the permanent upper left first premolar).

covariates, and the LTRC tree algorithm is then applied on all such constructed
pseudo-subjects to fit a tree. Simulations show that this constructed tree has
properties similar to those of the (underlying) LTRC tree.

The PBC data in the R package survival are used as an example. The data
were collected at entry and at yearly intervals on 45 variables. Figure 3 gives
conditional inference trees for these data. The tree in the left panel is based on
only baseline covariate values, while the one is the right panel uses the follow-up
data, in which all of the covariates except age become time-varying covariates.
The trees are quite noticeably different, with different variables appearing and
the top-level split variables being different.
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FIGURE 3. Survival trees for PBC data based on baseline covariates (left) and
time-varying covariates (right), respectively.
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Abstract: When modelling repeated measurement and time to event data simul-
taneously, analysis is often based on combining random effects regression on the
mean with survival analysis in a so called joint model. The assumptions made by
this model, however, are not necessarily met, when analysing real life data sets.
Especially the assumption of equidispersion is too strict in many cases. In simple
longitudinal setups this issue is often dealt with distributional regression, which
introduces separate predictors for all parameters of the distribution. This work
aims at combining the setup of a Bayesian distributional model with a survival
model, linking both, the conditional mean and conditional variance to the risk of
event and thus developing a new approach towards distributional joint modelling.
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1 Introduction

Amongst the many statistical methods that have been developed for analysing
data from longitudinal studies, the term joint modelling refers to the statisti-
cal modelling of data in which each subject provides data on two qualitatively
different kinds of outcome variable: a time-sequence of repeated measurements;
and a (possibly right-censored) time-to-event variable. In most cases the model
used for the longitudinal data is a mean regression model, which very often lacks
in flexibility. Distributional regression gives a more complete overview over the
dependent variable. It has recently been implemented thoroughly in a Bayesian
framework by Klein et al (2014). Instead of only modelling the expectation of a
conditional distribution further parameters of the distribution are assigned pre-

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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dictors. In case of the Gaussian distribution the variance parameter σ2 is modeled
by a (potentially additive) predictor ησ2 . Data-sets with heteroscedastic charac-
teristics are modeled more accurately when using distributional regression. The
latter is often the case in longitudinal studies and the structure of the variance
potentially holds information on the pattern of the time events analysed in the
survival analysis. Our interest in this model class was triggered when analysing
lung function decline in cystic fibrosis patients from a Danish cystic fibrosis reg-
istry. It has been shown that the onset of certain pulmonary infections is asso-
ciated with an acceleration of the loss of lung function, when using the onset of
infection as a covariate in a longitudinal model (Qvist et al. 2015). The onset of
infection however, could be seen as a process influenced by the same covariates
as the lung function decline itself and hence should be modeled as a related yet
separate process. A further interest lies in better understanding how the vari-
ability in lung function is related to lung function decline and other outcomes
in cytic fibrosis. This contribution hence deals with including this distributional
regression feature into joint modelling and developing a Monte Carlo Markov
Chain (MCMC) algorithm.

2 Distributional Regression in Joint Modelling

2.1 Joint Modelling

There are many different approaches in combining time-to-event outcomes with
longitudinal data in joint models. The type we are going to refer to here, is
a model as suggested by Faucett et al (1996) which is based on the following
likelihoods:

f(Yij |ηij,·, σ) ∝ 1

σmi
exp

(
− 1

2σ2

mi∑
j=1

(yij − (ηlij + ηlsij))
2

)
f(si, δi|Yi) = λ0(si)

δi exp (ηsi + αηlsij)

· exp

(∫ si

0

λ0(u) exp (ηsi + αηlsij) du

)
,

where Yij is the j-th outcome for individual i. The event time/censoring time
is denoted by si and δi refers to the censoring indicator. The predictors for
the two parts of the model are composed of so called sub-predictors η·ij refer
to longitudinal, survival and shared sub-predictors (l, s and ls). In case of the
longitudinal process, the composed predictor is ηlij + ηlsij , in case of the time-
to-event process the predictor is composed of ηsij + αηlsij , where α is the so
called association parameter, measuring the connection between the two parts
of the model. Faucett et all (1996) suggest a MCMC algorithm to estimate the
corresponding parameters.

2.2 Distributional Regression

Distributional regression models – also known as generalized additive models for
location, shape and scale (GAMLSS) – are based on not only measuring the
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impact on the mean but on more parameters of the conditional distribution. In
case of the Gaussian distribution the second parameter which is of interest is the
variance. The classical likelihood for the Gaussian distribution is hence extended
by a predictor ησ2 . In order to ensure positivity of the variance, an exponential
link function is used, such that σ̂2 = exp(η̂σ2), with ησ2 being a additive predictor
including a variety of different types of effects. Klein et al (2014) suggested an
MCMC algorithm using iteratively weighted least squares proposal densities.

2.3 Distributional Regression in Joint Modelling

Combining the two above explained concepts leads to an extended set of sub-
predictors, now including sub-predictors specifically designed for quantifying the
impact of the covariates on the variation in the data and the connection of
them to the survival probabilities. Thus the set of longitudinal sub-predictors is
ηl,µ(xlij,µ),ηl,σ(xlij,σ) and the set of shared sub-predictors: ηls,µ(xlsij,µ),ηls,σ(xlsij,σ).
The survival sub-predictor does not have to be extended. Furthermore the model
is completed by a variance specific association parameter ασ2 . The extended like-
lihoods are hence:

f (Yi|η·,i,·) ∝ 1

exp
(
ησ2,i,l+, ησ2,i,ls

)
· exp

(
− 1

2 exp
(
ησ2,i,l + ησ2,i,ls

) ni∑
j=1

(yij − (ηµ,i,l + ηµ,i,ls))
2

)
f (si, δi|η·,i,·) = λ0(si)

δi exp
(
δi
(
αµηµ,i,ls + ασ2ησ2,i,ls + ηµ,i,s + ησ2,i,s

))
· exp

∫ si

0

λ0(u) exp
(
αµηµ,i,ls + ασ2ησ2,i,ls + ηµ,i,s + ησ2,i,s

)
du

The MCMC algorithm was constructed as a mixture of the one done by Faucett
et al (1996) and Klein et al (2014).

3 Simulations

In order to evaluate the algorithm we first simulated a typical setting, similar
to the simulation study in Waldmann et al (2017) were done. The sub-predictor
were constructed as linear functions. The shared mean sub-predictor included a
fixed and random time-effect, as well as a random intercept. We simulated 300
individuals of which each had a maximum of 5 observations. The baseline hazard
was chosen to be constant and we varied the association parameters. We did
not include a survival sub-predictor. Results for one simulation setup are shown
in Figure 1. The black lines indicate the true value, the boxplots display the
means of 100 simulation runs. The results show that our algorithm captures the
simulated effects very closely.
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FIGURE 1. Results for the regression parameters from all four sub-predictors
as well as association parameters and fixed baseline hazard. The solid black lines
show the true values, the boxplots the MCMC sample means of 100 repetitions
of the same model.

