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Preface

Dear Participants,

First of all, I would like to welcome you to the 32nd International Workshop on
Statistical Modelling (IWSM 2017) in the Netherlands, and I wish you a very
pleasant stay in Groningen. With around 200,000 inhabitants Groningen is the
7th largest town in the Netherlands, and Groningen has two large universities:
The Hanzehogeschool for Applied Sciences (about 20,000 students) and the Ri-
jksuniversiteit Groningen (RUG) with about 30,000 students. The venue of the
IWSM 2017 is the Academy Building of RUG and located in the town center of
Groningen.

Before you lies one of the two proceedings volumes of IWSM 2017. It is a unique
feature within the statistical community that all speakers at this workshop also
provide an extended abstract of their talk. This not only provides the participants
with a compact written account of interesting contributions, but it also improves
the quality of the talks.

Like every year, there was a huge amount of excellent paper submissions, and
it was a really challenging task to select from 138 abstracts 56 (41%) for oral
presentations. Each paper had to be reviewed and scored by three members of
the scientific programme committee. This was a very time-consuming task for the
reviewers, and for their valuable efforts I thank all members of the scientific com-
mittee: Ernst Wit (RUG), Marijtje van Duijn (RUG), Kenan Matawie (IWSM
2005), Arnošt Komárek (IWSM 2012), Vito Muggeo (IWSM 2013), Thomas
Kneib (IWSM 2014), Helga Wagner (IWSM 2015), Jean-François Dupuy (IWSM
2016), Simon Wood (IWSM 2017), Paul Eilers, John Hinde, Dirk Husmeier, Sonja
Greven, Edwin van den Heuvel, Jörg Rahnenführer and Korbinian Strimmer.

Some of the abstracts that could not be selected for oral presentation have been
given the opportunity to be presented on a poster. On Tuesday (17:15-19:30h)
there will be a poster presentation where everybody is invited to meet the re-
searchers and to discuss their ongoing work one-on-one. It will be taken care of
drinks and some ‘fingerfood’ in order not to be distracted by a thirsty throat
or a hungry belly. Although it would have been possible to extend the number
of presentations, it is an important feature of the IWSM workshops that there
are no parallel sessions. This means that each presentation, whether by a PhD
student or by a famous statistician, are awarded the same amount of attention.
This means that the IWSM is a very coherent meeting, whereby the emphasis lies
precisely on the word: ‘meeting’. It is a place where junior and senior researchers
mix and mingle.

Not coincidently, also this year you will get ample opportunities to meet your
fellow participants. On Sunday evening, after the excellent short course by Tom
Snijders and before the official start of the conference on Monday, there was
already the informal welcome drink gathering in the Pool Restaurant of the Stu-
dent Hotel. On Monday evening, there will be the official welcome reception in
the Spiegelzaal of the Academy Building. On Tuesday, the Pizza & Beer Poster
session in the Academia Restaurant of the Academy Building will encourage lively
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scientific interactions. On Wednesday, after the excursions, we will reconvene al-
together in the Ni Hao restaurant (Gedempte Kattendiep 122). On Thursday
evening, if you are hungry again, there will be the official conference dinner in
‘t Feithhuis (Martinikerkhof 10). Even the conference dinner will be kept quite
informal, as the emphasis should be on meeting your fellow participants. It would
be great if, long after this conference is over, you could look back on IWSM 2017
and say: ‘Groningen was the place where I met ’em all! ’.

I thank the Statistical Modelling Society for trusting in my proposal and for giv-
ing me this great opportunity to chair IWSM 2017. Many colleagues from RUG
helped me planing and realizing this workshop. I would like to thank all members
of my Local Organizing Committee, in particular, Ernst Wit, Ineke Schelhaas,
Martijn Wieling, Casper Albers, Wendy Post, Marijtje van Duijn and Hans Burg-
erhof for their contributions. Also Mariska Pater and Sharon de Puijselaar from
the Groningen Congres Bureau have helped me tremendously.

My special acknowledgements go to all sponsors of the IWSM 2017. Without
those sponsorships certain things could not have been realized and the programme
would certainly have been much sparser. A list of the sponsors of IWSM 2017
can be found on the last pages of this volume.

Last but not least, I would like to thank all authors for the excellent scientific
contributions, and I hope that every participant of IWSM 2017 will have a great
and especially research-stimulating week in Groningen,

Marco Grzegorczyk
Groningen, 16 June 2017
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Nonparametric inference in hidden Markov
and related models

Roland Langrock

1 Department of Business Administration and Economics, Bielefeld University,
Germany

E-mail for correspondence: roland.langrock@uni-bielefeld.de

Abstract: Hidden Markov models (HMMs) have been successfully applied in var-
ious disciplines, including biology, speech recognition, economics/finance, clima-
tology, psychology and medicine. They combine immense flexibility with relative
mathematical simplicity and computational tractability, and as a consequence
have become increasingly popular as general-purpose models for time series data.
In this talk, I will first introduce the basic HMM machinery and showcase the
practical application of HMMs using intuitive examples. I will then demonstrate
how the HMM machinery can be combined with penalized splines to allow for
flexible nonparametric inference in general-purpose HMM-type classes of mod-
els. The focus of the presentation will lie on practical aspects of nonparametric
modelling in these frameworks, with the methods being illustrated in economic
and ecological real data examples, featuring, inter alia, the famous wild haggis
animal, blue whales and the well-known Lydia Pinkham sales data.

Keywords: Animal behaviour; Markov-switching regression; P-splines

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).



Functional Data Analysis, Spatial Data
Analysis and Partial Differential Equations:
A fruitful union

Laura M. Sangalli

1 MOX - Dipartimento di Matematica, Politecnico di Milano, Italy

E-mail for correspondence: laura.sangalli@polimi.it

Abstract: I will discuss an innovative class of regularized regression models
for the analysis of spatially distributed data, that merges advanced statistical
and numerical analysis techniques. Based on these regression models, I will then
present a principal component analysis method that can handle functional signals
distributed over complex domains.

Keywords: Penalized regression; functional principal component analysis; data
distributed over two-dimensional manifold domains; finite elements.

1 Spatial regression with differential regularization

I will present a novel class of models for the analysis of spatially (or space-time)
distributed data, based on the idea of regression with differential regularizations.
The models merge statistical methodology, specifically from functional data anal-
ysis, and advanced numerical analysis techniques. Thanks to the combination of
potentialities from these different scientific areas, the proposed method has impor-
tant advantages with respect to classical spatial data analysis techniques. Spatial
regression with differential regularizations is able to efficiently deal with data dis-
tributed over irregularly shaped domains, with complex boundaries, strong con-
cavities and interior holes [Sangalli et al. (2013)]. Moreover, it can comply with
specific conditions at the boundaries of the problem domain [Sangalli et al. (2013),
Azzimonti et al. (2014, 2015)], which is fundamental in many applications to ob-
tain meaningful estimates. The proposed models have the capacity to incorporate
problem-specific priori information about the spatial structure of the phenomenon
under study, formalized in terms of a governing partial differential equation [Azz-
imonti et al. (2014, 2015)]; this very flexible modeling of space-variation allows
to naturally account for anisotropy and non-stationarity. Space-varying covari-
ate information is accounted for via a semiparametric framework. The models

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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can also be extended to space-time data [Bernardi et al. (2017)]. Furthermore,
spatial regression with differential regularizations can deal with data scattered
over non-planar domains, specifically over two-dimensional Riemannian manifold
domains, including surface domains with non-trivial geometries [Ettinger et al.
(2016), Dassi et al. (2015), Wilhelm et al. (2016)]. This has fascinating appli-
cations in the earth-sciences, life-sciences and engineering. The use of advanced
numerical analysis techniques, and in particular of the finite element method or
of isogeometric analysis, makes the models computationally very efficient. The
models are implemented in the R package fdaPDE [Lila et al. (2016)].

2 Smooth principal component analysis for functional
signals over complex domains

Based on the regularized regression models outlined above, I will present a reg-
ularized method for principal component analysis of functional signals observed
over two-dimensional Riemannian manifold domains [Lila et al. (2016)]. This
will be illustrated with an application in the neurosciences, studying neuronal
connectivity on the cerebral cortex, starting from functional magnetic resonance
imaging scans on about 500 healthy volunteers.

FIGURE 1. Study of high-dimensional neuroimaging signals (data
available from The Human Connectome Project Consortium,
www.humanconnectomeproject.org). Left: Triangulated surface approxi-
mating the left hemisphere of a cerebral cortex. Right: functional connectivity
map obtained from fMRI signal. Figure adapted from Lila et al. (2016).

Acknowledgments: This talk is based on joint works with John A.D. Aston,
Laura Azzimonti, Mara Bernardi, Bree Ettinger, Michelle Carey, Eardi Lila, Fabio
Nobile, Simona Perotto, Jim Ramsay, Piercesare Secchi.
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Abstract: We present an alternative approach to variable selection that does
not select a single “best” model but attempts to find a collection of models
that is “good enough”. We call models adequate if they are not significantly
worse than the true model. The collection of all adequate models is spanned by
a smaller collection of minimal adequate models: the smallest of the adequate
models. These minimal adequate models give great insight in model selection
uncertainty as well as in collinearity, and are therefore a very practical model
building tool. We illustrate the approach with several classical data sets.

Keywords: Model selection; Closed testing; Model misspecification.

1 Variable selection

The goal of variable selection methods in regression is to discard a subset of the
covariates without reducing the predictive potential of the remaining variables.
Typical variable selection methods find a single “best” model according to a
chosen criterion, e.g. AIC or BIC. Variable selection is done to reduce overfit but
also for reasons of interpretation. Selected variables are interpreted as important,
and discarded variables as irrelevant. Different criteria and different methods,
however, can yield very different selected models. Especially when collinearity is
present, variable selection methods tend to differ greatly both in which variables
are selected and how many.
Clearly, there is uncertainty about the selected model. If we see the single selected
model as a point estimate of the true model, then we can say that typical variable
selection methods neglect to give standard errors or confidence intervals around
the statements they make. Interpreting the selected model in terms of important
and irrelevant variables is like interpreting point estimates without an associated
measure of uncertainty.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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We present a different approach to variable selection that, in contrast, emphasizes
the uncertainty in the variable selection process. We adopt a hypothesis testing
framework to construct a confidence interval around the true model. Thus, we
select not a single model, but a range of models. A model is in the confidence
interval if its likelihood is not significantly worse than that of the true model. By
construction, the confidence interval contains the true model with probability at
least 1− α.
Our work builds upon work laid out by Mallows (1973), Aitkon (1974) and
Spjotvoll (1977). We show that their work can be seen as a special case of closed
testing, which allows their results to be extended outside the scope of linear
models e.g. to generalized linear models.

2 Minimal adequate models

The construction of the confidence intervals will be such that if a model is in
the confidence set all supersets of the model are also in the confidence set. The
confidence set is therefore spanned by its smallest members, the minimal adequate
models.
The minimal adequate models give great insight in the reliability of inferential
statements made as a result of variable selection methods. They can be used to
distinguish between variables that must always be selected by a variable selection
method and variables that can take each other’s roles in the model because they
contain the same information, e.g. because of collinearity.
For example, two minimal adequate models can be {A,B} and {A,C,D}. In this
case covariate A is necessary for any adequate model, but the role of B can be
taken over by the combination of C and D, which together contain the same
information. A user may have a preference for model {A,B} because it is more
sparse or for {A,C,D} because it may have a better fit or be more interpretable.
In either case the presence of the other minimal adequate model functions as a
protection against overinterpretation of the selected model.

3 Model misspecification

A confidence interval for the true model supposes the existence of the true model,
which in turn implies that the full model is true. Since this is quite a strong
assumption, we will investigate how to relax it. We do this by refining the null
hypothesis to be tested for each model: instead of testing whether the reduced
model is as good as the true model, we test whether it is as good as the full
model. We show that this hypothesis can be conservatively tested even when the
full model is not the true model.

4 Application

The use of minimal adequate models will be illustrated with several classical
regression data sets, such as Hald’s cement data and the famous prostate cancer
data set (Hastie et al. 2001).
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Abstract: We consider here methods to analyze interval-censored survival times.
Interval censoring occurs when it is only known that the event happened in-
between two examinations. Well-known examples of an interval-censored time
are the time until HIV, AIDS, the emergence of a tooth, etc. Most often interval
censoring is not appropriately addressed in a statistical analysis and dealt with
by methods that handle right censoring of data, e.g. by replacing the interval
by the mid-point. Despite several published results it is still too often believed
that ignoring the interval-censored character of the data has a minimal impact
on the results and conclusions of the statistical analysis. In this contribution we
summarize the literature on interval censoring largely from a practical point of
view under the frequentist and a Bayesian paradigm. It will be also discussed
when it is important to take interval censoring into account.

Keywords: Bayesian inference; Interval censoring; Survival analysis.

1 Introduction

In survival studies, right censoring is most prevalent and generally dealt with
appropriately. Occasionally also left censoring occurs, but in randomized con-
trolled trials and epidemiological studies interval censoring occurs frequently.
Left censoring occurs, e.g., in a dental study on emergence of permanent teeth
when a tooth emerged prior to the start of the study. An emergence time is then
interval-censored when it is only known that the tooth emerged in-between two
examinations. Interval censoring also occurs often in HIV/AIDS studies, where
time to HIV seroconversion and AIDS are usually determined at planned vis-
its to the clinical researcher. In fact many developments on interval censoring
find their origin in HIV/AIDS research. Finally, in cancer trials progression free
survival can only be established in the hospital at planned visits. Despite the
frequent occurrence of interval censoring, this interval censoring is often treated

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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inappropriately in practice. Note that left and right censoring can be considered
as special cases of interval censoring. Also, in practice most often a mix of the
censoring types is encountered.
Often interval censoring is bypassed with a single imputation technique, with
mid-point imputation being most popular. That is, while the interval-censored
survival time is replaced by the mid-point of the interval, the data are analyzed
using methods for right-censored data. The effect of inappropriately dealing with
interval censoring depends on the size of the intervals, on whether covariates
impact the size of the interval and the type of statistical analysis. In the past,
absence of statistical software was the main reason for avoiding interval censor-
ing. This is not the case anymore nowadays. This is clearly illustrated in the
forthcoming book on interval censoring (Bogaerts, Komárek and Lesaffre, 2017),
hereafter referred to as BKL.
One distinguishes case I interval-censored data, also called current status data.
This occurs in practice when it is only known whether the event has happend
or not at the time of examination. We concentrate in this contribution on case
II interval censoring. Namely, we assume that an independent sample of survival
times T1, . . . , Tn is only observed to lie in intervals bli, uic (i = 1, . . . , n), where
bli means that either li is included or not in the interval and the same for ui. By
allowing li to be zero, interval censoring reduces to left censoring. On the other
hand right censoring is a special case of interval censoring when ui =∞ (in prac-
tice this implies a large value). Further we assume that the censoring mechanism
is independent of the true survival times. We will return to this assumption in
Section 5.
A popular data set in the statistical literature on interval-censored data comes
from a breast cancer study. It consists of the subset of 96 patients who were
treated at the Joint Center for Radiation Therapy in Boston between 1976 and
1980. Forty-six patients were randomized to radiation therapy only regimen, while
48 patients to the radiation therapy and adjuvant chemotherapy regimen. The
intervals represent the time period during which breast retraction occurred. A
graphical representation of the data is shown in Figure 1. Illustrations will also be
taken from the Signal Tandmobielr study, which is a longitudinal dental study
that examined, e.g., the emergence distributions of several permanent teeth.

2 Univariate models

2.1 Frequentist approaches

Let the true survival times T1, . . . , Tn be i.i.d. with survival distribution S(·).
When the survival times are interval-censored with intervals bli, uic (i = 1, . . . , n),
the likelihood to maximize is:

L =
n∏
i=1

{S(li)− S(ui)}, (1)

with S(t) the unknown but true survival distribution. Peto (1973) was the first
to note that the nonparametric maximum likelihood solution of S results in a set
of intervals {[pj , qj ]}mj=1 with the following properties: outside these intervals, the
estimated survival function is constant. Further, the mass assigned to each of the
intervals is well determined but within each interval there is no information as



12 Interval Censoring

TABLE 1. Breast cancer study. Regions of possible support and NPMLE equiv-
alence classes for the radiotherapy-only group.