4 Lung Function Decline in Cystic Fibrosis Patients

In order to establish if our model is applicable to real life data, we choose a
subset of a data set taken from the Danish cystic fibrosis registry. After choosing
the patients that have at least two observations, before the infection the data
set contained a total of 6268 of 489 patients of which 53 were infected with
pseudomonas aeruginosa (PA) in the course of the study. The model calculated
aims at explaining both, the progression of lung function, measured in Forced
Expiratory Volume in 1 second (FEV1) and the risk of onset of PA. The covariates
chosen for the model were preselected based on previous studies (Waldmann et al
(2017)). As covariates for both longitudinal sub-predictor height and weight of the
patient as well as three binary covariates indicating, if the patient had one of three
different additional lung infections were chosen. For the shared sub-predictors we
considered time and sex for the mean predictor and pancreatic insufficiency and
year of birth for the variance. The boxes for the MCMC samples of the covariates
are displayed in the first two rows of Figure 2. Boxes of variables that do not
include the value 0 in the 95% interval of the sample (i.e. which are considered to
have a significant influence) are black, the rest is gray. The results for the mean
regression is similar to previous findings: while patients with higher weight have
better lung function, height, additional infections and diabetes have a negative
impact. The variance is not influenced by weight and the additional infection,
whereas height and diabetes have a negative influence on the variance, i.e. the
lung function varies less for taller patients and for patients having diabetes. The
second row has to be interpreted taking into account the association parameters
which are displayed in the last row. The association with the mean shared sub-
predictor is negative, such that we can conclude that the time impact, which is
negative for the lung function itself is positive for the risk of being infected. The
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FIGURE 2. Results from a model for lung function decline and risk of lung
infection in cystic fibrosis patients. The upper four plots contain the boxplots of
the MCMC samples for the linear model parameters (black if 95% of the MCMC
sample do not include zero, gray otherwise). The two plots in the last row show
the boxplots of the MCMC samples for the association parameters.

association parameter for the variance shared sub-predictor is positive. Hence the
increase in variance for higher years of birth and pancreatic insufficiency increases
the risk of infection.
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5 Conclusion

In this work, we show how to combine distributional regression and joint mod-
elling in order to extract more information about data generating processes in
longitudinal and time-to-event data. The results for the cystic fibrosis study can
be seen as a first hint in the direction of answering the question of the impact of
varying lung function on susceptibility for lung infections rather than the lung
function level itself. To answer this question with more ultimate certainty, how-
ever, a more refined model has to be constructed.
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1 Introduction

The zero-truncated Poisson model is a well-established model for the analysis
of single-source capture-recapture data. Such data typically arise when each ob-
servation of a member of an elusive population is recorded in a registration file.
Counting the number of records for each individual population member yields a
zero-truncated count distribution, because population members with a zero count
are not in the register. Under the assumption that the counts follow a Poisson dis-
tribution, an estimate of the Poisson parameter can be obtained that in turn can
be used to estimate the frequency of the zero count. Relevant covariates can be
included to model individual differences in Poisson parameters, this leads to the
zero-truncated Poisson regression model (TPR) (see Cruyff & van der Heijden,
2013; van der Heijden et al., 2003).

Like any type of events data, single-source capture-recapture data can exhibit
seasonal or cyclical patterns. For example, a homeless person may be more likely

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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to stay in a homeless shelter during winter than in the summer and a problematic
drug user may have a higher probability of being admitted to the hospital in the
weekend than during the week. However, the TPR is unable to incorporate these
types of cyclical effects.

In this paper we present a method that allows for the inclusion of cyclical effects in
single-source capture-recapture data. In this method, the TPR is extended to the
zero-truncated recurrent events model (TREM), which includes a time dimension.
This dimension makes the model more general than the TPR, since it allows for
the inclusion of time-varying covariates and cyclical effects. The resulting model
can accommodate a wide variety of effects: time-invariant, cyclical, time-varying,
and interactions thereof.

2 Method

The TREM is an extension of the TPR that allows for the modelling of time-
varying covariates and cyclical effects in single-source capture-recapture data.
The likelihood of the TREM is given by

L(β) =

n∏
i=1

{
yi∏
j=1

λij

(
e−Λi(τ)

1− e−Λi(τ)

)}
, (1)

where Λi =
∑τ
t=1 λit, and lnλit = β0 + β1xit1 + · · · + βpxitp (Cook & Lawless,

2007, p. 273-278). Here, xitp specifies the value covariate p takes at time point t
for person i. Additionally, yi is the total number of captures over the observation
period for individual i. Note that this allows for time-varying covariates since
xitp may vary over time.

Cyclical effects are modelled by adding a cosine term to the linear predictor of
the TREM:

lnλit = β0 + β1xit1 + · · ·+ βpxitp + α cos

(
2π

k
t− θ

)
, (2)

where α is the amplitude and θ the horizontal shift. The period k is a constant
and determines how often the cyclical component peaks. The cosine term in
Equation (2) is non-linear and therefore difficult to estimate, but can be rewritten
to a linear function. The most common method is using a trigonometric identity
to parametrise the cyclical effect as

α cos

(
2π

k
t− θ

)
= βcos cos

(
2π

k
t

)
+ βsin sin

(
2π

k
t

)
, (3)

from Cryer & Chan (1994, Ch. 3, p. 34). The final expression can be easily
included in the linear predictor of the recurrent events model, where cos( 2π

k
t)

and sin( 2π
k
t) are entered as covariates. The interpretation of the two cyclical

regression coefficients is not very intuitive, but they can be transformed back in
terms of α and θ:

α =
√
β2

cos + β2
sin,

θ = arctan2(βsin, βcos),
(4)
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which is also known as a polar transformation. The linear parametrisation of
Equation (3) has the advantage that interaction effects with time-invariant co-
variates can be included almost in the classical manner. This provides the option
to include main effects of time-invariant covariates, cyclical effects, and interac-
tions between these two simultaneously.

Parameter estimates of the TREM are obtained by optimizing the loglikelihood
given by

l(β) =

n∑
i=1

yi∑
j=1

lnλij −
n∑
i=1

Λi −
n∑
i=1

ln[1− e−Λi ]. (5)

Analytical closed form expressions for the score function and Hessian of the
TREM can be derived from the loglikelihood (see Hu & Lawless, 1996). These ex-
pressions are then used to set up a Newton-Raphson algorithm. Standard errors
are obtained through the observed information matrix.

Given the parameter estimates β̂ of the TREM, the Horvitz-Thompson popula-
tion size estimate is obtained as

N̂ =

n∑
i=1

Ii

1− e−Λ̂i
, (6)

where Ii = 1 if case i is observed in the sample and Ii = 0 otherwise. The

denominator 1 − e−Λ̂i is the probability that a population member is observed
in the sample. The variance of N̂ is calculated through the Delta method, as
presented in van der Heijden et al. (2003).

3 Application to domestic violence data

The application is a data set of domestic violence victims from the Netherlands
in the period 2004 - 2006. The response of interest is the number of times a
police report was filed for domestic violence for a certain individual. Although
information on perpetrators of domestic violence is also available, we do not
focus on that group in this paper. Hence, our population of interest is defined
as victims of domestic violence. There are a total of 56,575 observed victims of
domestic violence in the period 2004 - 2006. These data are made available by
the Dutch national police.

The variables gender and age are available as subject-specific covariates. Gender
is included as a time-invariant covariate. Age is modelled with time-varying linear
and quadratic contrasts, meaning that an individual can move from one age group
to another during the observation period. The age categories are: 0-17, 18-29, 30-
39, 40-49, 50+.

Cyclical effects with periods 366 and 7 are included, representing seasonal and
weekly effects, respectively. Interaction effects between the cyclical week effect
and the linear and quadratic age effects allow each age group to have a different
cyclical week effect. Furthermore, a linear effect of time is added in the final
model to allow for an increase or decrease of capture probabilities over the time
period of three years. Finally, an interaction effect of the cyclical season effect
and the linear time effect is included so that the cyclical seasonal is allowed to
vary over time.
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TABLE 1. Regression coefficients and point and interval estimate of the popula-
tion size for the TREM model fit to the domestic violence data

Variable Coding β̂ SE

Intercept -8.63 0.03 ∗∗∗

Gender (male = 0, female = 1) 0.63 0.03 ∗∗∗

Age Linear 0.26 0.03 ∗∗∗

Quadratic -0.50 0.02 ∗∗∗

cos366 -0.06 0.01 ∗∗∗

sin366 -0.02 0.01 ∗∗

cos7 0.05 0.01 ∗∗∗

sin7 -0.04 0.01 ∗∗∗

Age (Linear)*cos7 -0.03 0.01 ∗

Age (Linear)*sin7 0.03 0.01
Age (Quadratic)*cos7 0.12 0.01 ∗∗∗

Age (Quadratic)*sin7 0.01 0.01
Time 0.34 0.01 ∗∗∗

Time*cos366 0.01 0.01
Time*sin366 0.16 0.01 ∗∗∗

N̂ 211,155
95%-CI 206,460 - 215,848

Note: ∗∗∗ = p < 0.001, ∗∗ = p < 0.01, ∗ = p < 0.05.
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FIGURE 1. Fitted general cyclical trend for the domestic violence application
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FIGURE 2. Fitted cyclical week effect and its interaction with age for the do-
mestic violence application for the month January 2004

Table 1 shows the regression coefficients and point and interval estimate of the
population size for the model fitted to the data. The effects of gender and age
are significant. Women are more likely to be mentioned as a victim in a police
report for domestic violence than men, and there is a quadratic effect of age.