(pj , qj ] (4, 5] (6, 7] (7, 8] (11, 12] (15, 16] (17, 18] (24, 25]
mass 0.046 0.033 0.089 0.071 0 0 0.093

(pj , qj ] (25, 26] (33, 34] (34, 35] (36, 37] (38, 40] (40, 44] (46, 48]
mass 0 0.082 0 0 0.121 0 0.466

to how that mass is assigned. The intervals are called regions of possible mass or
support because the maximum likelihood procedure can only tell in which regions
there is probability of events to occur. Peto (1973) and Turnbull (1976) suggested
a simple reduction algorithm to identify the intervals of possible mass from the
data. Further, Turnbull (1976) suggested the self-consistency algorithm, a ver-
sion of the EM algorithm, to determine the nonparametric maximum likelihood
estimator (NPMLE) of S. Thus, in contrast to the Kaplan-Meier estimator, the
NPMLE of the survival function for interval-censored data has no closed solution
and must be obtained by an iterative algorithm.
Two versions of the NPMLE are given in Figure 2 obtained from the patients
treated with radiotherapy alone in the breast cancer study. The left panel is the
NPMLE of the cumulative distribution function of the time to cosmetic deteri-
oration of the breast. Fourteen regions of possible support were found but only
to eight regions mass > 0 has been attributed. In Table 1, these intervals are
shown. The gray areas indicate that the distribution of probability within the
regions of support is not determined. In the right panel the corresponding esti-
mated survival distribution is given but assuming a linear behavior of Ŝ in the
intervals.
Since the seminal papers of Peto and Turnbull, the classical significance tests in
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FIGURE 1. Breast cancer study. Observed intervals in months for time to breast
retraction of early breast cancer patients per treatment group.
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survival analysis to compare two or more groups (logrank test, Gehan-Wilcoxon
test, Peto-Prentice-Wilcoxon test, etc.) have been extended to interval-censored
observations.
Because for a long time Turnbull’s algorithm was not available in statistical soft-
ware, it was standard to show the Kaplan-Meier estimate based on singly imputed
survival times. Alternatively and depending on the application area, also a para-
metric estimate was computed. In medical applications the most popular choices
are the Weibull and the log-normal distribution. Computations and inference
are simpler in the parametric case relying often on Newton-Raphson type of al-
gorithms and standard asymptotic likelihood theory. In-between nonparametric
and parametric approaches are flexible estimation methods. Numerous techniques
have been proposed that either smooth the hazard, the cumulative hazard or the
survival distribution. Popular in this sense is spline smoothing based on cubic
splines, B-splines or penalized B-splines adapted to interval-censored data. A
smooth solution can also be obtained from, say, a mixture of Gaussian densities
for the survival density. Examples of these approaches with software applications
in R and SAS software can be found in BKL.

2.2 Bayesian approaches

Parametric analysis of interval-censored observations is fairly standard in clas-
sical Bayesian statistical software, such as Win/OpenBUGS or SAS, as long as
the chosen survival distribution is supported by the package. More complicated
is to perform a Bayesian nonparametric (BNP) analysis. BNP estimation of a
cumulative distribution function (and thus of the survival distribution) started
with the seminal paper of Ferguson (1973), who introduced the Dirichlet process
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FIGURE 2. NPMLE of the cumulative distribution function (left panel) and
NPMLE of the survival function with the additional assumption of a piecewise
linear survival curve (right panel).
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(DP) prior. The DP prior D(cS∗) is a prior on the survival distributions S defined
around a guess survival distribution S∗ with variability ruled by a scalar c. Based
on a DP prior, Susarla and Van Ryzin (1976) proposed a nonparametric Bayesian
approach to estimate the survival function for right-censored survival times. Calle
and Gómez (2001) further extended the procedure to interval-censored data. Lim-
iting cases of the posteriors are the Kaplan-Meier for right-censored observations
and Turnbull’s estimate for interval-censored observations. Until recently no gen-
erally available software was available for the BNP approach, this changed with
the R package DPpackage (Jara, 2007). In the supplementary materials of BKL,
some self-written R programs can be found for fitting survival distributions in
a nonparametric way as well as illustrations of the use of DPpackage.

3 Regression models

Of more interest are survival models that allow for covariates, say X1, . . . , Xn.
In that case the likelihood becomes:

L =

n∏
i=1

{S(li |Xi)− S(ui |Xi)}. (2)

While for right-censored data the Cox proportional hazards (PH) model takes a
central position because the partial likelihood approach renders the estimation of
the baseline hazard obsolete, with interval-censored survival times the baseline
hazard/distribution needs to be estimated together with the regression coeffi-
cients. We consider here the PH model and the accelerated failure time (AFT)
model for interval-censored survival times. Again a variety of approaches were
suggested from semiparametric to parametric.

3.1 Frequentist approaches

The likelihood to maximize for the PH model is given by

L(β, S0) =

n∏
i=1

{
S0(li)

exp(X>i β) − S0(ui)
exp(X>i β)

}
, (3)

with β a p-vector of regression parameters and S0(t) the baseline survival func-
tion.
Finkelstein (1986) extended the nonparametric approach of Turnbull to the pro-
portional hazards model with interval-censored data. For this she assumed the
model expressed in (3). Note that likelihood (3) depends only on the baseline haz-
ard through its values at the different observation time points. Let s0 = 0 < s1 <
. . . < sK+1 =∞ denote the ordered distinct time points of all observed time in-
tervals bli, uic (i = 1, . . . , n). Further, let αij = I{sj ∈ bli, uic} (j = 1, . . . ,K+1,
i = 1, . . . , n). To remove the range restrictions on the parameters for S0, the like-
lihood is parameterized by γk = log[− logS0(sk)] (k = 1, . . . ,K + 1). Note that
because S0(s0) = 1 and S0(sK+1) = 0, γ0 = −∞ and γK+1 = ∞. In terms of β
and γ = (γ1, . . . , γK)> the log-likelihood function `(β, S0) can be written as

`(β,γ) =

n∑
i=1

log

{
K+1∑
k=1

αik
[
e−ζk−1 exp(X>i β) − e−ζk exp(X>i β)

]}
, (4)
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where ζk =
∑k
m=0 exp(γm).

To estimate the mass of the regions of possible support and the regression param-
eters, Finkelstein proposed the Newton-Raphson algorithm. It turned out that
the score equations provide a generalization of the self-consistency algorithm
suggested by Turnbull when β = 0. For the appropriateness of the asymptotic
χ2-distribution for testing β = 0, it is assumed that K does not increase with the
sample size. Farrington’s approach (1996) allows to fit the approach of Finkelstein
with generalized linear model software. He also provided a technique to select a
subset of L < K significant time points sl (l = 1, . . . , L). Other approaches sug-
gested for the PH model are: the piecewise exponential model (available in SAS
procedure ICPHREG) and a variety of smooth approaches some based on spline
smoothing.
Another popular semiparametric approach is to apply the partial likelihood ap-
proach on multiple imputed (MI) data sets. In the MI approach finite interval-
censored survival times are regarded as missing and replaced by a possible survival
time given an assumed model. Standard methodology can then be used to analyze
the (often between 3 and 10) imputed data sets of right-censored survival times.
The results of the multiple analyses are then combined. Pan (2000) proposed two
such multiple imputation schemes assuming a particular distribution within the
regions of support, but no other assumptions are made.
Finally, here again a parametric approach is easiest to handle, but could be too
restrictive in practice.

For the AFT model, the true survival times T1, . . . , Tn are assumed to satisfy

Yi = log(Ti) = X>i β + εi (i = 1, . . . , n), (5)

where εi are independent and identically distributed with density g(e). In case
of interval-censored survival times the likelihood is given by (2) but now with
S(t |X) = S0

{
exp(−X>β) t

}
.
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pared to NPMLE (dashed line) for the time to emergence of tooth 44 estimated
using the penalized Gaussian mixture with R package smoothSurv.
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Several distributions have been suggested for g, but there exists no semiparamet-
ric version of the AFT model. While the parametric AFT model is the simplest to
handle it is often too restrictive. More flexible approaches are based on a smooth
error density. One option is the Penalized Gaussian Mixture (PGM) model, which
assumes that the error density is a mixture of a (large) number of Gaussian densi-
ties with fixed means (knots) and with weights that are constrained by a penalty
term to produce a smooth density. This approach has been implemented in the R
package smoothSurv. In Figure 3 the solution from smoothSurv is compared
to the NPMLE for the emergence distribution of tooth 44 from boys.

3.2 Bayesian approaches

For a long time, the Bayesian PH model could only be fit parametrically to
interval-censored observations making use of the statistical packages Win/OpenBUGS
and later with the SAS procedure MCMC. Unfortunately, a pure semiparamet-
ric approach does not seem to be possible here, but recently at least two flexible
modelling approaches have been proposed and implemented in software. Wang
et al. (2013) proposed a Bayesian PH model with a piecewise constant baseline
hazard via a reversible jump MCMC procedure in combination with data aug-
mentation. Their approach fits a dynamic survival model to the data, thereby
providing a check for the PH assumption. The method is implemented in the
R package dynsurv. The recently developed R package ICBayes is based on
fitting the baseline hazard in a smooth manner using integrated I-splines, see Lin
et al. (2015). To this end the relationship of the PH model with a latent non-
homogeneous Poisson process was used in combination with data augmentation.

The parametric Bayesian AFT model can be fitted with BUGS-like and SAS soft-
ware in very much the same manner as the PH model. We are only aware of
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the R package bayesSurv to fit a smooth AFT model in a Bayesian way. The
package is based on the reversible jump MCMC technique, but also a PGM as
an error distribution can be fitted. With the package DPpackage practitioners
have several programs at their disposal for fitting Bayesian AFT models in a
semiparametric manner. In the package a Mixture of Dirichlet process prior is
used to fit an AFT model for interval-censored observations, which is the basis
for the R function DPsurvint. This function was applied to examine the depen-
dence of the emergence distribution of a permanent tooth (tooth 44) on gender
of a child and the history of caries status of the predecessor deciduous tooth
84 expressed by its dichotomized DMF score (DMF=1, caries on the deciduous
tooth, 0 otherwise). Figure 4 shows the posterior predictive survival function for
the different gender and DMF combinations.

4 Multivariate models

When several outcomes are measured on a subject who is examined at regular
time intervals, we obtain multivariate interval-censored observations. With mul-
tivariate outcomes, it is natural to ask for the association between the outcomes.
Most of developments have been done for the bivariate case, i.e., when there are
two related survival times T1 and T2 measured in an interval censored manner.
A special case of bivariate interval-censored data are doubly interval-censored
times. In that case the T1 measures the onset of the time-at-risk and T2 ≥ T1

measures the time of the event, and again both T1 and T2 are interval-censored.

4.1 Frequentist approaches

Betensky and Finkelstein (1999a) generalized Peto’s and Turnbull’s argument to
bivariate interval censored data. That is, information on the bivariate nonpara-
metric survival function is limited to a number of rectangles bearing (possibly)
non-zero mass, again called the regions of possible support. The trigger to develop
the bivariate NPMLE of S for interval-censored observations, was the computa-
tion of the association between the two true survival times. However, it turned
out that the bivariate NPMLE is not a good basis for this because too dependent
on the amount right censoring in the data, see Betensky and Finkelstein (1999b).
The absence of statistical software for fitting a rich class of (multi/bi)variate
models (for interval-censored data), restricts the use of parametric modelling for
multivariate responses. Instead one could use copula models, which disentan-
gle the specification of the association structure and the marginal distributions.
The three popular copulas: the Clayton copula, the Gaussian copula and the
Plackett copula have been extended to bivariate interval-censored survival times
and are implemented in the function fit.copula from the R package icensBKL
(will accompany the BKL book). Even more flexible are the bivariate smoothing
techniques, such as the bivariate PGM model implemented in the SAS macro
%smooth. This macro produced Figure 5 that shows a smooth approximation
of the distribution of the true emergence times of the contralateral (left and
right) maxillary first premolars (teeth 14 and 24) for boys, collected in the Signal
Tandmobielr study. One can observe that the two emergence times are highly
correlated.
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For survival outcomes the association measures Spearman’s rank correlation,
Kendall’s tau and the global and local cross-ratio are in use. These measures
can be estimated by plugging in sample values in the population versions of the
associations. This can be done for parametric models, but when based on the
PGM approach a goodness-of-fit check for the parametric models is obtained.
To graphically explore the association structure of multivariate observations one
can use a biplot. On a biplot the original p-dimensional outcome is projected onto
2 (or 3) dimensions displaying individuals as points and variables as vectors. If the
2-dimensional plot captures most of the original variability, then the projections of
the points on the vectors provide useful visual information on the characteristics
of (groups of) individuals. The biplot has been extended to multivariate interval-
censored observations (Cecere et al., 2013) and implemented in the function IC-
Biplot of the package icensBKL.
Hierarchical models, called frailty models in the survival context, provide yet
another way to model multivariate interval-censored outcomes. Conditional on
a random intercept, the outcomes are then assumed independent. This class of
models has been also extended to the interval-censored case. Again various illus-
trations of methodologies and software can be found in BKL.

4.2 Bayesian approaches

Parametric frailty models can be fit with standard Bayesian software such Win/OpenBUGS
and the SAS procedure MCMC. More challenging is to fit multivariate models
for interval-censored data in a semiparametric manner. A few approaches have
been suggested to fit the frailty distribution in a flexible manner. The approach
of Komárek and Lesaffre (2007) builds on the penalized Gaussian mixture idea.
Let (Ti1, . . . , Tini)

> be independent random vectors representing times-to-event
of the i-th cluster which are observed as intervals blil, uilc and Xil be the covari-
ate vector for the lth observation in the ith cluster (i = 1, . . . , n; , l = 1, . . . , ni).
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FIGURE 5. Signal Tandmobielr study. Density of penalized normal mixture
model for emergence of permanent teeth 14 and 24 obtained from SAS using
macro %smooth.
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In the random-effects AFT model, the (i, l)-th event time is expressed as

log(Til) = X>il β + bi + εil (i = 1, . . . , n; l = 1, . . . , ni), (6)

where εil are (univariately) i.i.d. random errors with a density gε and b1, . . . , bn
are cluster-specific i.i.d. random-effects with a density gb. The approach then
consists in expressing either of densities gε and gb as a univariate PGM. The
approach was implemented in the R package bayesSurv and illustrated with
data from the Signal Tandmobielr study. More specifically the software was used
to examine the impact of caries (now or in the past) of deciduous teeth and their
successors. Another option is to use the package DPpackage, which provides
functions that allow for a multivariate semiparametric approach.

5 Discussion

The list of statistical approaches extended to deal with interval-censored data is
endless. In fact, each statistical approach developed for fully observed or right-
censored data can be extended to interval-censored data. Additional topics that
have been investigated with interval-censored data: competing risks, multi-state
models, interval-censored covariates, etc. We also omitted here the discussion of
doubly interval-censored observations, important for HIV/AIDS research.
Finally, the majority of the developments (if not all) have been done under the as-
sumption of non-informative independent censoring. This assumption is violated
when the censoring intervals are associated with the actual and unobserved time-
to-event. This may happen more often in practice than assumed, and may affect
the conclusions considerably. Developments that deal with informative censoring
are therefore desirable.
To conclude, there is no reason anymore to bypass interval censoring since there
is ample software available for a great variety of problems.
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Abstract: The initial stage of language comprehension is a multi-label classi-
fication problem. Listeners or readers, presented with an utterance, need to dis-
criminate between the intended words and the tens of thousands of other words
they know. We propose to address this problem by pairing a network trained with
the learning rule of Rescorla and Wagner (1972) with a second network trained
independently with the learning rule of Widrow and Hoff (1960). The first net-
work has to recover from sublexical input features the meanings encoded in the
language signal, resulting in a vector of activations over all meanings. The second
network takes this vector as input and further reduces uncertainty about the in-
tended meanings. Classification performance for a lexicon with 52,000 entries is
good. The model also correctly predicts several aspects of human language com-
prehension. By rejecting the traditional linguistic assumption that language is a
(de)compositional system, and by instead espousing a discriminative approach
(Ramscar, 2013), a more parsimonious yet highly effective functional characteri-
zation of the initial stage of language comprehension is obtained.