Both the cyclical main effects are significant, indicating the presence of seasonal
and weekly variation in capture probabilities. Additionally, the interaction effects
of age (linear and quadratic) with the cosine terms of the cyclical week effect are
significant, so that the cyclical week effect is different for each age group.

A positive effect of time is found, indicating that the capture probabilities increase
over the course of the observation period. One of the two interaction components
of time with the cyclical season effect is also significant, so that the cyclical season
effect is different over the three years. The population size estimate of domestic
violence victims in the time period 2004 - 2006 is 211,155 (95%-CI: 206,460 -
215,848).

The general cyclical trend of the fitted model (omitting cyclical week effects)
is presented in Figure 1. This trend consists of three components: the cyclical
season main effect, the linear effect of time, and the interaction between the two.
In general, we can say that the cyclical season effect is stronger in 2004 and 2006
than in 2005, and that the capture probabilities increase over the course of the
observation period. Additionally, the cyclical season effect in 2006 peaks in May,
while in the 2004 and 2005 the effect peaks in September.

In Figure 2, the cyclical week effect and the interaction of this effect with age is
presented. These effects are plotted for the month January in 2004, and repeat
throughout the length of the observation window. The age group 30-39 is the
reference group in this analysis, represented by the green curve. The strength of
the cyclical week effect is lowest for this reference group. The cyclical week effect
is strongest for the 50+ age group, while the strength of the cyclical effects of
the other groups is somewhere in between. For all age groups, the cyclical week
effect peaks after the weekend. The groups 40-49 and 50+ peak on Wednesday,
and the other groups on Monday (18-29) and Tuesday (0-17 and 30-39).
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Abstract: In this paper we demonstrate an application of the unscented Kalman
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differential equations (SDEs).
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1 Introduction

Many important biological processes, such as wound healing, tissue development
and cancer cell invasion, are based on the collective movement of cells. One of
the main mechanisms for directed cell movement is chemotaxis, where cells follow
chemical gradients (chemoattractants) present in their environment. These gradi-
ents might arise from the presence of a local source of chemoattractant or due to
local depletion of the chemical in the environment (Tweedy et al. 2016). An ex-
ample of the former scenario is the migration of breast tumour cells that respond
to the epidermal growth factor released by macrophages. In an attempt to acquire
a deeper understanding of the mechanisms behind cell movement many popula-
tion based models have been formulated using partial differential equations, with
very few of them attempting to fit these models to actual data.

In this paper, we propose a model that describes the movement of any individual
cell being driven by an external resource gradient using SDEs of the form:

dXt = σdBXt , dYt =
αβ exp[−β(Yt − γt)]
{1 + exp[−β(Yt − γt)]}2

dt+ σdBYt (1)

Equations (1) describe the evolution in time of the x and y coordinates of a cell
in 2D space. σdBXt and σdBXt are Brownian motion terms which in this model
represent the intrinsic randomness in a cell’s movement. The coordinate in the y
direction has a drift term that is described by three parameters: α - the amplitude

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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of the resource gradient, β - the steepness of the gradient and γ which indicates
how fast the gradient changes over time. The strength of the random component
in the cell movement equations is indicated by the diffusion coefficient σ.

FIGURE 1. Three frames from the video recording Dictyostelium cells movement.

In this paper, we present our approach to fitting this model to cell movement data
using a non-linear Bayesian filter. We provide some insight into the particularities
of this model using simulated data and we discuss the results of this analysis from
a real data set, describing the movement of Dictyostelium cells (see Figure 1).

2 Methods

Inference in non-linear dynamical systems poses numerous challenges due to
the stochastic nature of the data, intractable likelihoods and unidentifiable pa-
rameters. Recent developments have tackled this problem using likelihood-free
methods (sequential Monte Carlo ABC) or computational methods (particle
Markov Chain Monte Carlo) (Golightly & Wilkinson, 2011), however these can
become too computationally expensive as the number of time points or parame-
ters increases. The unscented Kalman filter (UKF) is an online Bayesian filtering
method that can easily be scaled up to higher dimensions (Julier & Uhlmann,
1997). Intuitively, the UKF starts from the initial distribution of the state vector,
drawn from a multivariate normal distribution, which is then iterated through a
prediction and updating step for each measurement available using the transition
and observation models.

We introduce the UKF by referring to a general state-space model:

xt = f(xt−1, εt), yt = g(xt,νt) (2)

where xt represents the vector of the hidden states, yt are the measurements, εt is
the process noise at time t, νt is the observation noise at time t and the functions
f and g represent the transition and, respectively, the observation models. The
model parameters θ can be included as dynamical variables in the hidden states
vector xt, which means they will be estimated at every time point along with the
observed system states (Sitz et al., 2002). The advantage of the method comes
from the fact that the probability distribution of the predictor step: p(xt|y1:t−1)
and the probability distribution of the updating step p(xt|yt,y1:t−1) can be ob-
tained in closed form using properties of the Gaussian distribution (Julier &
Uhlmann, 1997):
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p(xt|y1:t−1) ≈ N (xt|µ̄t, Σ̄t) (3)

p(xt|yt,y1:t−1) ≈ N (xt|µt,Σt) (4)

where µ̄t and Σ̄t are the prediction mean and covariance at time t and µt and
Σt are the update mean and covariance at time t (see Julier & Uhlmann, 1997
for full derivations). Therefore, the algorithm essentially updates the mean and
covariance of the Gaussian distribution of the state vector at each iteration.
The approximation of the Gaussian distribution is made using the unscented
transform, which consists of a set of deterministically chosen sigma-points that
are passed through the non-linear function and weighted to obtain the mean and
covariance of the Gaussian. The unscented transformation is used twice for each
iteration of the algorithm: in the prediction and respectively in the update step.

3 Simulation results
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FIGURE 2. Simulation results: UKF tracking of cell coordinates: x and y, and
parameters: α, β, γ, σ for time interval [0, 10]. Parameter estimates include ±1
standard error bounds. On the right hand side, negative log profile likelihood
plot for α, obtained by fixing the other three parameters at their true values.

We apply the Euler-Maruyama discretisation to bring the system in Equation (1)
into the standard state-space model described in Section 2:

Xt = Xt−1 + σ∆BXt (5)

Yt = Yt−1 +
αβ exp[−β(Yt−1 − γt)]
{1 + exp[−β(Yt−1 − γt)]}2

dt+ σ∆BYt (6)
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Here ∆BXt and ∆BYt are just sums of random normal increments between time
t − 1 and t. Equations (5) and (6) thus define the transition function f from
Equation 2. In this scenario, we assume the process is observed with a small
amount of Gaussian noise νt ∼ N (0, 0.12), so g from Equation 2 is just the
identity function.

We then fit the UKF to a synthetic data set using the following parameters:
α = 5, β = 2, γ = 0.5, σ = 0.1. The results summarised in Figure 2 indicate good
agreement between the estimated UKF path and the true cell path. The UKF also
provides good estimates for the parameters: β̂ = 1.88, γ̂ = 0.51, σ̂ = 0.04 with
relatively small standard errors: 0.17, 0.83, 0.06, except for α̂ where the estimates
indicate a more substantial deviation from the true parameter (bias: 0.44 and
standard error is 0.35).