Keywords: multi-label classification, language comprehension, error-driven learn-
ing, Rescorla-Wagner, Widrow-Hoff

Table 1 presents 10 simple sentences. When reading these sentences, the letters
and their combinations succeed in bringing to the fore a small number meanings
while dismissing thousands of others as irrelevant. Sentences present the reader
with a multi-label classification problem.
We address this problem as follows. First, we represent the orthographic input by
means of letter trigrams. For the first sentence, these are #Ma Mar ary ry# y#p

#pa pas ass sse sed ed# d#a #aw awa way ay# (the #

symbol represents the space character). Letter trigrams provide a much richer
representation of the visual input than do orthographic words. For the data in
Table 1, there are n = 104 distinct letter trigrams, to which we refer as cues.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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The second column lists the lexical meanings (lexomes) that are the targets of
classification. Lexomes are pointers to locations in a high-dimensional semantic
vector space (defined below). Note that past-tense word forms such as passed
(regular) and ate (irregular) are coupled with the lexomes pass and eat as well
as with past tense (past). Likewise, the two word forms apple and pie are coupled
with one lexome applepie, and the three expressions with the word forms kicked
the bucket, passed away, and died, are all linked with the same lexome die.

TABLE 1. Sentences, lexomes in the message, and frequency of occurrence (F ).
The total number of learning events is k = 771.

Sentence Lexomes in the message F

1 Mary passed away mary die past 40
2 Bill kicked the ball bill kick past def ball 100
3 John kicked the ball away john kick past def ball away 120
4 Mary died mary die past 300
5 Mary bought clothes mary buy past clothes

for the ball for danceparty 20
6 Ann bought a ball ann buy past indef ball 45
7 John filled the bucket john fill past def bucket 100
8 John kicked the bucket john die past 10
9 Bill ate the apple pie bill eat def applepie 3
10 Ann tasted an apple ann taste past indef apple 33

Is it possible to discriminate between the targeted lexomes given the letter tri-
grams in the sentences? We will show that considerable headway can be made by
an error-driven incremental multi-label classifier that comprises two simple net-
works, each with only an input layer and an output layer. In what follows, we first
provide a formal definition of the algorithm, and illustrate it for the sentences in
Table 1. We then turn to a more realistic example in which lexomes targeted in
around a million of utterances have to be discriminated from some 52,000 other
lexomes.

1 An algorithm for multiple label classification

The problem of incremental learning of multi-label classification is defined by a
sequence of events at which a set of features (henceforth cues) are present and
generate predictions about classes (henceforth outcomes), only some of which are
actually present in the learning event. The mismatch between predicted outcomes
and the outcomes actually present in a learning event provides the error driving
learning.
From a total of n distinct cues and m possible outcomes, only small subsets will
be present in a given learning event. Let k denote the number of unique learning
events (learning events may repeat, cf. good morning and tickets please). We index
a specific learning event in the sequence t (of length K ≥ k) of learning events by
t. The classification problem is defined by t, a sparse n× k cue matrix C which
is 1 whenever a given cue is present in a specific event and zero otherwise, and a
sparse m× k target matrix T that is 1 whenever an outcome is present and zero
otherwise.
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Classification proceeds in two steps, using two networks. The first network has
cues as inputs and outcomes as outputs. It is defined by an m × n matrix W
of connection weights from cues (columns) to outcomes (rows). Given W, the
predicted support (henceforth activation) for a specific outcome given the cues
in the learning event is obtained by summation of the weights on the connections
from these cues to that outcome. The m× k activation matrix A specifies these
activations for all outcomes across all unique learning events:

A = WC.

The classification performance of this first network is assessed by checking whether
the outcomes with the highest activations are those of the targeted lexomes.
As shown by Danks (2003), if over a sequence of learning events no further changes
in the weight matrix take place other than the tiny increments and decrements
that come with individual updates, i.e., when the weight matrix has entered a
state of equilibrium, then, given the incremental learning rule of Rescorla and
Wagner (1972) (see below), W can be estimated straight from conditional prob-
abilities characterizing the input. Let E specify pairwise conditional probabilities
of cues given cues,

E =


Pr(c0|c0) Pr(c1|c0) . . . Pr(cn|c0)
Pr(c0|c1) Pr(c1|c1) . . . Pr(cn|c1)

. . . . . . . . . . . .
Pr(c0|cn) Pr(c1|cn) . . . Pr(cn|cn)

 ,

and let F denote a matrix specifying conditional probabilities of outcomes given
cues,

F =


Pr(o0|c0) Pr(o1|c0) . . . Pr(on|c0)
Pr(o0|c1) Pr(o1|c1) . . . Pr(on|c1)

. . . . . . . . . . . .
Pr(o0|cn) Pr(o1|cn) . . . Pr(on|cn)

 .

Danks’ equilibrium equations state that

F = EWT ,

which can be solved using the generalized inverse.
When a weight matrix is calculated in this way, the effect of the exact order of
learning events is lost. Furthermore, a Danks weight matrix dampens the con-
sequences of the frequencies of occurrence of cues and outcomes in the input
space, while highlighting the contrasts that allow cues to discriminate between
outcomes. Thus, the Danks weight matrix is useful when there is no information
on the sequence of learning events (e.g., when only the frequency of learning
events is available but not their order) and when interest is directed specifically
to an idealised endstate of learning.
Preferably, the weight matrix W is estimated by repeated application of the
learning rule of Rescorla & Wagner (1972) to the learning events t. The update
at learning event t,

Wt = Wt−1 + ∆rw

depends on the learning rate η (typically set at 0.001) regulating the magnitude
of the changes to the weight matrix, on the predictions for the outcomes as
gauged by the activations of these outcomes given the cues, and on whether the
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outcomes are actually present in the learning event. Specifically, let c denote the
transpose of that column vector of C specifying which cues are present at the
current learning event t, and let o denote the transpose of that column vector of
T detailing which outcomes are present at t, and let J denote an m× n all-ones
matrix. Let the (row) vector a1 to specify the activations of those outcomes that
are present in the learning event while setting to zero the activations for all other
outcomes:

a1 = (((J · o)T · c)T ·W)i.

Here, i is a row unit vector of length n. Note that ((J · o)T · c)T is 1 for all cue-
outcome combinations that are present in the learning event, and zero elsewhere.
Next, let the (row) vector a0 represent the activations of those outcomes not
present in the learning event, again given the cues in that learning event, and let
it be zero for all other outcomes:

a0 = (((J · [1− o])T · c)T ·W)i.

((J · [1−o])T · c)T is 1 for all cue-outcome pairs where the cue is present but the
outcome not, and zero elsewhere. The update to the weight matrix, ∆rw, can
now be defined as follows:

∆rw = η{((J · o)T · c)T · (1− a1)− ((J · [1− o])T · c)T · a0}.

For cue-outcome pairs that are both in the learning event, the update of their
weight is given by the difference from the maximal activation, 1 by definition.
As the summed activations a1 tend to be less than 1, weights will be strength-
ened. For cue-outcome pairs where the cue is present but the outcome is not,
the corresponding connection weight is decreased by the summed activations a0.
Estimation of W using incremental updating over the sequence of learning events
is fast, first because only parts of the weight matrix require updating (efferent
weights from cues not present in the learning event are left untouched), and also
because the updates to individual outcomes are independent and hence allow for
parallelization.
The activation matrix A = WC specifies, for each unique learning event and for
each outcome, the joint support provided by the cues in that learning event for
that outcome.
Although class predictions based on A can do well for small constructed data sets,
they lack precision for large real data sets. Prediction accuracy can be further
improved by a second network that is given the task to predict the target T from
the activation matrix A:

T = DA.

The prediction matrix
P = DA

is the resulting approximation of T. Although D can be calculated using the
generalized inverse of A, computation costs can be prohibitive for large numbers
of learning events. It is therefore preferable to estimate D as follows:

T = DA

TAT = DAAT

Y = DX,
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which leads to D = YX−1. Since X is m×m, and since generally m� k, com-
putational costs are much lower when calculating X+ as compared to calculating
A+.
The prediction matrix can also be estimated iteratively by means of the update
rule of Widrow and Hoff (1960). This update rule, which specifies the update
∆wh to the m×m second weight matrix D, is important, first, as it allows us to
assess the consequences of how the order of learning events affects classification,
and second, because for large numbers of training events (in the order of hundreds
of millions), it is not feasible to actually calculate A (and P).
Let Z denote an m ×m matrix initialized with zeroes, let a denote the column
vector of the activation matrix A giving the predicted activations for the current
learning event, and let o denote the transpose of the corresponding column vector
of the target matrix T. The Widrow-Hoff update to Z is:

∆wh = η{a(o− aTZ)}.

We take the transpose to obtain D = ZT .
The weights for the two networks (m× n for the Rescorla-Wagner network, and
m×m for the Widrow-Hoff network) can be estimated in two ways. One possibility
is to first estimate W and then estimate D. Alternatively, one can update both
networks in tandem for each successive learning event. In this case, it is not
necessary to calculate A. Note that when estimating

P = (WC)+TWC

we ‘inject’ error twice: once during the estimation of W and again during the
estimation of P.
The equilibrium equations are implemented in the ndl package for R on cran.
An efficient Python implementation for incremental learning of W is available at
github.com/quantling/pyndl. An implementation of incremental learning for R

is available (for linux only) upon request from the authors. Software for efficient
updating of D by Widrow-Hoff is currently under development.
Returning to the example of Table 1, first consider classification performance
when W and D are estimated independently, using incremental updating for the
former, and the generalized inverse for the latter. In this case, for each of the 10
sentences, the lexomes in that sentence have the highest prediction values in P.
When the two networks are updated in tandem, with at each learning event first
an update of W and then an update of D, accuracy varies with the (random)
order in which the 771 learning events are made available to the model. For one
such random order, the proper lexomes had the highest ranks in A for 9 out of
10 sentences. The one sentence with an error is John kicked the bucket, where
def (the lexome for the definite article) intrudes with a higher activation before
die, which is found at the next rank (4).
Figure 1 illustrates this incremental training regime. The left and center panels
show the predictions based on A and P when training proceeds on a random
order of 771 learning events, and the right panel when training proceeds on 7710
learning events. Solid lines represent key lexomes from sentence 8 in Table 1: kick
and bucket for the unintended literal reading and die for the intended idiomatic
reading. Dashed lines represent the competitors apple and applepie in sentence
9. The spiky behavior in the left and center panels reflects the learning and
unlearning that unfolds as outcomes competing for the same cues are encountered.
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FIGURE 1. Prediction strengths for selected lexomes in the learning events of
sentences 8 and 9 in Table 1, using incremented coupled Rescorla-Wagner and
Widrow-Hoff. Left and center panels: frequencies as in the table; right panel:
frequencies increased tenfold.

Comparison of the left and center panels shows that the Rescorla-Wagner network
learns much faster than the Widrow-Hoff network. By the end of the learning
sequence, the former, but not the latter network succeeds in giving the intended
lexomes higher prediction scores. The rightmost panel shows that with sufficient
experience, the model learns that kick the bucket means die, and that an apple
pie is not an apple but a particular kind of pie.
An important property of this approach to language comprehension is that the
correct lexomes are selected without any worries about regular or irregular verbs,
literal versus idiomatic expressions, finding boundaries between words, decom-
posing words into parts, or disambiguating homographs. Given the assumption
that understanding drives the recalibration of weights, the rich information avail-
able in the combinatorics of sublexical cues and lexomes is sufficient for multiple
label classification to be effective.

2 Multiple label classification with 52,000 classes

To clarify whether this approach scales up, we applied our algorithm to the tasa
corpus (Zeno, 1995), a collection of texts comprising a total of 10,807,146 words
representing 52,401 word types. Lemmatization was carried out with TreeTagger

(www.cis.uni-muenchen.de/∼schmid/tools/ TreeTagger/), which distinguished
90,339 lemmata, of which 37,938 occurred once. To keep computations tractable,
the model was trained on all words occurring at least twice and 351 hapax legom-
ena that occurred in a precompiled list of words. Hapax legomena that were not
included were replaced by the dummy word HAPAX, resulting in a total of 52,401
lexomes. Learning events were sentences in the tasa corpus. Sequences of more
than 8 words were split at the next available occurrence of and or or. This resulted
in a total of 992,752 learning events. The multi-label classification challenge is to
predict the appropriate lexomes (out of 52,401) given the letter trigrams of the
(possibly inflected) words in the learning events.
Using the ndl2 package for R, W (52,401 lexomes × 11,724 letter trigrams)
was estimated using all learning events. To keep computations tractable for the



Baayen et al. 27

second network, two learning events were selected randomly from a precompiled
list of 8866 targeted lexomes, resulting in a total of 17,455 learning events (in 276
cases there was overlap with two or more lexomes in the same event, and for one
word, there was only 1 learning event available). The total number of outcomes
in this subset of learning events was 19,020. With these restrictions, the matrices
A (19,020 lexomes × 17,455 learning events), D (19,020 × 19,020 lexomes) and
P (19,020 lexomes × 17,455 events) could be estimated straightforwardly.
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FIGURE 2. Left: Quantiles of the ratio of intruders (false positives) to targets
(correct identifications), full utterances. Right: Rank and corresponding cumula-
tive proportion based on A (red) and P (blue), isolated words.

The left panel of Figure 2 presents the ratio of intruders (lexomes with an ac-
tivation exceeding that of the least activated target lexome) to the number of
targeted lexomes. The median number of intruders is zero, at the 8th decile the
ratio is 0.17, and at the 9th, it is 0.33. At the 10th decile, we find cases with vast
numbers of intruders, leading to a maximal ratio of 1208.9. Examples of intrud-
ers are down for the sentence The aleuts were housed in abandoned rundown gold
mines or fish canneries, and field and success for the sentence He is an ecologist
who studied succession in abandoned cornfields.
We also tested identification performance when target lexomes were presented in
isolation. The right panel of Figure 2 plots in blue cumulative proportion (out of a
total of 7179) against rank based on P: 34% of lexomes had the highest prediction
value, 88% of the targeted lexomes had at most a rank of 16 (indicating 15
intruders with higher activations). As show by the red curve, performance based
on A instead of P is substantially worse. Human lexical decision performance, as
gauged using the British Lexicon Project (blp, Keuleers et al. 2012) was for the
present data at 90% correct. As the lexical decision task does not require actual
identification, but only sufficient evidence for lexicality, it appears that human
subjects tolerate around 16 intruders.
As shown in Figure 3, the model also predicts power-transformed lexical decision
response times (t′ = −1000t−1). For all but the first decile, log activation ai =
Wci (with c the vector specifying the present and absent cues in the input, and
i indexing a specific lexome) shows a nearly linear effect with negative slope. Log
rank prediction (the log rank of pi = DWci) has a smaller effect that is again
negative and nearly linear, but now for the first nine deciles. The 90% decile of
the rank is at 18, which is close to the cut-off at rank 17 for lexicality decisions in
the right panel of Figure 2. Apparently, the same range of ranks influences both
decisions and reaction times.



28 Language as multi-label classification

−12 −10 −8 −6 −4 −2 0

−
4

−
2

0
2

4
6

log activation

pa
rt

ia
l e

ffe
ct

 (
−

10
00

/t)

edf 6.9, p < 0.0001

0 2 4 6 8

−
4

−
2

0
2

4
6

log P rank

pa
rt

ia
l e

ffe
ct

 (
−

10
00

/t)

edf 4.2, p < 0.0001

FIGURE 3. Partial effects in a gam fitted to power-transformed (−1000t−1) re-
action times. Left: log activation; Right: log prediction rank. Vertical lines denote
deciles. The 90% decile of log prediction rank is at rank 18 (red lines indicate
deciles). Regression analyses were carried out with gams (Wood, 2006).

PT defines a semantic vector space (cf. Landauer & Dumais, 1997), and lexomes
are indices or pointers for locations in this space. By way of illustration of the
semantic nature of PT , the left panel of Figure 4 presents partial effects for
human semantic similarity ratings for word pairs (Bruni et al., 2014) as predicted
from correlations of the corresponding column vectors of PT (left). For 90% of
the data points, a nearly linear relation is observed. Clearly, extreme values are
unreliable as predictors. Similarity in PT -space, i.e., similar prediction values
across events and thus greater similarity of experiences communicated, correctly
predicts greater perceived semantic similarity.
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FIGURE 4. Partial effects of the correlations of row vectors of P (left) and
column vectors of D as predictors of human similarity ratings for 2,369 word
pairs. Red vertical lines indicate 5% and 95% percentiles. Regression analyses
were carried out with gams (Wood, 2006).

The column vectors of D also define a lexomic space, but similarities in this space
turn out to be positively correlated with the Levenshtein distance between the
orthographic forms of the two words. As shown in the right panel of Figure 4, the
more different two word forms are, the lower their perceived semantic similarity.



Baayen et al. 29

3 Concluding remarks

Multi-label classification is a hard problem, not only for statistics, but also for
humans. For instance, in auditory word recognition, isolated words taken from
conversational speech have recognition rates between 20% and 40% (Arnold et al.,
2017). In the visual lexical decision task, undergraduate students perform near
chance on the lower-frequency words (Baayen et al., 2017). From this perspective,
the model’s performance, with training on a mere 10 million words, is too good
to be true. This is, of course, due to the model being given perfect feedback,
whereas human learning tends to proceed under uncertainty and lack of full
understanding.
Given that the model presents a simplified perspective on the first stage of com-
prehension — understanding the words — several of its features are remarkable.
First, the traditional linguistic assumption that language is a (de)compositional
system is replaced by a perspective in which the language signal is a code that
discriminates between possible messages (Ramscar 2013, Shannon, 1956).
Second, the model is parsimonious with only one free parameter, the learning
rate η. And although W and D can be very large, most of the weights are close
to zero. E.g., for W, only 5,885 weights exceed 0.1 (0.00058% of the total number
of weights), and only 195 weights are greater than 0.5. Arnold et al. (2017) show
for auditory comprehension that W can be pruned down to a fraction of the
original weights without noticeable loss of accuracy.
Third, the classifier implements a three-layer network that differs from back-
propagation networks in that there is direct error injection twice, once for W
using the Rescorla-Wagner equations, and once for D, using Widrow-Hoff (or the
generalized inverse). Importantly, the power of the first network should not be
underestimated. Although ever since the criticism of the perceptron by Minsky
& Papert (1972), two-layer networks have been regarded as far too restricted
for any classification tasks requiring more than the simplest linear separation,
it turns out that actually, with an appropriate choice of cues, Rescorla-Wagner
networks can solve much more interesting problems. Figure 5 illustrates this for
a simple example with two classes (represented by gray and red points) that in
R × R are not linearly separable (left panel). When the data are re-represented
by identifiers for rows and columns (right panel), a Rescorla-Wagner network
correctly predicts the highest activations for around 210 of the 260 elements of
the red class (see Baayen and Hendrix, 2017, for detailed comparison with other
machine learning classifiers, and also Ghirlanda, 2005).
Fourth, more sophisticated features than letter trigrams can be used as cues,
such as the frequency band summary features used by Arnold et al. (2017) for
modeling auditory word recognition, and for reading the histogram of oriented
gradients feature descriptor proposed by Dalal and Triggs (2005).
Finally, the model is transparent to interpretation. W specifies the support pro-
vided by sublexical features for lexomes. D transforms activation vectors that
are still strongly influenced by form similarity into vectors closer to the targeted
lexomes, which in turn results in a semantic vector space, PT .
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Predict NBA 2016-2017 Regular Season
MVP Winner
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Abstract: This project is to build a statistical model to predict who will win
the 2017 NBA Most Valuable Player (MVP) Award. The “MVP Index” has been
derived from combining each player’s Z statistics with equal weight as a ”uniform”
model. The team has further derived the ”weighted” model by adding the weight
factor which was calculated based on the dispersion/separation between the top
two MVP winners and the remaining players not in top five. Based on the Power
Model, team can improve the Accuracy Index to 70% at power=3. Our final model
would suggest that Westbrook and Harden shall own the Co-MVP Awards.

Keywords: Descriptive Statistics; Z Transformation; Power Model; Discrimi-
nant Cluster; Data Mining.

1 Problem Statement and Project Objective

In major professional sports, the coach and team management are looking for
ways to win more games. Sports statistical modeling analytics (A. Maymin, 2012;
M. Oh, 2015) is becoming a critical approach to uncover the winning patterns
hidden in sports data collected during each game played. The objective of this
paper is to build a statistical model to predict the NBA 2016-2017 regular season
most valuable player (MVP).

2 Data Collection, MVP Index and Model Accuracy
Index

Section 2 has three subsections: (1) Data Collection, (2) Derive MVP Index to
judge player performance, (3) Derive Model Accuracy Index to assess model
performance.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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2.1 Data Collection

In order to predict the 2016-2017 season MVP, team has collected three raw
data of the 2015-2016 season from the public Sports domain: (1) top 50 player
statistics in Figure 1 (NBA Player Statistics, 2015-2016), (2) team win%, and (3)
historical MVP winners.

FIGURE 1. Top 50 Player Statistics.

2.2 Derive MVP Index

Before building the model, the player statistics have been standardized to the Z
scale in order to remove any mean and standard deviation effect. This Z trans-
formation can eliminate any statistics bias or domination. The Z scale will also
analyze each player’s performance as compared to the other top 50 NBA players
in the same 2015-2016 season. The “MVP Index” has been derived from summing
each player’s Z statistics as shown in Figure 2.

FIGURE 2. Z Transformation and MVP Index.

2.3 Derive Model Accuracy Index

To evaluate the model accuracy, the author has derived “Accuracy Index” of
predicting the top five MVP players. MVP index of each top player was sorted
and compared to the actual top 5 MVP winners in that season.

3 Build Statistical Modeling Algorithms

Based on the above analysis, author has derived and compared: (1) Uniform, (2)
Weighted, (3) Power, and (4) Discriminant Clustering Model.
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3.1 Uniform Model

In the Uniform model, the “MVP Index” has been derived from combining each
player’s Z statistics with equal weight. The “Uniform” model can predict the top
five MVP winners at 47% accuracy.

3.2 Weighted Model

The “Weighted” model added the weight factor which reflects player Z scale
statistics categories are more important. To determine the weight level, the de-
scriptive dispersion statistics between the top two MVP winners and the remain-
ing players not in top 5 was calculated for each Z scale statistics. The “Weighted”
model has further improved the Accuracy Index from 47% to 52% shown in Fig-
ure 3. The weighted MVP index formula is shown below:
WeightedMV P Index = 1.03 ∗′ GP − N ′ + 0.73 ∗′ Min − N ′ + 1.71 ∗′ FG% −
N ′ + 0.61 ∗′ 3pt% −N ′ + 0.67 ∗′ FT% −N ′ + 1.17 ∗′ RB −N ′ + 1.66 ∗′ AST −
N ′+ 1.5∗′ STL−N ′+ 1.16∗′BLK−N ′+ 2.7∗′ PPG−N ′+ 0.89∗′RB/MIN −
N ′ + 1.3 ∗′ AST/MIN −N ′ + 0.96 ∗′ A/T −N ′ + 3.13 ∗′ PPG/MIN −N ′

FIGURE 3. Model Accuracy: Uniform model vs. Weighted model.

FIGURE 4. Model Accuracy: compare all three models.

3.3 Power Model

To further optimize the accuracy, author has added the ”Team Winning” factor.
Most historical MVP winners were from the teams with best or better regu-
lar season records. Author has assessed the team winning factor based on the
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“Power” model from power= 0 (equivalent to the Weighted Model), 1 to 6 to
power= infinity (pick MVP from the best Team). The weighted MVP Index will
be multiplied by the power of the team winning% in the Power model. Based on
the Power Model, team can improve the Accuracy Index to 70% at Power=3. The
Power model has indicated the importance of team winning % on MVP selection
process. There is little benefit but more over-fit risk to further increase the power
level beyond 3 shown in Figure 4.

3.4 Data Mining Discriminant Model

Data Mining Discriminant analysis (J. Garcia, 2013) has been utilized to iden-
tify basketball performance indicators in regular season and playoff games. The
Discriminant model accuracy is at 54.5% not better than Power model shown in
Figure 5.

FIGURE 5. Data Mining Discriminant Model.

4 Conclusions

Power model has shown the better prediction capability which has indicated the
importance of team winning performance on the MVP selection process. Power=3
model will be utilized to predict 2017 MVP winner on the first day of each month
starting from Dec 2016,end in April 2017. The final model prediction will suggest
Co-MVP Awards, and presented in IWSM.

References

Maymin, A., Maymin, P., and Shen, E. (2012). NBA chemistry: Positive and neg-
ative synergies in basketball. Proceedings MIT Sloan Sports Analytics Con-
ference.

Oh, M., Keshri, S., and Iyengar, G. (2015). Graphical model for basketball match
simulation. Proceedings MIT Sloan Sports Analytics Conference.

Garcia, J., Ibanez, S., Santos, Leite, N., and Sampaio, J. (2015). Journal of Hu-
man Kinetics, 36, 2013, 161 – 168 Section II Sports Training.



Detect Exam Cheating Pattern on
Multiple-Choice Exams
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Abstract: This project will demonstrate on how to apply Data Mining Algo-
rithm on detecting the assessment exam cheating pattern in Schools. In order to
detect the cheating pattern, JMP multivariate statistics was used to determine
whether there was any association pattern among the students from the same
exam table. Hierarchical Clustering and Dendrogram Tree were used to identify
the grouping affinity behavior related to exam cheating pattern. This cheating
case study can also be used to study the students answering patterns on any
particular subject to help instructors on designing their future curriculum based
on the Data Mining Patterns.

Keywords: Data Mining; Heat Map; Clustering Analysis; Dendrogram Tree;
Principle Component Analysis.

1 Problem Statement and Project Objective

For each instructor, designing an effective assessment exam is a critical job (Kevin
Y. etc.). Its much easier to grade any exam with questions of multiple choices
than with comprehensive questions. In this case study, there were 75 students
sat in 25 different small tables (3 students per table) in a very limited space.
Instructor has modified the original exam into three different orders (versions A,
B, C). Three students from the same table will take different versions. However,
students were still smart enough to synchronize the question sequence quickly.
The objective of this paper is to find a data mining algorithm in order to detect
any cheating pattern from the same table.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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2 Data Collection and Multivariate Correlation
Analysis

The raw data includes each students ID, Exam Version, Answers, and Table
Number. In order to reduce the computing time, the bottom 25 scorers have
been excluded from the analysis in this paper. There is unlikely that we can find
any cheating pattern from these bottom scorers.

2.1 Multivariate Correlation Analysis

JMP 12 Multivariate Correlation Analysis was used to study any correlation
between Top 50 Students in Figure 1. From the Multivariate Correlation Analysis,
there are Combination(50, 2) = 1, 225 correlation coefficients between any two
students. This massive correlation table is a good start to visualize any correlation
pattern, but not effectively to draw any systematic pattern conclusion.

FIGURE 1. Multivariate Correlation Analysis.

2.2 Sort Students Score

To further detect any cheating pattern, authors have sorted students score (ref-
erence column) from top to bottom and list Table information in Figure 2. Its
clear that, on some tables, some students (No.1, No.15, No.17, and No.4) have
observed same score or similar score.

3 Build Data Mining Algorithms

Authors are looking for Data Mining Algorithms including JMP 12 Hierarchical
Clustering Dendrogram, Heat Map, and Principle Component Analysis to detect
the cheating pattern with high confidence.
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FIGURE 2. Sort Score and Exam Table Information.

3.1 Hierarchical Clustering Dendrogram Analysis

Hierarchical Clustering analysis (Michael A.) is utilized to analyze the cheating
pattern. In Figure 3 Dendrogram Tree, JMP software will calculate the answer
affinity among all 1,225 pairs and group the first pair at the strongest affinity
(similar pattern). JMP software then find the next affinity pair until all done as
shown in Dendrogram. In Figure 4, clustering history has shown 4 out of 5 pair-
ings sat on the same exam table. Hierarchical clustering analysis can defend the
cheating pattern at high confidence based on the low pairing distance separated
from the remaining pairing distance shown in Figure 4. Students from Exam
Tables 1, 4, and 15 have been identified having cheating pattern in the exam.

FIGURE 3. Hierarchical Dendrogram Tree.

FIGURE 4. Clustering History.

3.2 Heat Map Analysis

Instead of visualizing the cheating in Figure 3 Correlation Table, Heat Map in
Figure 5 below was conducted to visualize the cheating pattern among the student
identified in previous Dendrogram. Its very clear from the Heap Map, SID (26,
35, 44), SID (36, 43) and SID (49, 50) have similar heap map color pattern.
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FIGURE 5. Heat Map Analysis.

3.3 Principle Component Analysis

Authors also conducted JMP 12 Principle Component Analysis (Soren H.) shown
in Figure 6 based Matrix Eigenvalue and Eigenvector algorithm to derive the
two strongest principle components in a linear combination of all the answering
variable dimensions. Its very clear that SID (26, 35, and 44), SID (36, 43) and
SID (49, 50) are assigned in the same region based on two principle components
(in X-Y).

FIGURE 6. Principle Component Analysis.

4 Conclusions

Authors have utilized various Data Mining Algorithms to detect the exam cheat-
ing patterns. The same concept and algorithm can be applied to any other ap-
plications to uncover the hidden patterns such as Sports Analytics, Customer
Relational Management, or Biostatistics.
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Abstract: Data that are collected in medical sciences often have a hierarchical
structure. Regardless of sparseness caused by the presence of a large number
of small units or a small number of large units, linear mixed models are used
to account for within-unit correlation. Using a simulation study, we assess the
impact of an increasing proportion of singletons (i.e. one subunit in a unit) at the
highest or lowest level of the hierarchy on the fixed effects in a linear mixed model.
Additionally, we assess whether, when high proportions of singletons are present,
performance improves by removing or grouping singletons, splitting singletons
at the highest level or ignoring the dependency within units at the lowest level.
We show that, in the presence of singletons at the lowest level, the model is
quite stable. Ignoring clustering and dropping the singletons come with biased
standard error estimates. Grouping the singletons does not improve the model’s
performance. In the presence of singletons at the highest level, the model is
unstable. Grouping, dropping and splitting the singletons either decrease type I
error rate or increase power, while worsening the other. The likelihood ratio test
and Wald test perform poorly. The performance of the permutation test however
is superior to that of the F test. In conclusion, the linear mixed model is stable
in the presence of singletons at the lowest level, but care should be taken in the
presence of singletons at the highest level. In that case, the permutation test
rather than the F test should be used to assess the significance of included fixed
effects.

Keywords: F test, hierarchical data, permutation test, sparseness
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1 Introduction

Data that are collected in e.g. medical sciences often have a hierarchical structure,
with units at a lower level nested within units at a higher level. Most multi-level
settings consist of a small number of units that tend to be quite large. An example
is seen in the Ceftriaxone data, which contain information on doses (expressed
in mg/kg/day) of ceftriaxone prescribed to hospitalized children. Here, some ge-
ographical regions contain one country, while all but one country contain more
than ten children. The opposite, where a large number of units tend to be quite
small, occurs less often but is omnipresent in specific fields such as family re-
search. An example can be seen in the Ceftriaxone data, where 47.6% of included
departments contain only one child. Units containing only one subunit (e.g. re-
gions containing only one country or departments containing only one child) are
referred to as singletons. Regardless of sparseness caused by high proportions of
singletons, hierarchical data are generally analysed with linear mixed models.

In this study, we are interested in the impact of different proportions of singletons
on the fixed effects in a linear mixed model. We will use simulation studies to
assess the impact of an increasing proportion of singletons at the highest level
(i.e. countries within regions) and at the lowest level (i.e. children within depart-
ments). We will assess whether, when high proportions of singletons are present,
the model’s performance improves by applying some frequently used techniques
to cope with singletons: ignoring the dependency within units, removing single-
tons, splitting singletons (at highest level) and grouping singletons in an artificial
unit.