A potential source of bias as the one observed in Figure 2 can be investigated
by looking at the likelihood i.e.: marginal likelihood with respect to the hidden
states. In order to do that, we first derive the probability of the observed system
at time t conditional on the state of the system at time t− 1 by integrating out
the latent variable xt:

p(yt|yt−1) =

∫
p(yt|xt)p(xt|yt−1)dxt (7)

=

∫
N (yt|xt,Rt)N (xt|µ̄t, Σ̄t)dxt (8)

Using the Gaussian convolution integral results (Bishop, 2006) we simplify (8) to
p(yt|yt−1) = N (yt|µ̄t, Σ̄t + Rt), where µ̄t and Σ̄t are the predicted mean and
covariance at time t, and Rt is the measurement noise covariance matrix at time
t. The log likelihood is then:

L = log
∏
t

p(yt|yt−1) =
∑
t

logN (yt|µ̄t, Σ̄t + Rt) (9)

∝
∑
t

{log det(2πΣt) + 0.5(yt − µ̄t)TΣ−1
t (yt − µ̄t)}, (10)

Where Σ̄t+Rt = Σt. We evaluate the marginal log likelihood in (10) by consider-
ing a grid of values for each parameter in the model and fitting the UKF with each
parameter combination. The results summarising the profile likelihood for the α
parameter in Figure 2 can be used to calculate the Cramer-Rao lower bound,
which provides an indication of the intrinsic uncertainty specific to the problem.
In this case, the minimum standard deviation attainable by an estimator of α is
0.14. Considering the standard error obtained from the UKF estimation for α is
0.35, this then indicates that the estimated value of the parameter is reasonably
close to the true value.

4 Real data application

Dictyostelium cells are widely used in experiments as proxies for understand-
ing the mechanisms of human disease because of their similarities to important
human cells (leukocytes and cancer cells) in terms of biology and response to
chemotaxis (Tweedy et al., 2016). The data consists of two cell paths corre-
sponding to Dictyostelium cells locations extracted from a time series of high
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FIGURE 3. UKF tracking of two cells with different movement patterns.

resolution microscopy images (see Figure 1). We emphasise that the main inter-
est for biological applications is the inference of the parameters. However, since
the true parameters for the real data are unknown, we use the tracking of the
cell trajectories as a proxy for assessing the accuracy of inference (see Figure 3).
As can be seen from the left panel of Figure 3, we have picked two cells with very
different behaviour (one dominated by drift, the other dominated by diffusion).
In both cases, the path reconstructed with the UKF is very accurate.

5 Conclusions and future work

In this paper, we demonstrate the application of the UKF, a Bayesian filtering
technique that adequately trades off accuracy versus computational efficiency,
to a real-world problem potentially relevant to cancer research: the movement of
Dictyostelium cells, which has not been tackled at individual cell level before. Our
results indicate that the UKF can be successfully used for parameter inference
and tracking cells displaying various movement patterns. Future work will extend
this work by applying the UKF to a population of cells. Additionally, we plan to
fit models describing alternative movement mechanisms, such as the self-induced
gradient model described by Tweedy et al. (2016) and employ model selection
criteria to choose the best model.



322 Statistical modelling of cell movement

Acknowledgments: The research described in this article is part of the re-
search programme of SoftMech, the Centre for multiscale soft tissue mechan-
ics with application to heart & cancer, funded by the Engineering and Phys-
ical Sciences Research Council (EPSRC) of the UK, grant reference number
EP/N014642/1.

References

Bishop, C. (2006) Pattern Recognition and Machine Learning. Springer

Golightly, A. & Wilkinson, D. J. (2011) Bayesian parameter inference for stochas-
tic biochemical network models using particle Markov chain Monte Carlo.
Interface focus, 1(6), 807 – 820

Julier, S. J. & Uhlmann, J. K. (1997) A New Extension of the Kalman Filter to
Nonlinear Systems. AeroSense’97, 182 – 193

Sitz, A., Schwarz, U., Kurths, J. & Voss, H. U. (2002) Estimation of parameters
and unobserved components for nonlinear systems from noisy time series
Phys. Rev. E, 66(1), 016 – 210

Tweedy L., Knecht D.A., Mackay G.M. & Insall R.H. (2016) Self-Generated Chemoat-
tractant Gradients: Attractant Depletion Extends the Range and Robust-
ness of Chemotaxis. PLoS Biol, 14(3)



Regularisation of Generalised Linear Mixed
Models with autoregressive random effect

Jocelyn Chauvet1, Catherine Trottier2, Xavier Bry1

1 University of Montpellier, France
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Abstract: We address regularised versions of the Expectation-Maximisation
(EM) algorithm for Generalised Linear Mixed Models (GLMM) in the context of
panel data (measured on several individuals at different time-points). A random
response y is modelled by a GLMM, using a set X of explanatory variables and
two random effects. The first one introduces the dependence within individuals
on which data is repeatedly collected while the second one embodies the serially
correlated time-specific effect shared by all the individuals. Variables in X are
assumed many and redundant, so that regression demands regularisation. In this
context, we first propose a L2-penalised EM algorithm, and then a supervised
component-based regularised EM algorithm as an alternative.

Keywords: Regularised EM algorithm; Generalised Linear Mixed Model; Au-
toregressive random effect; Panel data analysis.

1 Introduction

One of the main purposes of panel data analysis is to account for the dependence
induced by repeatedly measuring an outcome on each individual over time. Be-
sides, due to the fact that it is nowadays increasingly possible to collect large
amounts of data, the potentially high level of correlation among explanatory
variables should be taken into account. To this end, ridge-, lasso- and component-
based regularisations have recently been highlighted.

In the Linear Mixed Models (LMM) framework, Eliot et al. (2011) proposed
to extend the classical ridge regression to longitudinal biomarker data. They
suggested a variant of the EM algorithm to maximise a ridge-penalised likelihood.
This variant includes a new step to find the best shrinkage parameter - in the
Generalised Cross-Validation (GCV) sense - at each iteration.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).



324 Regularised EM algorithms for GLMM with AR(1) random effect

With a view towards variable selection, Schelldorfer et al. (2014) proposed a
L1-penalised algorithm for fitting a high-dimensional Generalised Linear Mixed
Models (GLMM), using Laplace approximation and an efficient coordinate gra-
dient descent.

In the GLM framework, in order both to regularise the linear predictor and to fa-
cilitate its interpretation, Bry et al. (2013) developed a PLS-type method – Super-
vised Component-based Generalised Linear Regression (SCGLR) – which yields
explanatory components. Chauvet et al. (2016) extended SCGLR to GLMM by
using an adaptation of Schall’s algorithm (Schall (1991)).

To the best of our knowledge, the random effects in the previous strategies are
assumed normally distributed with independent levels. However, in the panel
data framework, the question naturally arises of the autocorrelation of the time-
specific random effect. Consequently, our objective is twofold: on the one hand,
to extend the Mixed Ridge Regression of Eliot et al. (2011) to the GLMMs with
an AR(1) random effect; and on the other hand, to present the main ideas of a
new version of SCGLR which handles the high dimensional case.

2 Model hypotheses

In this section, we recall the main hypotheses of the GLMM framework and we
introduce the random effect distributions. For the sake of simplicity, we consider
balanced panel data with N individuals, each of them observed at the same T
time-points. We denote by n = N × T the total number of observations. Let
X be the n × p fixed effects design matrix, and U the n × q random effects
design matrix. Let also Y be the n-dimensional random response vector, β the
p-dimensional vector of fixed effects, and ξ the q-dimensional vector of random
effects. We observe a realisation y of Y , but ξ is not observed. We conventionally
assume that:

(i) the Yi | ξ, i ∈ {1, . . . , n} are independent and their distribution belongs to
the exponential family;

(ii) the conditional mean µi = E(Yi | ξ) depends on β and ξ through
the link function g and the linear predictor ηi = xT

i β+uT
i ξ, with ηi = g(µi).

Less conventionally, we consider two random effects ξ1 and ξ2 with different roles
and distributions:

(i) ξ1 is the individual-specific random effect. Assuming individuals are inde-
pendent, we suppose:

ξ1 ∼ NN
(
0, σ2

1IN
)
,

with σ2
1 the unknown “individual” variance component.

(ii) ξ2 is the serially correlated time-specific effect common to all the individu-
als, which can be viewed as some latent phenomenon not measured in the
explanatory variables. As these effects tend to persist over time, we model
them with a stationary order 1 autoregressive process (AR(1)), i.e. for each
t ∈ {1, . . . , T − 1},

ξ2,t+1 = ρξ2,t + νt,

νt
iid∼ N

(
0, σ2

2

)
,
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where ρ is the unknown parameter of the AR(1) and σ2
2 the unknown

“temporal” variance component. Such time-specific effects arise naturally
for instance in an economic context (e.g. all companies share a common
economic climate which tend to persist over time), or in biology (e.g. the
ecological environment is often too complex to be directly observed through
the explanatory variables).