2 Methods

2.1 singletons at the lowest level of the hierarchy

A simulation study, focussing on a two-level setting with 350 children divided
over 50 departments and including variables both at the level of the child (age
and reason to treat) and at the level of the department (size), was set up. We
used a low (0.15), realistic (0.27, from the Ceftriaxone data) and high (0.64) in-
tracluster correlation coefficient (ICC). The proportion of singletons ranged from
0 to 95% (in steps of 5%), with the number of singletons rounded upwards (e.g.
5% singletons implies 3 departments with one child) and the remaining children
divided equally amongst the remaining departments. For each of the 60 scenarios,
1000 datasets were simulated.

We fitted a linear mixed model, including fixed effects for department size, reason
for treatment and age, and a random effect for department, to all simulated
datasets. Stability of fixed effects estimates and standard errors was evaluated
using the relative difference between the average parameter estimate (or standard
error) and the true parameter estimate (or standard error) (RDM (or RDE)).
Additionally, we considered the rejection rate of the F tests for age, reason for
treatment and department size. Because some scenarios contained a very low
(or very high) proportion of singletons, we considered ignoring within-cluster
correlation, dropping the singletons and grouping them in an artificial unit.
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2.2 Singletons at the highest level of the hierarchy

A simulation study, focussing on a three-level setting with 240 children divided
over 5− 40 countries in five regions, was set up. Data were simulated under the
null hypothesis (H0), assuming that region has no effect on dose, as well as under
a specific alternative hypothesis (HA). For each of the 18 scenarios, 1000 datasets
were simulated.

We fitted a linear mixed model, including a fixed effect for region and a random
effect for country, to all simulated datasets. The performance of the F test for
region was assessed using the rejection rate, referred to as type I error rate (under
H0) or corrected power (under HA). Because one can think of several ways to
eliminate data sparseness, we considered dropping the singletons, grouping them
in an artificial region and splitting them into two artificial countries. For one
sparse scenario (Scenario 3), we studied the likelihood ratio test, Wald test and
permutation test as alternatives to the F test.

3 Results

3.1 Singletons at the lowest level of the hierarchy

The RDM fluctuated regardless of the proportion of singletons. The RDE was
stable throughout the simulation study. The rejection rate for effects at the level
of the child increased slightly with an increasing proportion of singletons and ICC,
while the rejection rate for the effect at the level of the department decreased
slightly with an increasing proportion of singletons and ICC.
The RDM for both levels was not affected by ignoring clustering and dropping or
grouping singletons. When ignoring clustering, the RDE was overestimated and
the F test rejection rate underestimated, with the respective over- and underesti-
mation being worse with higher ICC. When ignoring clustering, the RDE at the
level of the department was underestimated while the F test rejection rate was
overestimated. When dropping singletons, the RDE increased with an increasing
proportion of singletons and ICC, while the F test rejection rate decreased. When
grouping the singletons into an artificial department, the RDE decreased slightly
with an increasing proportion of singletons and ICC, while the F test rejection
rate increased slightly

3.2 singletons at the highest level of the hierarchy

In the absence of singletons, the Type I error rate was low, while the corrected
power was high, indicating that the F test performs well. In the presence of single-
tons, type I error rate was high and power low, indicating that the performance
of the F test is inadequate, and there is a need for an alternative approach.
When dropping or regrouping the singletons, type I error rate and corrected power
decreased. When splitting the singletons, type I error rate and corrected power
increased. The performance of the Wald test and likelihood ratio test, investigated
for a scenario with a small number of countries per region (Scenario 3), was worse
than that of the F test. Performance of the permutation test however was superior
to that of the F test.
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4 Conclusions

The linear mixed model appears to be stable enough to handle high proportions
of singletons at the lowest level of the hierarchy, even when the intracluster corre-
lation is high. Alternatives which are frequently used, such as ignoring clustering
and removing or grouping the singletons, should be avoided as they provide biased
standard error estimates for the fixed effects.
The linear mixed model appears to be unstable in the presence of singletons at
the highest level of the hierarchy. Frequently used alternatives, such as grouping,
splitting or dropping singletons could solve either the problem of a high type I
error rate, or the problem of low power, while worsening the other. This forced
us to conclude that neither method acts as a solution to the poor performance
of the F test. We showed that the performance of the likelihood ratio test and
the Wald test was comparable to that of the F test, while the permutation test
outperformed the F test, and hence recommend to use the permutation test in
the presence of singletons at the highest level of the hierarchy.
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Abstract: We develop a new method to estimate simultaneously multiple graphs
and apply it to fMRI data. The method is a ‘top-down’ method which allows
the researcher to zoom repeatedly on edges of the graph obtaining graphs with
different levels of detail, in terms of the number of edges and number of nodes. By
repeatedly zooming on edges, we estimate graphs with similar structures across
coarseness scales, but with different levels of sparsity.
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1 Introduction and problem description

For n = 8 participants the cerebral activity has been measured T = 240 times.
The researchers used K = 5 distinct parcelations of the brain containing different
numbers of brain regions of interest (ROIs), obtained in a top-down manner. First
68 ROIs (corresponding to a coarse scale of measurement with anatomically large
brain regions) were defined using an anatomical atlas. Subsequently, the large
volume regions were further split into several smaller regions and the splitting
of the larger regions continued several times. In total five coarseness scales were
obtained where the number of ROIs were 68 (for scale 1), 114 (scale 2), 219
(scale 3), 446 (scale 4) and 872 (scale 5). The goal is to estimate brain pathways
between the ROIs where each ROI is represented by a node in the graph. We
associate with each scale two graphs: a directed and an undirected one, where
the graphs at the coarsest scale will contain 68 nodes, while the graphs at the
finest scale will contain 872 nodes. Undirected edges indicate a contemporaneous
relation between two nodes and directed edges indicate a lagged effect. The sets
of edges are unknown and need to be estimated.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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2 Graph estimation

Let n be the number of subjects, K the number of scales, pkn the number of
ROIs at scale k and T the length of the time series (one for each ROI) of brain
measurements. The fMRI measurement at scale k for the ith subject, for the jth
ROI at time point t is represented by Xk

i,j,t. The fMRI data at the kth scale for
the ith subject is represented by the matrix Xk

i which contains as rows the vectors
Xk
i,·,t = (Xk

i,1,t, . . . , X
k
i,pkn,t

)T and as columns the vectors (Xk
i,j,1, . . . , X

k
i,j,T )T. In

its rows Xk
i contains measurements for all regions at time t and in its columns a

times series for the jth region.
We estimate at each k two graphs: Gk(Eku, V

k) having undirected edges only
and Hk(Ekd , V

k) having directed edges only. V k = {1, . . . , pkn} denotes the set of
all nodes for scale k. Eku denotes the set of undirected edges depicted as a − b
between a pair of nodes (a, b). Assuming a pkn-dimensional Gaussian vector Xk

i,·,t
with inverse covariance matrix Θ ≡ Σ−1, the edge set is defined as Eku = {(a, b) ∈
V k × V k|a 6= b & Θk

a,b 6= 0}.
Ekd represents the set of directed edges of the form a → b. Following Yin and
Li (2011) and Abegaz and Wit (2013), for Hk a first order Markov model is
used where observations from time t depend only on observations at time t −
1. We assume that the vector Xk

i,·,t conditional on past values, Xk
i,·,t−1 obeys

Xk
i,·,t|Xk

i,·,t−1 ∼ N(ΓkXk
i,·,t−1,Σ

k). The data generating process depends on scale
specific matrices Γk and Σk. The matrices Γk contain the autoregressive co-
efficients corresponding to lagged effects between the nodes (the ROIs in the
example) and are used to define the set of directed edges as Ekd = {(a, b) ∈
V k × V k|Γka,b 6= 0}.
We jointly estimate the matrices A = {Γ1, . . . ,ΓK ,Θ1, . . .ΘK} by minimizing a
top-down penalized negative log-likelihood:

min
A
{−

K∑
k=1

(log det Θk−trace(SΓkΘk))+λn1(
∑
a6=b

| Θ1
a,b | +

K∑
k=2

∑
a6=b∈Uk

| Θk
a,b |)+

λn2(
∑
a,b

| Γ1
a,b | +

K∑
k=2

∑
a,b∈Dk

| Γka,b |)}, (1)

such that Θ1, . . . ,ΘK are positive definite and where SΓk = 1/(nT )
∑n
i=1∑T

t=2(Xk
i,·,t−ΓkXk

i,·,t−1)(Xk
i,·,t−ΓkXk

i,·,t−1)T, Uk = {(a, b) ∈ V k ×V k|a 6=
b & Θk−1

a,b 6= 0} and Dk = {(a, b) ∈ V k × V k|Γk−1
a,b 6= 0}.

Equation (1) uses `1 terms which enforce sparsity (see Friedman et al.,
2008) for the directed and undirected graphs. The fine scale edges estimated
at each scale k depend on the coarser edges estimated at scale k− 1 which
creates a zoom effect on edges in a top-down approach where the structure
of the coarser graphs influences the structure of the finer graphs making
them similar. Different penalties that enforce sparsity and similarity of
graphs can be found in Guo et al. (2011) and Danaher et al. (2014).
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FIGURE 1. Directed (left panels) and undirected (right panels) graphs for scales
k = 3 (top) and 4 (bottom) estimated using (λn1, λn2) = (.4, .2)

3 fMRI example

Due to space constraints Figure 1 presents only the graphs estimated for
scales 3 and 4 from which we conclude that (i) across the scales the graphs
are similar to each other (due to the top-down penalty we use) and (ii)
the contemporaneous associations between ROIs are more pronounced for
regions from opposite sides of the brain, while the lagged associations are
more pronounced for regions from the same hemisphere.
Figure 2 shows that the estimated directed and undirected graphs have
percentagewise a similar number of edges within the left hemisphere, but
for the right hemisphere the directed graphs estimate percentagewise more
edges than the undirected ones. Moreover, as we move across the coarseness
scales the within hemisphere connections relative to the total connections
become more predominant than the between hemisphere connections. This
points to a functional connectivity shift in the brain pathways, in the sense
that as we increase the splitting of regions this creates partitions that are
more homogenous within the hemisphere than across the hemispheres.
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FIGURE 2. Percentages of edges connecting ROIs within the left hemisphere
(left), right hemisphere (middle) and from different hemispheres (right).

4 Discussion

The proposed method to jointly estimate sparse graphs at different coarse-
ness scales, starts from the coarsest scale and uses a top-down penalty which
constrains the structure of finer scales graphs to depend on the structure
of coarser scale graphs. Using a top-down approach reveals how the graphs
evolve from having a simpler structure at the coarsest scale to having a
more complex structure at the finest scale. The resulting graphs offer the
researcher a more complete image about the phenomenon under study.
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Abstract: In this paper, we introduce a first order non-negative integer valued
autoregressive process with zero-modified geometric innovations based on the bi-
nomial operator. This new model will enable one to tackle the problem of deflation
or inflation of zeros inherent in the analysis of integer-valued time series data.
The main properties of the model are derived, such as transition probabilities and
zero probability. The methods of conditional maximum likelihood, Yule-Walker
and conditional least squares are used for estimating the model parameters. A
Monte Carlo experiment is conducted to evaluate the performances of these es-
timators in finite samples. The proposed model is fitted to time series of number
of weekly sales and weekly number of syphilis cases illustrating its capabilities in
challenging cases of deflated and inflated count data.

Keywords: INAR(1) process; Zero-modified geometric distribution.

1 Introduction

McKenzie (1985) proposed the INAR(1) process based on the binomial thinning
operator, i.e., a sequence {Xt}t∈Z is said to be an INAR(1) process if it admits
the representation

Xt = α ◦Xt−1 + εt, (1)

where 0 ≤ α < 1, {εt}t∈Z is a sequence of independent and identically distributed
integer-valued random variables, called innovations, with εt independent of Xt−k
for all k ≥ 1, E(εt) = µε and Var(εt) = σ2

ε , and “◦” is binomial thinning operator,
defined by

α ◦Xt−1 =

{ ∑Xt−1

j=1 Yj , Xt−1 > 0;

0, Xt−1 = 0,

where the so-called counting series {Yj}j≥1 is a sequence of independent and
identically distributed Bernoulli random variables with Pr(Yj = 1) = 1−Pr(Yj =
0) = α.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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While processes for integer-valued time series are now abundant, there is a short-
age of similar processes when the time series refer to data with deflation or infla-
tion of zeros, i.e., processes for modeling count time series with excess (or deficit)
of zeros based on thinning operators were discussed by few authors. Jazi et al.
(2012b) introduce a new stationary INAR(1) process with zero inflated Poisson
innovations [ZINAR(1)]. Recently, Barreto-Souza (2015) proposed a first-order
integer-valued autoregressive process for dealing with count time series with defla-
tion or inflation of zeros [ZMGINAR(1)]. The proposed process has zero-modified
geometric marginals. However, the conditional probabilities of this model don’t
have a simple form and the parameter restrictions aren’t liberal.
This paper aims to give a contribution in this direction. The objective of this
paper is to propose a new INAR(1) process (1) with zero-modified geometric
(ZMG) innovations, denoted by INARZMG(1), based on binomial thinning for
modeling nonnegative integer-valued time series with deflation or inflation of
zeros.
Let {εt}t∈Z be a sequence of discrete i.i.d. random variables following a zero-
modified geometric (ZMG) distribution with parameters µ > 0 and π ∈ (−1/µ, 1).
More specifically, we here assume that {εt}t∈Z has a probability mass function
given by

Pr(εt = y) =

{
1+πµ
1+µ

, if y = 0,

(1− π) µy

(1+µ)y+1 , if y = 1, 2, . . .
(2)

The process {Xt}t∈Z satisfying Equation (1), with {εt}t∈Z ∼ ZMG(π, µ), is
Markovian, stationary, and ergodic. Then, the Markov process admits a unique
stationary distribution.
The dispersion index, which is the variance-to-mean ratio, will be given by

IX :=
σ2
X

µX
= 1 +

µ(1 + π)

1 + α
,

it follows that this model presents equidispersion when π = −1; underdispersion
when µ ∈ (0, 1) and π ∈ [−1/µ,−1); and overdispersion when π ∈ (−1, 1).

2 Real data examples

2.1 Modelling deflation of zeros

In the first application, we consider the series of weekly sales of a particular soap
product in a supermarket. The proportion of zeros in the series considered is
3.7%. Then, we have evidence that there is deflation of zeros in the number of
weekly sales. The time series data and their sample autocorrelation and partial
autocorrelation functions are displayed in the Figure 1.
Table 1 provides the estimates of the model parameters and two goodness-of-fit
statistics: Akaike information criterion (AIC) and Bayesian information criterion
(BIC). From this table, we observe that the proposed model being better.
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FIGURE 1. Plots of the time series, autocorrelation and partial autocorrelation
functions for the number of weekly sales.

TABLE 1. Estimates of the parameters and goodness-of-fit statistics for the first
data set.

Model CML Estimates AIC BIC

α̂ 0.3056 1252.88 1263.4
INARZMG(1) µ̂ 3.2094

π̂ −0.1826

α̂ 0.3623 1310.91 1321.4

ZINAR(1) λ̂ 4.5972
ρ̂ 0.2415

INARG(1) α̂ 0.3712 1260.34 1267.32
p̂ 0.7746

2.2 Modelling inflation of zeros

For the second application, we consider the weekly number of syphilis cases in
the United States from 2007 to 2010 in Vermont state given in ZIM package. The
proportion of zeros in the series considered is 96%. Then, we have evidence that
there is inflation of zeros in the number of syphilis cases. The series, autocorre-
lation and partial autocorrelation functions are displayed in Figure 2.
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FIGURE 2. Plots of the time series, autocorrelation and partial autocorrelation
functions for the number of syphilis cases.
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Table 2 gives the CML estimates, AIC and BIC for the fitted models. Since the
values of the AIC and BIC are smaller for the INARZMG(1) process compared
to those values of the ZINAR(1) and INARG(1) models, the new model seems a
competitive model for these data.