Finally, ξ1 and ξ2 are assumed independent. Denoting ξ = (ξT1 , ξ
T
2 )

T
,

U1 = IN ⊗ 1T , U2 = 1N ⊗ IT and U = [U1 |U2], linear predictor η can be ma-
tricially written:

η = Xβ + Uξ.

3 Methods

Owing to the GLMM dependence structure, the Fisher scoring algorithm was
adapted by Schall (1991). We, in turn, adapt Schall’s algorithm by introducing
a regularised EM at each step in order to take into account the high level of
correlation in X and the unconventional random effects distributions. Two steps
appear in our method: the linearisation step and the estimation step.

Linearisation step. For each i ∈ {1, . . . , n}, a classic order 1 linearisation of
yi around µi is given by: g(yi) ' zi = g(µi) + (yi − µi)g′(µi). Matricially, this
approximation provides a working variable z entering the following linearised
model

M : z = Xβ + Uξ + e,

with Var(e | ξ) = Diag
(

[g′(µi)]
2

Var(Yi | ξ)
)
i=1,...,n

= Γ.

Estimation step. Instead of solving Henderson’s system associated with M
seen as a LMM (as proposed by Schall (1991)), we rather propose a regularised
EM step. We suggest an adaptation of the L2-penalised EM algorithm of Eliot et
al. (2011) for low dimensional data (p < n), and a supervised component-based
regularised EM algorithm for the high dimensional case (p � n), because then,
interpretable dimension reduction is needed.

3.1 The low dimensional case

Our estimation step is based on Green (1990), who popularised the use of the
EM algorithm for penalised likelihood estimation, and Golub et al. (1979), who
encouraged the use of the GCV for efficiently choosing the ridge parameter λ.
However, contrary to the homoskedastic LMM considered in Eliot et al. (2011),M
contains heteroskedastic errors. We will then opt for the modified GCV criterion
suggested by Andrews (1991), p. 372.

Denoting θ =
(
β, σ2

1 , σ
2
2 , ρ
)
, we present the current iteration of our L2-penalised

EM algorithm for GLMM with AR(1) random effect.

(1) Linearisation step. Set:

M[t] : z[t] = Xβ + Uξ + e, with Var(e | ξ) = Γ[t].
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(2) Estimation step.
(2.a) Denoting L the complete log-likelihood of the linearised model, define

the associated complete penalised log-likelihood Lpen by:

Lpen(θ; z, ξ) = L(θ; z, ξ)− λ

2
βTβ.

(2.b) Denoting ẑ[t] the fitted values and S
[t]
λ the “hat-matrix” satisfying

the equality ẑ[t] = S
[t]
λ z

[t], set:

λ[t] ←− arg min
λ

GCV(λ) =
n−1

∥∥∥z[t] − S[t]
λ z

[t]
∥∥∥2

Γ[t]−1[
1− n−1tr

(
S

[t]
λ

)]2
 .

(2.c) EM step. Set:

Qpen

(
θ, θ[t]

)
= Eξ|z

[
Lpen(θ; z[t], ξ) | θ[t], λ[t]

]
,

θ[t+1] ← arg max
θ
Qpen

(
θ, θ[t]

)
.

(3) Updating step. Set ξ[t+1] = Eξ|z
(
ξ | θ[t+1]

)
, and update working variable

z[t+1] and variance-covariance matrix Γ[t+1].

Steps (1)-(3) are repeated until stability of parameters β, σ2
1 , σ2

2 and ρ is reached.

3.2 The high dimensional case

In the p� n case, we need to decompose the linear predictor on a small number
of interpretable dimensions. To that end, we propose to iteratively maximise a
component-based regularised Q−function.

Let C = XU be the set of principal components of X with non-zero eigenvalues
and f = Cw the component we currently seek. Let also φ denote a structural
relevance (SR) criterion (see Bry and Verron (2015)):

φ(w) =

(
p∑
j=1

[
cor2

(
xj , f

)]l) 1
l

, l > 1.

s ∈ [0, 1] being a parameter tuning the relative importance of the SR with respect
to L, the Q−function would then be:

Qreg

(
θ, θ[t]

)
= Eξ|z

[
Lreg(θ; z, ξ) | θ[t]

]
, with

Lreg(θ; z, ξ) = (1− s)L(θ; z, ξ) + sφ(w).

Parameters s and l are tuned by cross-validation and higher rank components are
computed like rank 1 component, after adding extra orthogonality constraints.

4 Numerical results

In order to evaluate the performance of our L2-penalised EM algorithm, we con-
ducted simulation studies in the canonical Poisson case. We present some graph-
ical diagnoses in FIGURE 1, which aim at answering three questions: (1) Is the
convergence assured? (2) How good are the estimations? (3) Are they sensitive
to the value of ρ? The answers to these questions is given in the figure’s caption.
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FIGURE 1. Graphical diagnoses relative to the L2-penalised EM algorithm.
(a),(b): 40 trajectories of the L2-convergence criterion for parameters β and
σ2

1 (A similar behaviour is observed for parameters σ2
2 and ρ). About a hundred

iterations is necessary to achieve convergence. (c): MSEs of parameters β, σ2
1 , σ

2
2

and ρ on simulated data where N = 10 and T ∈ {10, 20, . . . , 100}. As expected,
MSEs of β, σ2

2 and ρ decrease towards zero. In contrast, since N is fixed, the MSE
of σ2

1 is constant. (d): Boxplots of estimated ρ according to real value.
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Abstract: To estimated the optimal number of clusters and evaluate the associ-
ated quality of the formed clusters is one of the major issue in cluster analysis. In
this paper, we present and extend the MMM index to find the optimal number of
clusters and their quality. The new index determines the combined mapped ele-
ments information from related clusters by comparing the occurrence of common
elements across the sets of clusters from successive k number of clusters. This re-
quires comparing the k resultant clusters in each set with respect to ’forward’ and
’backward’ mapping of common elements for adjacent and non-adjacent clusters
(all possible distant) at all possible k. This method will also provide indicators
for the similarity and overlapped (dissimilarity) of mapped elements. The opti-
mal or best estimated number of clusters and their quality will be decided using
the combination of maximum average similarity and minimum average overlap
measures. The evaluation and performance of this index is illustrated and tested
using real dataset.

Keywords: k-means, clustering, cluster quality, forward and backward mapping,
similarity and overlap

1 Introduction

Unsupervised clustering is a data analysis technique which has no a priori infor-
mation available to determine the intrinsic structure in the dataset. Due to this
lack of a priori knowledge, and the consequential need to infer or discover struc-
ture in the data, most clustering algorithms tried to find similar objects within a
dataset according to their characteristics: this is usually accomplished by using
some well-established distance measures (e.g. Euclidean, Maximum, Manhattan).
The labelling of objects using distance measures allows the dataset to be parti-
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tioned into clusters, where characteristics of objects in the same cluster are more
similar than they are to objects in other clusters. This approach has been uti-
lized successfully in various types of problems across many fields. As described
in Ng and Han (1994) clustering algorithms are classified into two major types
partitional and hierarchical clustering. We will be focusing here on partitional
clustering algorithms and in particular the k-means algorithm. The main chal-
lenge in using the k-means algorithm is the optimal (best) k value (number of
clusters) giving well-structured or quality clusters. To determine the best k value
often requires a large number of steps in a given dataset, when particularly itera-
tive or exhaustive search is applied. For this reason a number of techniques have
been developed based on use of heuristics such as to minimise the distance from
centroid of a cluster to each object in the cluster, or to maximise the distance
between clusters (intra and inter cluster distances), or to use an average scatter of
clusters and total separation between clusters. They are to some extend limited
in effectiveness by the assumptions made about what constitutes the best cluster-
ing, this is also called the unsupervised machine learning. The MMM approach
Mehar at al.(2010,2013) and Matawie et al(2015) allows this optimisation to be
undertaken for k clusters using knowledge of the clustering solutions obtained
from k to k+1 ’forward’ and k+1 to k ’backward’ for only adjacent distances
in consecutive k situation. In this paper extended MMM will be presented with
better evaluation criterion based on the forward and backward changes in cluster
membership over the range of all successive k values adjacent and non-adjacent
clusters. In this work it is assumed that minimum k is 2 ( kmin = 2) , and
maximum K is 16 (kmax ≤ 16) and r=1 to 14 , limiting k and therefore to the
most practical finite range. The details and development of the enhanced MMM
is explained in details in section 2. The forward and backward inter cluster ele-
ments mapping when k=2 with all possible k+r , where r=1,2,......,14 , is given
in Figure-1 below with bold and light arrowheads indicating the forward and
backward directions respectively.

FIGURE 1. Forward and backward mapping of elements when k=2 for different
k+r distant, and r=1,2,...., K-k.

2 MMM Index Extended

In this section we will extend the approach of developing the MMM index de-
scribed in Mehar at al.(2010) by including information from adjacent and non-
adjacent (more distant) mapping of the common elements between different clus-
ters. To develop a practical implementation of this approach we need to consider
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different resultant of k number of clusters from the k-means algorithm, over a
range of successive k values always starting with minimum number of clusters
kmin = 2 to maximum kmax = K , where K = N-1 and N= total number of
elements (objects or observations) in the dataset D. Following are notations and
details used to define and describe the approach. Assume we have dataset D con-
taining N number of observations (elements). Each observation may have number
of variables that may be used to determine information about the relationship
between them. Using a k-means clustering algorithm on D with a certain set of
parameters to control the behaviour of the k-means algorithm such as choosing
variables, number of variables, number of clusters (centres), number of maxi-
mum iterations, number of initial random starting sets of seeds and algorithm
to obtain the required partitioning of D into k clusters, k ≤ K . Suppose at
any k number of clusters, we define the first set of clusters to be C(k)i where k
∈ 2,3,......,K and i =1,2,......,k. We define another set of clusters C(k+r)j , where
r ∈ 1,2,.....,K-k and j = 1,2,....,k+r. As k get larger and closer to K the K-k
set of clusters will have fewer elements, per cluster, than the preceding set of
clusters until reaching one element in each K cluster ( when K = N-1). Let us
define m(k,k+r)ij as the number of common elements in the forward inter clus-
ter mapping from the source cluster C(k)i to the target cluster C(k+r)j i.e. the
number of elements of C(k)i ∩ C(k+r)j . These forward mapped number of ele-
ments are used to construct forward mapped inter cluster matrices [M(k,k+r)ij ]
for i=1,2,....,k and j = 1,2,....,k+r, i.e. the mapped elements from a particular
cluster C(k)i at k to all different sets of target clusters C(k+r)j , j=1,2,...., k+r.
Similarly but in reverse, the backward inter cluster mapping m(k+r,k)ji is defined
to be the numbers of common elements from the target to source cluster, and
the backward mapped inter cluster matrices is defined to be [M(k+r,k)ji]. These
backward mapped inter cluster matrices are also defined as transpose of the M
forward inter cluster mapped matrices. These M matrices are rectangular in size
(k,(k+r)) and ((k+r),k) respectively. We now define the forward inter cluster
proportion of elements as [P(k,k+r)ij ] matrices from a source cluster C(k)i to all
the target sets of clusters C(k+r)j . Each row (vector) in P matrix is summed up
to 1 and the proportion matrix can be computed as

P(k,k+r)ij =
m(k,k+r)ij∑k+r
j=1 m(k,k+r)ij

(1)

Equation (1) simply shows the inter cluster proportion of the elements mapped
from the source cluster C(k)i to the target cluster C(k+r)j . Similarly, we can obtain
the backward inter clusters proportion [P(k+r,k)ji] matrices. The inner product of
the forward and backward proportion matrices is computed and constructed as
it will determine the mutual similarity between clusters. This inner product will
result in a matrix of (k,k) combined mapped proportion matrices called O(k,k)

for different k+r distances(see equation (2) below). These combined mapped pro-
portion matrices O provide the combined similarity at each entry of the diagonal,
while the off diagonal entries are the dissimilarity or overlap proportions of the
clusters.

[O(k,k)] = [P(k,k+r)ij ][P(k+r,k)ji] (2)

It is important to note, that the inner product of the forward and backward are
different due to the cardinality difference as ((k, k+r),(k+r, k)) is not equal to
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((k+r, k),(k, k+r)), also the backward to forward would be less informative than
forward to backward at a given k value.

Finally, we define the combined mapped elements matrices as [Q(k,k)] to be calcu-
lated from the inner product of matrix [k] by matrix [O(k, k)] for each k and k+r
distance, where [k] is a (k,k) diagonal matrix with diagonal entries determined
by the size or number element of each cluster from k-means algorithm at k. The
diagonal entries of [Q(k,k)] matrix q(ii) at each k with different k+r distances are
the number of elements belong or remained in the same cluster (within cluster)
while the off diagonal q(ij) entries are the number of elements belong or moved
from other clusters ( representing the overlap at k).

2.1 Computing Cluster Similarity and Overlap

In this section similarity, overlap, average similarity and average overlap are com-
puted from Q, the combined mapped elements matrix. We define the similarity
as the trace value of the Q matrix at each k that is mapped to different k+r
distances. Equations (3) and (4) below shows the similarity and overlap of the Q
matrices respectively;

TraceQ(k,k+r) =

k∑
i=1

qii (3)

Overlap(k,k+r) = N − TraceQ(k,k+r) (4)

In addition, the traces of each k to different k+r mapped distance would be used
to define and compute the average similarity and overlap of k to k+r, equation
(4) and (5) below calculate these averages.

AverageTracek = µk =

∑K−k
r=1 Trace(k,k+r)

K − k (5)

AverageOverlapk = N − µk (6)

where, k = 2,3,.....,K and r = 1,2,3,....K-k.

The best (optimal) estimated number of clusters K* can be found to be the
maximum average of the traces from equation (4) above;

K∗ = Max(AverageTracek) (7)

Equation 7 is considered as a criteria for the best estimated number of cluster,
however, there are more details needed to cover the situations when the best
estimated number of clusters are fully or partially separated.

3 Real Data Example

To illustrate the proposed method we will use a well-known Ruspini real dataset
with four clusters that is known in advance. This particular dataset is also widely
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used in the literature to illuminate and evaluate clustering number and structure
by many research papers, and was first used and analysed by Ruspini (1970)
to investigate fuzzy clustering. This data is a two dimensional numerical dataset
that includes 75 elements, Figure 3(a and b) shows the scatter plot of this dataset
and the k-means clusters when k=4 respectively. Forward and backward mapping
proportion and combined matrices at different k and for all k+r distances (up to
K=16) are calculated and their Trace, AverageTrace and number of overlapped
elements at each k are also calculated and presented in Figure 3 (c and d). The
average trace at each k is given by the solid black line in Figure 3 (c) showing
that the average trace was maximum at k= 2, 3 and 4 and was equal to the total
number of the element (N=75). This indicates there is a continuous potential to
split into new and fully separated clusters up until k=4, and as k increased and
moved away from 4 the trace averages start decreasing and fluctuating but always
below the value at k=4. The overlap calculations given in figure 3(d) showed zero
overlap up until k=4 and it increased after k=4 by which we strongly nominate
k=4 as the best estimated number of clusters.

 

 

(a) (b) 

(c) (d) 

FIGURE 2. Plot (a) Rusipini data scatter plot, (b) k-means clusters, (c and
d)the calculations of trace and overlap at different k to k+1.