TABLE 2. Estimates of the parameters and goodness-of-fit statistics for the num-
ber of syphilis cases.

Model CML Estimates AIC BIC

α̂ 0.0801 96.46 106.49
INARZMG(1) µ̂ 0.7239

π̂ 0.9078

α̂ 0.0894 97.80 107.83

ZINAR(1) λ̂ 1.1893
ρ̂ 0.9444

INARG(1) α̂ 0.1138 110.32 117.00
p̂ 0.0606
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Abstract: The local linear estimation, Nadaraya-Watson estimation, and locally
weighted scatter plot smoothing (LOWESS) estimation are the way for estimat-
ing unknown parameter of local polynomial regression based on nonparametric
regression model, fitting function of independent variable by the weighted least
squares is computed for time series data. With the local polynomial regression
fitting we can estimate the local linear estimator based on kernel function as a
Gausian density function, and the Nadaraya-Watson estimation which is a part
of local linear estimation or called a local constant estimation. Furthermore the
LOWESS is used a weighted least squares to estimate parameter that modified
the kernel function as a tricube kernel. The goal of this article is to show, through
application, which three estimators can be used the best for fitting time series
data. The Average Mean Square Errors (AMSE) is considered as a criterion to
check a bias of fitted estimator. For simulation data, the data is generated by
autoregressive process by several coefficients. The Nadaraya-Watson estimation
outperforms other methods by showing the minimum of AMSE values.

Keywords: local linear estimation; local polynomial regression; locally weighted
scatter plot smoothing; Nadaraya-Watson estimation

1 Introduction

Regression analysis is a statistical tool for the investigation of relationship be-
tween independent and dependent variables in term of regression model. An es-
timating parameter of regression model requires an assumption such as the lin-
earity, statistical independence, homoscedasticity, and normality that the form of
the underlying regression analysis. If an inappropriate regression model is used, it
is possible to produce misleading conclusions. To overcome the difficulty caused
by the restrictive assumption of the regression function, this approach leads to
so-called nonparametric regression.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
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Typically, the nonparametric regression methods are overcome this problem, be-
cause the fitted model interpolates on the curve of data base on bandwidth values.
The local polynomial regression is a class of nonparametric regression method
which has a long history in the smoothing of time series.

2 Methods of Parameter Estimation

The simple of nonparametric regression model can be written as

yt = f(xt) + εt, t = 1, 2, . . . , n, (1)

where xt are the independent variable as the time points of time series data, yt
are the dependent variable, and εt denote the measurement errors. The Taylor
expansion can be approximated by a local polynomial regression of degree p and
assumed that f(xt), as

f(xt) = f(x0) + (xt − x0)f (1)(x0) +
1

2
(xt − x0)2f (2)(x0) + . . . , t = 1, 2, . . . , n.

The local polynomial regression estimator is used the weight least-squares to
minimize of

(β̂0, β̂1, . . . , β̂p) = arg min

n∑
t=1

(yt − f(xt))
2 Kh(xt − x0), (2)

where K(·) is a kernel function, h > 0 is called the bandwidth.
The estimators of local polynomial regression are depended on the process of
weight least squares and the bandwidth selection. The following methods are
shown the parameter estimation on each method.

2.1 The Local Linear Estimation

For the weighted least squares, the local linear estimator can be approximated
by setting p = 1, denote for j = 0, 1 and 2,

Sj(x;h) =

n∑
t=1

Kh(xt − x0)(xt − x0)j ,

Tj(x;h) =

n∑
t=1

Kh(xt − x0)(xt − x0)jyt.

The local linear estimator is

β̂0(x;h) =
T0(x;h) S2(x;h)− T1(x;h) S1(x;h)

S0(x;h) S2(x;h)− S2
1(x;h)

(3)

,and

β̂1(x;h) =
T1(x;h) S0(x;h)− T0(x;h) S1(x;h)

S0(x;h) S2(x;h)− S2
1(x;h)

. (4)

The quality of the local polynomial regression depends on the bandwidth selec-
tion method. Ruppert, Sheather, and Wand (1995) studied the ideas of plug-in
bandwidth selection of kernel estimators.
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2.2 Nadaraya-Watson Estimation

The trend estimator is evaluated by using the Nadaraya-Watson kernel estimator
(Nadaraya (1964) and Watson (1964)) and written as

f̂(xt) =

∑n
t=1 Kh(xt − x0)yt∑n
t=1 Kh(xt − x0)

, (5)

where h is known as the bandwidth parameter. The bandwidth can be chosen
using a cross-validation criteria. The kernel functions K can be chosen as the
Gaussian density function.

2.3 LOWESS Estimation

Cleveland(1979) introduced an alternative form of the local polynomial regression
which is called LOWESS , locally weighted scatter plot smoothing. The basic
idea was to start the weighted least square as the kernel function in term of the
tricube kernel function, and proposed a nearest neighbour bandwidth by setting
r = nf + 0.5. For each predictor xt, let

hk =| xk − x |(r),

where hk is the rth order statistic of the sample | xk − x1 |, | xk − x2 |, . . . , |
xk − xn |.

3 Application of Simulation Data

The data is generated in term of autoregressive model in order 1 (AR1) following

yt = ρyt−1 + εt, t = 1, 2, ..., n,

where εt ∼ N(0, 1), the coefficient (ρ) of AR(1) is defined by 0.1, 0.5, 0.7, and
0.99, and the sample sizes n = 100, 200, 300, and 400. The accuracy of fitting
function is consider by the Mean Square Errors (MSE) as follows:

MSE =
1

n

n∑
t=1

(yt − ŷt)2, (6)

where yt denoted the simulated data and ŷt denoted the fitting data of 3 estima-
tors. From Table 1, the results show that the average MSE of NW is the minimum
values in all cases.

4 Conclusion

We have been discussed the method to estimate parameter of local polynomial
regression function. It is concluded that the estimation of NW has indicated a
good performance more than LL and LOWESS method. Hence it can be say
that NW leads to a nearly enough class of local polynomial regression to esti-
mate adequately fitted time series data. The cross-validation criteria is a good
performance for fitting model.
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TABLE 1. The average MSE on simulated data of local linear (LL),
Nadaraya-Watson (NW), and locally weighted scatter plot smoothing (LOWESS)
estimation.

Sample
sizes

Method ρ =0.1 ρ =0.5 ρ = 0.7 ρ = 0.99

LL 1.0513 0.7593 0.6099 0.4822
n=100 NW 0.5438 0.3604 0.2966 0.2197

LOWESS 1.2167 1.4810 1.8635 3.3187

LL 1.0438 0.9299 0.8489 0.6327
n=200 NW 0.5137 0.3494 0.2918 0.2228

LOWESS 1.1113 1.4033 1.9588 6.5061

LL 1.0337 1.0671 1.0527 0.7893
n=300 NW 0.5011 0.3501 0.2910 0.2190

LOWESS 1.0709 1.3906 1.9561 9.9320

LL 1.0377 1.1317 1.2328 0.9651
n=400 NW 0.5042 0.3468 0.2908 0.2227

LOWESS 1.0672 1.3736 1.9885 12.3403
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Abstract: Binary response data arise naturally in applications. In general, the
well-known logistic and probit regression models form the basis for analysing
binary data in practice. These regression models make use of symmetric link
functions (logit and probit links). However, many authors have emphasized the
need of asymmetric links in modeling binary response data. In this paper, we
consider a broad class of parametric link functions that contains as special cases
both symmetric as well as asymmetric links. Furthermore, this class of links is
quite flexible and simple, and may be an interesting alternative to the usual
regression models for binary data. We consider a frequentist approach to per-
form inferences, and the maximum likelihood method is employed to estimate
the model parameters. We also propose residuals for the link models to assess
departures from model assumptions as well as to detect outlying observations.
Additionally, the local influence method is discussed, and the normal curvatures
for studying local influence are derived under two specific perturbation schemes.
Finally, an application to the coca leaf cultivation in Peru is considered to show
the usefulness of the proposed link models in practice.

Keywords: Binary response model; Maximum likelihood estimation; Parametric
link function; Symmetric distributions.

1 New link functions

In the generalized linear model setup, we have that

µi = F (ηi), i = 1, . . . , n, (1)

where F (·) is a CDF and its inverse F−1(·) is typically called link function. The
link function is symmetric when F (·) is a CDF of a symmetric distribution.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
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1.1 Power symmetric and reciprocal power symmetric
distributions

We have the following definition.

Definition 1 A univariate random variable T is said to have a power distribu-
tion with location, scale and shape parameters given by ξ ∈ IR, φ > 0 and λ > 0,
respectively, if its CDF has the form

Fp(t) = G

(
t− ξ
φ

)λ
, t ∈ IR,

where G(·) is any absolute continuous CDF. The standard power distribution
arises when ξ = 0 and φ = 1, and its CDF is Fp(z) = G(z)λ, for z ∈ IR.

In the above construction, the function G(·) is refereed to as the baseline CDF.
We can also define the (standard) reciprocal power distribution by considering
Frp(z) = 1 − G(−z)λ, for z ∈ IR. From the above definition, it is evident that
we can introduce several new class of distributions. In this paper, we will assume
that the baseline CDF G(·) belongs to the symmetric family of distributions in
its standardized form (Fang et al., 1990). In this case we can express Frp(z) = 1−
[1−G(z)]λ. Therefore, we have the standard power symmetric (PS) distribution
as well as the standard reciprocal power symmetric (RPS) distribution.
The PS distributions are skewed to the right if λ > 1 and to the left if 0 < λ < 1,
and the RPS distributions are skewed to the left if λ > 1 and to the right if 0 <
λ < 1. The additional shape parameter λ introduces a great degree of skewness
to the distribution. In fact, let us consider the definition of skewness measure in
terms of the mode for the PS and RPS distributions; that is, if Z ∼ PS(λ), then
γp = 1− 2Fp(M) = 1− 2G(M)λ, where M is the mode of Z; and if Z ∼ RPS(λ),
it follows that γrp = 1− 2Frp(N) = 2G(−N)λ − 1 = −γp, where N = −M is the
mode of Z. Clearly, −1 ≤ γp, γrp ≤ 1. Additionally, note that small values of λ
yield values of γp and γrp near −1 and 1, respectively. On the other hand, γp and
γrp are close to 1 and −1, respectively, for high values of λ. In short, γp → −1(1)
as λ → 0+(∞), whereas γrp → −1(1) as λ → ∞(0+). Values of this skewness
measure near 1(−1) will indicate extreme right (left) skewness. Therefore, we can
have a high degree of skewness (positive as well as negative) for the PS and RPS
distributions depending on the values of the additional shape parameter λ. Thus,
asymmetric link functions constructed from the PS (RPS) distributions can be
very skewed. Finally, we have that γp = γrp = 0 when λ = 1, as expected.

1.2 The PS and RPS link models

The first class of asymmetric links uses Fp(ηi) (i.e. the PS distributions) for F (·)
in (1), that is,

µi = Fp(ηi) = G(ηi)
λ, i = 1, . . . , n. (2)

When F (·) in (1) involves Frp(ηi) (i.e. the RPS distributions) we have the second
class of asymmetric links given by

µi = Frp(ηi) = 1−G(−ηi)λ, i = 1, . . . , n. (3)

The additional parameter λ > 0 characterizes the skewness of the link functions
associated with models (2) and (3). For λ = 1 the models (2) and (3) are the same
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and, in addition, the link function is symmetric. These models include commonly
used symmetric links such as the probit and logit links. They also include the
symmetric robit (Student-t) link as a special case. Notice we are considering
wide classes of link functions for binary response data, which contains several
symmetric (and asymmetric) links as special cases.
As expected, the probability µi approaches zero at the same rate as it approaches
one when λ = 1, since in this case the link function is symmetric. When 0 < λ <
1 (λ > 1), the probability µi approaches one (zero) at a faster rate than it
approaches zero (one) for the PS models. On the other hand, the probability
µi approaches one (zero) at a faster rate than it approaches zero (one) when
λ > 1 (0 < λ < 1) for the RPS models. In short, the additional parameter λ can
produce a considerable degree of skewness to the links, since it controls the “tail”
behaviour of the links.
Finally, the parameter λ may be named as “acceleration” parameter for the PS
link models, in the sense that it will accelerate the point (value) of the linear
predictor at which the slope power of the curve becomes greatest. In contrast,
this parameter may be named as “deceleration” parameter for the RPS link
models, once now we have an opposing behavior.

2 Application to real data

We have a study on eradication of the coca cultivation in Peru, and we consider
the following regression models for modeling these data:

µi = Fp(ηi) = G(ηi)
λ, µi = Frp(ηi) = 1−G(−ηi)λ,

where µi = Pr(Erad = 1), and

ηi = β1 + β2Pculti + β3Cpari + β4Pccoi + β5Polevi,

for i = 1, . . . , 1947. We shall consider several link functions to model these binary
data, which are based on the Normal, Logistic, Laplace, Cauchy, Student-t and
PE distributions. The degrees of freedom ν > 0 in the Student-t and PS(RPS)-
Student-t link models as well as the value of k ∈ (−1, 1] in the PE and PS(RPS)-
PE link models were obtained by using the profile log-likelihood procedure We
also include the complementary log-log (cLogLog) and log-log (LogLog) link func-
tions given by log[− log(1− µi)] = ηi and − log[− log(µi)] = ηi, respectively, for
the sake of comparison.
To compare the different regression models, we consider selection criteria on the
candidate models; that is, the value of the log-likelihood function evaluated at the
ML estimates (̂̀), and the AIC (Akaike Information Criterion), BIC (Bayesian
Information Criterion) and HQIC (Hannan-Quinn Information Criterion) crite-
ria (see Table 1). According to the AIC, BIC and HQIC criteria, the PS- and
RPS-Student-t regression models outperform all regression models and therefore
should be preferred, indicating that these regression models may be suitable to
describe these binary data.
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TABLE 1. AIC, BIC, HQIC and ̂̀ for the fitted models.

Link model ̂̀ AIC BIC HQIC

Normal −1223.03 2456.05 2483.92 2466.30
Logistic −1222.85 2455.71 2483.58 2465.96
Laplace −1223.56 2457.12 2484.99 2467.37
Cauchy −1223.30 2456.61 2484.48 2466.85
Student-t (ν = 2.36) −1222.73 2455.47 2483.34 2465.71
PE (k = 0.42) −1223.28 2456.55 2484.42 2466.80
PS-Normal −1222.95 2457.90 2491.35 2470.20
PS-Logistic −1222.44 2456.87 2490.32 2469.17
PS-Laplace −1220.75 2453.50 2486.94 2465.79
PS-Cauchy −1220.66 2453.33 2486.77 2465.62
PS-Student-t (ν = 0.25) −1218.22 2448.45 2481.89 2460.74
PS-PE (k = −0.2) −1219.81 2451.62 2485.06 2463.92
RPS-Normal −1222.85 2457.70 2491.15 2470.00
RPS-Logistic −1222.65 2457.31 2490.75 2469.60
RPS-Laplace −1221.09 2454.18 2487.62 2466.47
RPS-Cauchy −1221.30 2454.60 2488.04 2466.89
RPS-Student-t (ν = 0.19) −1218.20 2448.40 2481.84 2460.70
RPS-PE (k = −0.34) −1219.85 2451.69 2485.14 2463.99
cLogLog −1223.10 2456.20 2484.07 2466.45
LogLog −1224.50 2459.00 2486.87 2469.25
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Abstract: We discuss in this paper the use of wavelet regression methods in
generalized linear models setups. The use of such a non-parametric link func-
tion would be interesting in practice for several reasons. The first one is that
researchers in different areas are used to the employment of the paradigm of gen-
eralized linear models. The second one is that researchers are more interested in
the set of explanatory variables which adequately predicts the responses than on
the specific form on which this relationship happens. The correct specification of
the link function is paramount to a good fit. The wavelets can be employed in
three ways: (i) by helping choosing the link function from a pre-specified set of
fundtions; (ii) by providing a fully non-parametric estimation of the mean; and
(iii) by providing a non-parametric link function.

Keywords: Non-parametric link function; non-linear regression;semi-parametric
regression

1 Introduction

The generalized linear models (GLMs) represent one of the most important de-
velopments in statistical theory over the past several decades[6]. A GLM is char-
acterized by three terms. The first is the random component with the response
variable belonging to the exponential family of distributions. The second term
is the systematic component represented by a linear predictor that includes the
explanatory variables. Finally, the third term is the link function which connects
the linear predictor to the response variable mean.
An important step in the GLM model employment is the choice of the link func-
tion. This function represents the mathematical structure or the regression equa-
tion that relates the random component to the linear predictor in this class of
models. Link misspecification can lead to several problems on a GLM applica-
tion, such as bias in the regression parameters and in the mean response estimates
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[2, 3]. A methodology which finds an appropriate link function for a GLM is still
an open problem. Techniques have been proposed to evaluate if a predetermined
link function is adequate for a fitted GLM model [1, 4, 7]. Most of the current
techniques are straightforward adaptations from linear models’ techniques.
Wavelets have been developed in functional analysis as bases for L2(R), as well as
some of its subspaces. These classes of functions contain a large number of diverse
elements, which makes them suitable for broad theoretical and numerical appli-
cations. For instance, they form unconditional bases for some large functional
classes, which leads to optimal estimators and tests [8].

2 The problem

A Multi-Resolution Analysis (MRA) in L2(R) is a nested sequence of closed
subspaces, {Vj}j∈Z with four basic properties: (i) Hierarchy - Vj ⊂ Vj+1 ⊂
L2(R) ∀j ∈ Z; (ii) Dense Union and Trivial Intersection -

⋃
j∈Z Vj = L2(R)

and
⋂
j∈Z Vj = {0}; (iii) Self-Similarity - m(2jt) ∈ Vj ⇔ m(t) ∈ V0 ∀j ∈ Z;

and (iv) Natural Basis - ∃φ ∈ V0 so that T kφ(t) = φ(t − k)∀k ∈ Z spans V0,
i.e., V0 =

{
m ∈ L2(R) | f(t) =

∑
k∈Z ckφ(t− k)

}
for some appropriate sequence

{ck}k∈Z , and {φ(· − k), k ∈ Z} is called an orthonormal basis of V0. By mirror
filtering another function, ψ, can be built, so that any function m ∈ L2(R) can
be written in L2-sense as:

m(t) =
∑
j∈Z

∑
k∈Z

βj,kψj,k(t) =
∑
k∈Z

αj0,kφj0,k(t) +
∑

j≥j0∈Z

∑
k∈Z

βj,kψj,k(t),

for an arbitrary j0, where φj(t) = 2j/2φ(2jt − k) j ∈ Z k ∈ Z and {ψj,k(t) =

2
j
2ψ(2jt− k), j ∈ Z, k ∈ Z}[5].

Let Y = {y1, . . . , yn} be a set of observations that represents a random sample of
the response variable Y . Suppose a set of explanatory variables X1, . . . , Xp and

η = g(µ) = Xβ, (1)

where X is the design matrix formed by the observed values of the explanatory
variablesX1, X2, . . . , Xp, β is vector of parameters, η is the vector of linear predic-
tors, µ is the vector of means of Y , i.e., with η=(η1, . . . , ηn)T , µ = (µ1, . . . , µn)T

and β=(β0, . . . , βp)
T . g(µ) is the link function, which connects the response vari-

able mean with the explanatory variables. If Y is continuous, a few functions
available for a GLM are: the identity, logarithmic, inverse, power, among oth-
ers.
We propose wavelets in three ways. The first procedure identifies the most ap-
propriate link function, g, for a GLM from a set of pre-specified link functions.
The second is a purely non-parametric wavelet regression without any paradigm
related to GLM for the estimation of the mean function m of Y . Finally the third
setup employs a wavelet estimation of the link function g within the GLM model.
The proposals are illustrated by simulation studies and by their application on
three data sets. The data sets present problems on insurance, measurements on
babies and SONAR signal analysis. The Monte Carlo simulation studies with
different sample sizes, random components, true link functions and criteria se-
lection are considered and the overall and relative performances of each proposal
are recorded.



3 Simulation Studies

We perform an experimental study to evaluate the performance of the wavelet
proposals. The artificial data sets consider a predefined relationship between the
response variable Y and the linear predictor η = Xβ, where X represents a set
of explanatory variables. The synthetic data sets are generated according to 30
different configurations, taking into account 3 sample sizes (128, 256, 512), 3
probability distributions for the response variable Y (Gaussian, gamma, inverse
Gaussian) and 4 link functions (identity, logarithm, inverse, 1/µ2). Note that the
1/µ2 link function was considered only in the inverse Gaussian model. We con-
sidered one explanatory variable X, uniformly distributed in (0.5, 1.5)]. A Monte
Carlo simulation was considered for each configuration with 1000 replications.
At each time, we generate an artificial data set according to a predefined GLM.
The WM and other eligible GLMs are fitted to this data set. We then compare the
performances of the three procedures. On the first wavelet proposal, we calculate
the frequency of correct classification (choice) of link functions. This was never
smaller than 85% in our simulation studies. The link functions log and inverse
exhibited a better true classification rate when compared with identity link func-
tion. The WM demonstrated a better performance in the random components
gamma and inverse Gaussian, when compared with the Gaussian distribution.
These results highlight that the WM can be used for choosing an appropriate
link function when the response variable presents an asymmetric distribution
and a nonlinear relationship between the variables.
For the non-parametric and semi-parametric proposals, performance of the para-
metric correct link function is superior, specially for smaller samples. This, how-
ever, depends on the initial correct link function specification, which is not ex-
pected in many situations. Moreover, non-linear and segmented linkages are true
in many real-life situations. In these latter cases the non-parametric and the
semi-parametric are superior to the parametric, with a clear advantage for the
semi-parametric in estimation and prediction precision.

4 Concluding remarks

We propose the use of wavelets in generalized linear model setups. The percent-
age of true link function classification is higher than 85% but for one configu-
ration. Moreover, this degree of accuracy is based on very parsimonious wavelet
representation. If the true link function is compared to the non-parametric and
semi-parametric approaches, it will be superior to them, as expected. However,
the advantage the fully parametric method has depends on the right choice of the
link function which is not necessarily true. Moreover, for many interesting appli-
cations the true nature of the link function is not parsimoniously represented by
any set of link functions. For these more realistic situations wavelets may be the
only efficient choice.
We believe that wavelets may be useful on GLM setups for the purposes here
specified but further research will yield other ways in which the combined use of
wavelet representation and generalized linear models will provide the practitioner
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with a very reliable and efficient tool.
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Abstract: When using univariate models, goodness-of-fit can be assessed through
many different methods, including graphical tools such as half-normal plots with
a simulation envelope. This is straightforward due to the notion of ordering of
a univariate sample, which can readily reveal possible outliers. In the bivariate
case, however, it is often difficult to detect extreme points and verify whether a
sample of residuals is a reasonable realisation from a fitted model. We propose
a new framework, implemented as the bivrp R package, available on the Com-
prehensive R Archive Network. Our framework uses the same principles of the
simulation envelope in a half-normal plot, but as a simulation polygon for each
point in a bivariate sample.

Keywords: bivrp package; Bivariate models; Goodness-of-fit; Graphical meth-
ods.

1 Introduction

For both univariate and multivariate models, it is possible to obtain summary
goodness-of-fit statistics to compare model fits, such as information criteria (e.g.
Akaike and Bayesian) and adjusted R-squared values. However, while these statis-
tics are useful for comparing models fitted to the same data, they cannot be used
to inform on the suitability of a particular model to the data. In this case, diagnos-
tic analyses play a significant role. For univariate models, a possible alternative
is the use of half-normal plots with simulation envelopes (Moral et al., in press).
Here, we extend this approach to bivariate models. Our proposal makes it pos-
sible for one to graphically examine whether the observed data is a plausible
realisation of the fitted model.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).



68 Bivariate residual plots with simulation polygons

2 Methodology

Let yi = (y1i, y2i)
T be a vector of bivariate responses to which a model is fitted.

Also, let ri = (r1i, r2i)
T be the vector of bivariate model diagnostics (e.g. residu-

als, Cook’s distances, leverages). Then, a very basic and straightforward way of
ordering the bivariate diagnostics is by calculating the angle

αi = tan−1

(
r2i

r1i

)
they form with the origin (see Figure 1(a)), to obtain the ordered diagnostics
r(i) = (r1(i), r2(i))

T. Here, the ordering is done not to define extremes, but to aid
in the simulation process.

●
●

●

●

●

●

●

●

●●

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4
6

(a)

Residuals 1

R
es

id
ua

ls
 2

12 3
4 5 6

7

8

9
10

●
●

●

●

●

●

●

●

●●

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4
6

(b)

Residuals 1

R
es

id
ua

ls
 2

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4
6

(c)

Residuals 1

R
es

id
ua

ls
 2

●
●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4
6

(d)

Residuals 1

R
es

id
ua

ls
 2

●
●

●

● ● ●

●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

(e)

Residuals 1

R
es

id
ua

ls
 2

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

(f)

Residuals 1

R
es

id
ua

ls
 2

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

FIGURE 1. The process of constructing the bivariate residual plot with simula-
tion polygons .

We then simulate 99 bivariate response variables ysi = (ys1i, y
s
2i)

T, s = 1, . . . , 99
from the fitted model, using the same model matrices, error distribution and
fitted parameters, and refit the same model to each simulated sample, obtaining
the same type of model diagnostics rs(i) = (rs1(i), r

s
2(i))

T, ordered by the angles
they form with the origin. We have, for each bivariate diagnostic r(i), 99 simulated
bivariate diagnostics rs(i) (see Figures 1(b) and (c)), forming the whole cloud of
simulated diagnostics (see Figure 1(d)). We then obtain the convex hulls of each
set of the s sets of points and obtain a reduced polygon whose area is 95% of the
original convex hull’s area, forming the simulated polygon (see Figure 1(e)). The
points are then connected to the centroids of their respective simulated polygons
and, if they lie outside the polygons, they are drawn in red (see Figure 1(e)). For
the final display, the polygons are erased so as to ease visualization (see Figure
1(f)).
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3 Example and discussion

We illustrate our approach with a simple simulated example with a moderate
sample size n = 80.. Let Y1i and Y2i, i = 1, . . . , 80, be two normally distributed
correlated random variables. We may write

Yi =

[
Y1i

Y2i

]
∼ N2

([
µ1i

µ2i

]
,

[
σ2

1 σ12

σ12 σ2
2

])
, (1)

which yields, marginally,

Yji ∼ N(µji, σ
2
j ), j = 1, 2, (2)

with Cov(Y1i, Y2i) = σ12. Hence, the marginal distributions remain unaltered
regardless of σ12, which when equal to zero implies independence between the
random variables.
We supposed a simple linear regression of the form µji = βj0 + βj1xi between
both variables and a covariate xi, which ranges from 1 to 10 in equal steps of
approximately 0.114, giving 80 distinct xi values. We fixed the true parameter
values as β10 = 2, β11 = 0.4, β20 = β21 = 0.2, σ2

1 = 2, σ2
2 = 3, and a negative

covariance σ12 = −1.7.
We simulated the data in R (R Core Team, 2016) using the function rmvnorm

from the package mvtnorm (Genz and Bretz, 2009) with the seed fixed as 2016
to allow for reproducibility. We then fitted the bivariate model using the BFGS
algorithm implemented in the function optim twice, first estimating the covari-
ance σ12 and then the second time fixing σ12 = 0, which is the same as fitting
two separate linear regressions. The parameter estimates were virtually the same
for both approaches, with the obvious exception of the covariance estimate. The
contribution to the likelihood when estimating the covariance was 43.33 on 1 de-
gree of freedom, which is highly significant, giving evidence that σ12 is different
from zero, as expected.
We then proceeded to produce the bivariate residual plot with simulation poly-
gons for both model fits. The raw residuals may be defined as

roji = yji − µ̂ji, µ̂ji = β̂j0 + β̂j1xi. (3)

We observe that fitting the models independently for each variable yields a poor
model fit, with many points lying outside of the simulation polygons when com-
pared with the joint model (see Figure 2). We observe that because of the neg-
ative correlation between the variables the expected two-dimensional pattern of
the scatterplot of residuals is actually an ellipse (Figure 2(b)) instead of a circle
(Figure 2(a)). Hence, even though when inspecting each variable marginally it
might seem that the behaviour of the residuals is as expected by the 99 simu-
lations, this is not true when looking at the bivariate nature of these residuals.
Here, our proposed approach worked well in identifying these bivariate patterns
and was appropriate to aid in model selection and in identifying possible outliers.
We do not rule out other forms of diagnostic checking, either analytical or
graphical. Our approach represents a potentially helpful framework for assess-
ing goodness-of-fit for bivariate models.

Acknowledgments: Special Thanks to FAPESP (proc no. 2014/12903-8 and
2014/03310-3).
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FIGURE 2. Diagnostic plots for the bivariate normal simulated data using raw
residuals, while assuming there was no covariance between the two random vari-
ables (a) or estimating this covariance with a joint model (b). Filled red points
are outside of their respective simulated polygon; there are (a) 45 and (b) 6 points
outside of the simulated polygons out of 80 total points.
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Abstract: Variance component models are an extension for the generalised linear
models for group-wise data. The gradient test is an asymptotic likelihood-based
test with chi-square as reference distribution and its statistic does not make
use of any matrix operation. We motivate this work by a real data application.
We propose a bootstrap simulation for checking the accuracy of the chi-square
approximation for the gradient test in comparison to the likelihood test. We also
show numerical confidence regions based on the inversion of the test.

Keywords: asymptotic test; random effects; random intercepts

1 Motivation data and the model

We take the data from an experiment given by Markussen (2017). It is of interest
to investigate how the continuous measurement of redness of pork meat after
slaughter is affected by the storage (in light or darkness), by the time (1, 4 or
6 days) and by the breed (old and new, 10 pigs each). Six chops were taken
from each pig and allocated according to the scheme shown on Table 1. This

TABLE 1. Factor allocation [source: Markussen (2017)].

Storage 1 days 4 days 6 days

Dark chop 1 chop 2 chop 3
Light chop 4 chop 5 chop 6

gives 2 × 10 × 6 = 120 samples of pork chops in total. Given that the response
variable is strictly positive, we consider that the redness measurements yijk of a
given replicate corresponding to the ith breed, the jth storage and the kth time
are independently distributed as IG(µijk|Z, φ) with means µijk|Z and a fixed
dispersion φ. We also assume the linear predictor is linked to µijk|Z as

µijk|Z = Z + αi + τj + βk i = 1, 2, j = 1, 2, k = 1, 2, 3 (1)

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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where Z is a random intercept representing the base level for each pig, α1 =
τ1 = β1 = 0 and (1) is one of the configurations of the variance component model
defined in Aitkin et al (2009). Because Z is an unknown random variable, the EM
approach in conjunction with the maximum likelihood method can be applied for
parameter estimation. We assume that the distribution of Z is unspecified for all
the model adjustments and for estimation purposes we used the Nonparametric
maximum likelihood (NPML) implementation of Einbeck and Hinde (2006).

2 The gradient test

Consider including in (1) the interaction between storage and time, i.e. test-
ing the null hypothesis H0 : ((τβ)22, (τβ)23)> = 0. Let ` be the total log-
likelihood and θ = (θ>1 ,θ

>
2 )> the vector of fixed effects parameters where θ1 =

((τβ)22, (τβ)23)> is our vector of parameters of interest and θ2 is a vector of
nuissance parameters. The unrestricted MLE for θ is θ̂ = (θ̂>1 , θ̂

>
2 )> and the

restricted to the null hypothesis is θ̃ = (θ0>
1 , θ̃>2 )>, where θ0>

1 is an arbitrary
vector (which, in our application is equal to 0). From now on the top accents
∧ and ∼ represent the MLE unrestricted and restricted to the null hypothe-
sis, respectively. Let U = ∂`/∂θ = (U>1 ,U>2 )> the respective partitioned score
vector. Terrell (2002) proposed the gradient statistic for testing H0 denoted as
ξT = Ũ>1 (θ̂1 − θ0

1). Note that ξT does not have any matrix computation in its
formula which turns to be its main advantage. In theory, the reference distribu-
tion for ξT is χ2

q where q denotes the dimension of θ1. Because of that, ξT is
comparable to the ξLR, the likelihood ratio statistic. The gradient test statistic
formula for generalised linear models has been defined by Marques da Silva Junior
et al (2016) and can be extended for variance component models. Table 2 shows
the estimates for the test statistics, the chi-squared p values and the equivalent
bootstrap version.