4 Conclusion

A good choice of K is an important feature for building meaningful homogenous
and well separated clusters when applying the k-means clustering algorithm for
a dataset. In this study we extended and enhanced the MMM index approach
based on the results from a k-means clustering algorithm, and demonstrated
its effectiveness to explore the clustering structure for finding a best (correct)
value of K. This approach aimed to maximize the mapping similarity based on
the forward and backward inter cluster elements mapping that shows to be more
descriptive, informative and analytical by which the best and stable set of clusters
are reached. Development of this approach is still in progress and it will cover
its advantage and effectiveness when applied on variety of simulated and real
datasets including the evaluation and comparison with other existing validation
indexes.
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Abstract: During an infectious disease outbreak it is crucial to have timely
information on epidemic trends. However, the reporting of new cases is subject
to delay. The real-time assessment of the expected number of cases based on
partial information is called nowcasting. We present a nowcasting model based
on two dimensional P-spline smoothing with additional constraints. Our aim
is to predict the number of occurred-but-not-yet-reported cases. We force the
underlying time-varying delay distribution to be unimodal, and to be zero at a
predefined maximum delay. We illustrate our method on a large measles outbreak
in the Netherlands. We show that even with very limited information our model
is able to predict the number of occurred-but-not-yet-reported cases very well.

Keywords: Smoothing; Constrained P-splines; Asymmetric penalty; Infectious
disease outbreaks

1 Introduction

During an infectious disease outbreak the National Institute for Public Health
and the Environment - RIVM has the responsibility to real-time monitor the
number of cases, in order to inform relevant health authorities. However, there
is a delay between the first day of symptoms onset and the time that the case is
registered. A consequence is that the epidemic curve of reported cases drops to
zero at the present day.

The assessment of the current situation based on imperfect or partial information
is called nowcasting (Donker et al., 2011; Höhle and an der Heiden, 2014). When
the delay distribution is known, it is possible to estimate the number of new
cases in real-time, e.g. by dividing the number of reported cases by the fraction of
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Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
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reported cases. In practice however, it is very difficult to obtain stable estimates,
especially when the number and fraction of reported cases is low, or even zero.
Typically, no cases are reported during the weekend.

Statistical modeling techniques can make an improvement here. The number of
reported cases can be tabulated by calendar time and delay. If we set a maximum
delay (where all cases have been reported), we get the so-called reporting trapez-
ium. The aim is to predict the number of occurred-but-not-yet-reported cases
outside the trapezium, while accounting for a time dependent delay distribution.
We model the expected number of reported cases in the reporting trapezium by
a smooth function of calendar time and delay using two dimensional P-splines.
However, to safely extrapolate the surface outside the reporting trapezium, espe-
cially at the beginning of the outbreak, additional constraints are required. First,
the surface is expected to be unimodal in the delay direction. Second, it should
go to zero at the maximum delay. Our approach is fast; one run takes about 30
seconds.

2 Methods

The number of reported cases by calendar time and delay is a stochastic variable
Y and is assumed to follow a Negative Binomial distribution with reporting
intensity µ = E(Y) and overdispersion parameter θ. The log-intensity is modeled
by a linear predictor η = log(µ) = Xβ. To separate the calender time and delay
trend surface from weekday effects, we write model matrix X as a partitioned
matrix [Xs|Xw] and coefficients β as a partitioned vector [βs|βw]. Here Xs =
Xd ⊗Xt, where Xt and Xd are nt × kt and nd × kd B-spline basis matrices for
marginal variables calender time t and delay d respectively. Xw is a ntnd × kw
matrix with weekday expanded to a set of dummy variables. Hence, weekday
effects are expressed as deviations from the trend surface.

Smoothness of the trend surface Xsβs is achieved by quadratic penalization of
the coefficients. The penalized log-likelihood function becomes

`∗ = `(βs,βw, θ|y)− 1
2
λtβ

′
sD
′
tDtβs − 1

2
λdβ

′
sD
′
dDdβs.

We assume that outside the reporting trapezium the delay distribution is constant
and the tails of it are linear (on a log-scale), so we have Dt = Ikd⊗D(1) and Dd =
D(2)⊗ Ikt , which are first and second difference operator matrices in respectively
time and delay direction. λt and λd are unknown smoothing parameters.

An unimodal function estimate in the delay direction can be achieved by a priori
only allowing negative values for the second order differences between the coeffi-
cients in the delay direction (Eilers, 2005). The modified penalized log-likelihood
function then becomes

`∗∗ = `∗ − 1
2
κuβ

′
sD
′
uVuDuβs

where Du = D(2) ⊗ Ikt . Typically κu = 106 and Vu = diag(vu) is a matrix with
asymmetric weights

vu =

{
1 if Duβs > 0
0 if Duβs < 0

.
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In order to ensure a reporting intensity near zero at the maximum delay, we set
an additional constraint Xsβs < g at the boundary, where g is a vector with
negative numbers, say -5. The modified penalized log-likelihood function then
becomes

`∗∗∗ = `∗∗ − 1
2
κb(Xsβs − g)′Vb(Xsβs − g),

where Vb = diag(bvb) is a matrix with asymmetric weights

vb =

{
1 if Xsβs > g
0 if Xsβs < g

,

and b is a vector with elements equal to 1 at the locations where the boundary
constraint is applied, and 0 otherwise. Typically κb = 106.

Finally, two additional constraints are applied. To obtain stable estimates of
the weekday effects, a ridge penalty − 1

2
κwβ

′
wβw with κw = 1 is added to log-

likelihood function. To make estimation of the trend surface numerically stable,
a small ridge penalty − 1

2
κsβ

′
sβs with κs = 10−3 is added.

Given λt, λd and θ, the coefficients β are found by penalized iterative weighted
least squares, by repeatedly solving the system

(X′WX + P)−1

(
βs
βw

)
= X′Wz +

(
κbX

′Vbg
0kw

)
,

where z = η + W−1(y − µ) is the working variable and weight matrix W =
diag(rw). r is a vector with elements equal to 1 if the element lies within the

reporting trapezium, and 0 otherwise and w = µ2/(µ + µ2

θ
) is a weight vector,

corresponding to the Negative Binomial distribution.

The corresponding penalty matrix P is given by

P = blockdiag(λtD
′
tDt + λdD

′
dDd+

κuD
′
uVuDu + κbX

′
sVbXs + κsIktkd , κwIkw ).

The overdispersion parameter θ is found maximizing the log-likelihood given the
current estimates of β within the IWLS algorithm. Smoothing parameters λt and
λd are found by minimizing the BIC.

The nowcast is then achieved as follows. First generate 1000 Monte Carlo samples
of β and θ. Given µ = exp(Xβ) and θ, draw 1000 samples from the Negative
Binomial distribution for each combination of calendar time and delay outside
the reporting trapezium. By summarizing the already reported number of cases
and the predicted number of cases over the delays, we obtain the predictive distri-
bution by date. The time dependent delay distribution is found by conditioning
the trend surface exp(Xsβs), in a nt × nd matrix, on its column sums.

3 Application: nowcasting a measles outbreak

During May 2013 - March 2014, the Netherlands was affected by a large measles
outbreak. Figure 1 shows the situation halfway the outbreak on October 1, 2013.
Although zero cases have been reported on October 1 (dark bars), we are still
able to predict the number of occurred-but-not-yet-reported cases (light bars).
As more information is available in the past, the prediction interval gets smaller.
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FIGURE 1. Left panel: Nowcast of the measles outbreak on October 1, 2013. The
black line is the nowcast (incl. 95% prediction interval) to a maximum delay of
six weeks back. Right panel: Time dependent delay distribution.

The right panel shows the estimate of the time dependent delay distribution. The
triangle on the right has been obtained by extrapolation. The highest reporting
probabilities occur with a delay between five and nine days.

4 Conclusions

We have presented a nowcasting model based on constrained P-splines. The model
takes care of a time dependent delay distribution, right truncation and day-of-
the-week effects. Without the additional constraints, stable extrapolation outside
the reporting trapezium is almost impossible. Even with very limited information,
the model is able to predict the number of occurred-but-not-yet-reported cases
very well on a daily resolution.

References

Donker T., van Boven, M., . . . , and Wallinga, J. (2011). Nowcasting pandemic in-
fluenza A-H1N1 2009 hospitalizations in the Netherlands. Eur. J. Epi-
demiol., 26 (3), 195 – 201.

Eilers, P.H.C. (2005). Unimodal smoothing. J. Chemometrics, 19 (5-7), 317 –
328.
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Abstract: The mechanisms that control the diversification of species are poorly
understood. Sophisticated diversification models have been developed, but they
have been developed on a case-by-case basis and no general method to study the
combined effect of ecological factors exists.

Such a general method has remained elusive for several reasons. Firstly, evolution-
ary processes have extremely complex dynamics. Secondly, decay and fossilization
degrade crucial evidence useful for phylogenetic analyses. Thirdly, diversification
processes have many potential explanatory variables, which increases the dimen-
sionality of the models enormously.

To overcome these issues, we propose a general diversification model expressing
the evolutionary species diversification dynamics as a combination of two gen-
eralized linear models. The fact that we typically only have data on currently
existing species can be described as a missing data problem and we developed an
MCEM-type algorithm for it.

We show that our method performs well for cases where an exact solution is
available, and discuss potential future usage of our approach.

Keywords: Diversification models; GLM; EM.

1 Introduction

Biodiversity, the term used to describe the wide variety of species on Earth, is
declining at enormous rates. To conserve biodiversity, we must understand the
mechanisms how it comes about and how it is maintained, in assemblages of
species, so-called ecological communities.

Figure 1 shows different sources of information regarding evolutionary processes.
It is our aim to incorporate the sources of high-dimensional data under a unified
statistical framework in order to overcome the main challenges that evolutionary
biologists currently face. Particularly, the lack of information of extinct species
and the huge complexity of current stochastic differential diversification models

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
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FIGURE 1. Inserting feedback with spatial ecological interactions into the phy-
logenetic data we are able to infer diversifications dynamics.

are bottlenecks for a proper inference on a general scenario. The framework we
propose is shown to be an efficient and general method with the potential to
provide practical solutions for a large number of open questions in evolutionary
biology and ecology.

2 Methodology

A phylogenetic time-tree is defined as a graph (V,E) with the following properties:

1. It is undirected and acyclic, i.e, a tree,

2. All nodes have degrees 1,2 or 3, depending on the biological meaning of
the node. The tree is binary,

3. It has a time-dimension.

t1 t2 t3 t4 t5 t p

Nodes

speciation

extinction

extant species

FIGURE 2. Phylogenetic time-tree.
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If we consider the space of trees T , extending the ideas of Gavryushkin (Gavryushkin
et. al. 2016), we define the space of phylogenetic trees as

S = {(rt(T ), τ)|T ∈ T , τ ∈ RN}

where rt(T ) is the ranked topology of the tree T and τ is the vector containing
the waiting times between nodes (speciations or extinctions).

Assuming that the evolutionary mechanics follows a birth-death process (Nee et.
al. 1994), the Markov nature of the dynamical system means that the likelihood is
exactly the product of the conditional densities (Reynolds 1973), in other words,
a multiplication of exponentially distributed waiting times and a multinomial
event selection variables

L(θ|Y ) =

N∏
i=1

σi(θ)e
−σi(θ)τi ρi(θ)

σi(θ)
=

N∏
i=1

e−σi(θ)τiρi(θ), (1)

where σi(θ) and ρi(θ) are linear functions of the speciation and extinction rates
λ(θ) and µ(θ), which in turn are monotone functions of many potential explana-
tory (ecological) variables.

We have shown that for complete phylogenetic trees this approach is equivalent
to current diversification models. However, assuming knowledge on the complete
phylogenies is not realistic because information of extinct species is almost never
available. Figure 2 shows the missing information on phylogenetic trees, where
most of the times we only see the tree on the right with extant species only. To
overcome that issue we implement an EM algorithm considering extinct species
as missing data.

FIGURE 3. Phylogenetic trees where we can visualize the loss of information on
reconstructed trees. At the left we have a tree with all extinct species whereas
the right plot shows the same tree with only observable species.

Thus, if we define D as the observed phylogenetic tree and D+ the extinct-extant
species tree, we iteratively performs

E-step: Compute Q(θ|θ∗) = Eθ∗ [logP (D+|θ)|D],

M-step: Choose θ to be the value of θ ∈ Ω which maximizes Q(θ|θ∗)

However, the expectation

Eθ∗ [logP (D+|θ)|D] =

∫
X (y)

log fD+(x; θ)fD+|D(x|D, θ∗)dx
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has not a close form due to the complexity of the time-tree space. Thus, an
approximation via Monte-Carlo method is needed

Eθ∗ [logP (D+|θ)|D] ≈ 1

N

N∑
i=1

logP (D+
i |θ)

for sampling sets of complete-trees conditioned to the observed tree. However,
the marginal distribution needed for sampling is in fact a complex combination
of non-homogeneous Poisson processes and an approximated sampling method
is needed. On figure 4 we can see the estimations for the Diversity-dependence
(DD) model described on next section. Because the simulated sampled trees are
approximations in the sampling space and not completely unbiased, we incorpo-
rate an importance sampling correction when needed.
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FIGURE 4. Parameter estimations for the DD model. Every point represents a
pylogenetic tree, the y-axes shows the MLE of the complete tree and the x-axes
shows the MLE of a set of reconstructed trees using the reconstruction algorithm
. From the histograms we can see that the estimations are precise, however while
the complete tree estimations are unbiased, the incomplete estimations are a bit
biased. To correct that we implement include importance weights on the final
estimations.

Application: Diversity-dependence model

The existence of upper limits to diversity has been discussed extensively in the
last decades. Etienne et. al. (2012) propose a diversity-dependence model as a
standard model for macro-evolutionary dynamics, with diversification rates de-
fined by

λi = λ0 − (λ0 − µ0)
ni
K
, µi = µ0

where n corresponds to the number of species, and µ0, λ0,K are parameters of
interest. µ0 and λ0 are initial extinction and speciation rates and K is the so-
called carrying capacity. ,

If we define σi =
∑N
j=1 λ0−(λ0−µ0)ni

K
+µ0 = ni(λ0+µ0)−n2

iβ0 for β0 =
(
λ0−µ0
K

)
,

and ρi = Ei(λ0 − niβ0) + (1 − Ei)µ0. ni is defined as the number of species at
time ti, E is a binary vector containing the topology of the tree. For equation 1,
the log-likelihood function of the phylogenetic tree is
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l(λ0, µ0,K|Y ) =−
m∑
i

niti[λ0(1− ni
K

) + µ0(1 +
ni
K

)]

+

m∑
i

log
(
λ0Ixi(1−

ni
K

) + µ0(Ixi
ni
K

+ I1−xi)
)

We incorporate the Diversity-dependence model within our framework with satis-
factory results, reproducing the evolutionary dynamics and estimations efficiently
using a general approach, easily extensible to many more variables and biological
scenarios. In figure 5 we can see the expected number of species versus time for
two clades: Dendroica and Foraminifera. Here we can see the influence on the
so-called carrying capacity on their evolutionary dynamics.

FIGURE 5. Expectation of lineages through time for the obtained parameters
under the proposed framework. Here we can observe two clades with different
responses to diversification. While Foraminifera shows an upper limit on diversi-
fication, Dendroica shows opposite behavior.

3 Conclusions and further work

In this manuscript we propose an alternative and general method to the usual
diversification models. This framework is a methodological innovation with many
potential applications, including been able to study the effects of climate, species
interaction, protracted speciation on evolutionary dynamics, among many others.
Further work will be the implementation of a differential geometric path finding
method (Augugliaro et al., 2013) in order to deal efficiently with high-dimensional
covariates.
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Gomes, José Clelto Barros, 184

Gray, Elizabeth, 217

Gregorczyk, Marco, 173

Greven, Sonja, 109

Groll, Andreas, 103

Groß, Jürgen, 131

Ha, Il Do, 294

Haider, Mansoor A., 190

Hambuckers, Julien, 113

Heller, Gillian, 236

Heumann, Christian, 179

Hill, Nicholas A., 190

Hohberg, Maike, 125

Husken, Thomas, 311

Husmeier, Dirk, 52, 70, 190, 317

Jacobs, Rianne, 80

Kateri, Maria, 91

Kim, Jong-Min, 294

Kirch, Claudia, 149

Klasen, Stephan, 125

345



346 INDEX

Klein, Nadja, 305

Kneib, Thomas, 103, 113, 125

Knein, Nadja, 97
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