TABLE 2. Likelihood ratio and gradient statistics for the null hypothesis. The
p values were computed using the chi-square distribution with two degrees of
freedom and p values∗ uses empirical bootstrap to reproduce the reference dis-
tributions.

likelihood ratio gradient

Statistic 8.794883 10.25232
p value 0.01230879 0.005939328
p value* 0.01880188 0.00730073

3 Bootstrap and confidence intervals

The main purpose of the bootstrap experiment here is to verify how accurate
is the chi-square approximation for the test statistic. We propose therefore a
bootstrap in two levels taking the model under null hypothesis as true. In the
first level we resample the estimated random intercepts obeying the respective
estimated probabilities and in the second level we generate responses given the
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new intercepts. Then the model in (1) is fitted and both likelihood ratio and
gradient statistics are computed. We replicate the procedure 9999 times and the
results can be seen in Figure 1. We can produce confidence regions for θ1 inverting
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FIGURE 1. Bootstrap samples of the likelihood ratio statistic (left) and gradi-
ent statistic (right) compared to the theoretical χ2

2 for the test with hypothesis
H0 : (τβ)22 = (τβ)23 = 0.

the gradient test however there is no analytic procedure so far. Numerically,
we took a grid of two sequences of 51 values for each (τβ)jk in the interval

(τ̂β)jk ± 3ŝe((τ̂β)jk). Then, we fit the model in (1) with (τβ)jk as offset for each
position of the grid and compute ξT for H0. Therefore, the region consists on the
values of θ1 that satisfy ξT < χ2

2(1−α), where 1−α is the confidence level. The
same procedure has been done for ξLR. The Figure 2 shows the contour maps for
the 90% confidence regions.
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FIGURE 2. 90% confidence regions in black for (τβ)22 and (τβ)23 based on the
numerical inversion of the likelihood ratio test (left) and the gradient test (right).
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4 Discussion

The gradient test is an alternative to the classic likelihood ratio test for variable
selection on variance component models. Also, the gradient statistic is of simple
computation as it does not require matrix operations in its formula. According to
our bootstrap simulations, the empirical distribution of the gradient statistic has
better approximation to the chi-square than the likelihood ratio statistic. The
confidence region using the inverse of the gradient test has smaller area than the
one which uses the likelihood ratio test for our real data example. In summary, our
results show that the gradient test is preferable for variance component models.

Acknowledgments: We wish to thank J. Einbeck for the discussions and
helpful comments. We gratefully acknowledge grant no 9622/13-6 from CAPES
foundation through Brazil’s Science Without Borders Program.
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Abstract: Forecasting mortality can be achieved by parametric models, Lee-
Carter variants and smoothing approaches. All of these methods either impose
rigid modeling structures or produce implausible outcomes. In this paper, we
propose a novel approach that combines well established smoothing model as
P -splines and demographic prior information. Specifically, we constrain future
smooth mortality patterns to lay within a range of reasonable age-profiles and
time-trends, both computed from observed patterns. We enforce these shape con-
straints by an asymmetric penalty approach on forecast mortality. We illustrate
the proposed approach on England & Wales males.

Keywords: Mortality forecast; Smoothing; Demographic constraints; Age-Time
patterns; Asymmetric penalty.

1 Introduction

Modelling and forecasting mortality is crucial in epidemiology and population
studies as well as in the insurance and pensions industry. In the last few decades,
several methodologies have been suggested.
Currie et al. (2004) proposed a model based on two-dimensional P -splines to
smooth mortality over age and time. Despite P -splines outperforming all com-
petitors in modeling mortality, this approach suffers from all the issues that
a purely data-driven approach reveals when employed for forecasting purposes.
Forecast mortality simply follows estimated trends in a slavish manner and mor-
tality structure over age and time is not fully considered in the forecast values.
Unreasonable trends from a demographic perspective could consequently emerge.
This paper aims to enhance two-dimensional P -splines, incorporating demo-
graphic knowledge to allow for abetter performance in forecasting mortality
trends.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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2 Data and model

Suppose that we have mortality data, deaths, and exposures to the risk of death,
arranged in two matrices, D = (dij) and E = (eij), each m×n1, whose rows and
columns are classified by age at death, a, m × 1, and year of death, y1, n1 × 1,
respectively.
We assume that the number of deaths dij at age i in year j is Poisson distributed
with mean µij eij . The value of µij is commonly named force of mortality and
its estimation is the object of all mortality model. Forecasting mortality aims to
reconstruct trends in µij for n2 future years, y2, n2 × 1.
In the following we will illustrate the method for England & Wales, males, ages
0-100, years 1960-2013, aiming to forecast up to 2050 (HMD, 2017).
By arranging data as a column vector, that is, d = vec(D) and e = vec(E), we
model our Poisson death counts as follows: η = ln(E(d)) = ln(e)+Bα , where B
is the regression matrix computed as a Kronecker product of B-spline bases over
the two dimensions: B = By1 ⊗Ba. The coefficients vector α are estimated by a
penalised version of the iteratively reweighted least squares (IRWLS) algorithm.
In the original paper by Currie et al. (2004), forecasting is treated as a missing
value problem, and data and B-spline bases are augmented as follows:

Ĕ = [E : E2] , D̆ = [D : D2] , B̆ = [By1 : By2 ]⊗Ba ,

where D2 and E2 are filled with arbitrary future values. If we define a weight
matrix V :

V = diag(1(m×n1) : 0m×n2) ,

we can adapted the penalised IRWLS algorithm as follows

(B̆TV W̃ B̆ + P )α̃ = B̆TV W̃ z̃ , (1)

where a difference penalty P enforces smoothness behaviour of mortality over
both age and years.
Outcomes from this approach are portrayed as dashed lines in Figure 2. It is
clear that, given the optimal amount of smoothness selected by BIC, a plain
extrapolation of past trend via the penalised coefficients is not satisfactory.
The aim of this paper is to incorporate prior demographic knowledge by enforcing
future mortality to follow data-driven age-profiles and reasonable changes over
time. Operating at the shape level, we first compute the derivatives of the fitted
linear predictor over the observed years. This can be done by a linear combination
of a modified version of the B-splines over the two domains and the estimated
coefficients. In formulas:

∂

∂a
η = (By1 ⊗Ca) α̂ = Dy1

a α̂,
∂

∂y1
η = (Cy1 ⊗Ba) α̂ = Da

y1 α̂ ,

where, for instance, the matrix Ca is given by

Ca =
1

h

[
Bq−1
k (a)−Bq−1

k−1(a)
]

with h, q and k being the knot-distance, degree and positions of Ba.
Figure 1 presents the boxplots of the derivatives of the mortality patterns for
each age over both ages and years. The idea is to incorporate this information
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FIGURE 1. Boxplots for each age of the derivatives with respect to ages (left)
and years (right). England & Wales, males, ages 0-100 years 1960-2013.

in the model for constraining future mortality to lay within a range plausible
age-patterns and time-trends.
Due to space restriction, we describe the model for the age-pattern. Let us denote
by δaL and δaU the 99% confidence intervals of the derivatives with respect to ages,
and by gaL = 1n1+n2 ⊗ δaL the repetition of these values over both dimensions.
We can enforce our shape constraints by adding two asymmetric penalties within
the system described in (1) (Bollaerts et al., 2006):

(B̆TV W̃ B̆ + P + P a
L + P a

U )α̃ = B̆TV W̃ z̃ + paL + paU . (2)

As example, the penalty terms for the lower bounds are given by

P a
L = κDy1+y2 T

a diag(s · vaL)Dy1+y2
a

paL = κDy1+y2 T
a diag(s · vaL) gaL

where

vaL =

{
0 if Dy1+y2

a α̃ > gaL
1 if Dy1+y2

a α̃ < gaL
,

and s is a 0/1 vector equal to 1 when the constraint is to be applied (future
years). The size of κ regulates how strictly the constraints are enforced. In this
paper, we chose κ = 104. Similar reasoning is applied for the rate-of-change over
years.

3 Results

Figure 2 presents the outcomes of the proposed model. For comparison we add
the outcomes from a plain P -spline approach and a smooth Lee-Carter variant
(Delwarde et al., 2007). Our proposed approach outperforms Lee-Carter model
in fitting observed data and it provides reasonable outcomes in future years.
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FIGURE 2. Actual, modelled and forecast death rates (log-scale) over ages for
selected years (left) and over years for selected ages (right) by the proposed model
as well as by plain P -spline approach and a smooth Lee-Carter variant. England
& Wales, males, ages 0-100 years 1960-2013, forecast up to 2050.
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Abstract: The phenomenon of monotone likelihood is observed in the fitting
process of a Cox model when the likelihood converges to a finite value while at
least one parameter estimate diverges to infinity. A penalty solution suggested by
Heinze and Schemper (2001) leads to finite parameter estimates by means of pe-
nalized maximum likelihood estimation. In this paper, we explore other penalties
for the partial likelihood function in the flavor of Bayesian prior distributions.
This work was motivated by a real situation involving a melanoma skin data set.

Keywords: Firth correction, MCMC, Partial likelihood, Survival analysis.

1 Introduction

The proportional hazards model (PHM) is probably one of the most important
statistical methods for the analysis of censored data. When fitting the PHM to
some data sets, one may observe a phenomenon known as monotone likelihood or
separation (Bryson and Johnson, 1981). The monotone likelihood tends to occur
associated to one category of a categorical covariate. In this sense, the larger the
number of dichotomous regressors included in the model, the higher is the chance
of monotone likelihood.
This paper was motivated by the analysis of a melanoma data set (Cherobin, et
al., 2017). Melanoma is a neoplasm that shows high mortality when diagnosed
in advanced stages. The PHM analysis was used to assess factors associated
with time until metastasis occurrence. However, presence of mitosis, one of most
important covariate, had lack of metastasis in those tumors without mitosis in
the histologic exam; this means the occurrence of monotone likelihood.
A solution suggested by Heinze and Schemper (2001) is based on the procedure
of Firth (1993). This method produces finite parameter estimates by means of
penalized maximum likelihood estimation. Penalization is a very general method

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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of stabilizing estimates, which has both frequentist and Bayesian rationales. Firth
method is a well known example of penalty which can be derived from a Jeffreys
type of prior in Bayesian inference. However, this approach has some drawbacks,
especially biased estimators and high standard errors (Greenland and Mansour-
nia, 2015).
The goal of this paper is to propose and compare others penalties for the partial
likelihood function in the flavor of prior distributions in the Bayesian context.

2 Notation and Cox Regression Model

The Cox regression model uses the exponential formulation for the hazard func-
tion:

λ(t) = λ0(t) exp(βTx), (1)

in which λ0(t) is a baseline hazard function (an unknown non-negative function
of time), β is a p × 1 vector of unknown parameters (to be estimated), and
x = (x1, x2, . . . , xp)

T is a covariate vector.
The estimation of coefficients β in Eq. (1) is based on the partial log-likelihood
function:

l(β) = logL(β) =

n∑
i=1

δi

βTxi − log

 ∑
j∈R(ti)

exp(βTxj)

 , (2)

in which R(ti) = {k : tk ≥ ti} is the risk set at time ti, δi is the failure indicator
(δi = 1 means failure and δi = 0 means censoring), and xi = (xi1, xi2, . . . , xip)

T

corresponds to the covariate row vector for the i-th individual. The Maximum
Partial Likelihood Estimator (MPLE; β̂) of β is obtained by maximizing Eq. (2).
The Firth method for bias reduction estimates β as the maximum of the l(β) =
logL(β) penalized by r(β) = log |I(β)|−1. That is,

l∗(β) = l(β) + (1/2) log |I(β)|.

The augmenting term 1/2 log |I(β)| is the log of a Jeffreys prior, apart from a
constant, and thus the maximizer of l∗(β) is the posterior mode given this prior.
Other penalties structures have been proposed recently by Greenland and Man-
sournia (2015). In this paper, the main interest is to evaluate the properties of
the Jeffreys prior and propose other priors in the monotone partial likelihood
situation.

3 Prior Distributions and Bayesian Approach

Partial likelihood modeling version based on Eq. (2) can be used for a Bayesian
analysis. The Bayesian inference using the Cox’s partial likelihood is the topic of
Sinha et al. (2003). According to the authors the regression coefficients can be
well estimated in this situation.
The main focus of our study is to investigate the impact of different prior spec-
ifications for the coefficients associated with the covariates included in the Cox
regression model used to fit a data set configured with the monotone likelihood
scenario; the following cases are investigated:
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• βi ∼ N(m, v), with mean m variance v, for i = 1, . . . , p. Typically, one may
choose m = 0 and v > 0 small/large to explore informative/vague initial
uncertainty.

• βi ∼ Log-F(l1/2, l2/2) with l1 and l2 being the degrees of freedom of the
original F distribution. Higher variability is associated with small values of
l1 and l2.

The joint posterior distribution of β, given the observed time points and covari-
ates, does not have a closed form, i.e., a proper probability density cannot be
identified via Bayes’ rule in this case. Markov Chain Monte Carlo (MCMC) algo-
rithm called Gibbs Sampler methods are required to sample from this unknown
target distribution.

4 Melanoma Data Revisited

The prognostics factors under consideration are: (i) Gender β2 (Female); (ii) His-
tological Type (HT ) with the following levels β31 (Nodular), β32 (Acral lentigi-
nous) and the extensive malign+superficial spreading level assumed as reference;
(iii) Breslow index (CB) with levels β41 (1− 4mm), β42 (> 4mm) and (< 1mm)
assumed as the reference level; (iv) Ulceration β5 (Yes). The fifth factor, β1 (mi-
totic rate or mitosis), is the one associated with the monotone likelihood issue.

Standard approach Bayesian approach
Cox Firth N(0, 1) N(0, 5) log-F(1, 1) log-F(2, 2) log-F(9, 9)

β̂1 18.52 2.2214 1.4033 2.7724 3.6909 2.4310 1.0801

β̂2 -0.651 -0.6414 -0.589 -0.6327 -0.6298 -0.6203 -0.531

β̂31 0.984 0.9578 1.0376 1.0770 1.0487 1.0465 0.9940

β̂32 0.236 0.2978 0.1721 0.2332 0.2152 0.2114 0.1488

β̂41 0.110 1.0356 0.7312 1.0612 1.0602 0.9221 0.5263

β̂42 0.184 1.7598 1.4229 1.7823 1.7983 1.6486 1.2067

β̂5 0.699 0.6848 0.7925 0 .7594 0.7332 0.7656 0.7844

TABLE 1. Parameter estimates for the Melanoma data set.

Tables 1 and 2 present the main results. As expected, the estimates for the pa-
rameters not related to the monotone likelihood issue are very similar for all
cases. The most reliable prior distributions, N(0, 5) and log-F(1, 1) (based on
simulation studies, not presented), provide estimates larger than those of Firth
correction, and standard errors slightly smaller than the one for the standard ap-
proach. Indeed, Mitosis is not an important factor according to the Firth method
(z = 2.2214/1.5003) and it is closely significant when using the Bayesian approach
with prior N(0, 5).
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Standard approach Bayesian approach
Cox Firth N(0, 1) N(0, 5) log-F(1, 1) log-F(2, 2) log-F(9, 9)

σ̂1 5131.0 1.5003 0.6956 1.4272 2.3215 1.4229 0.5599
σ̂2 0.356 0.3554 0.3342 0.3537 0.3484 0.3479 0.3149
σ̂31 0.449 0.4511 0.3872 0.4535 0.4436 0.4405 0.3667
σ̂32 0.634 0.6183 0.5334 0.6292 0.6071 0.5871 0.4515
σ̂41 0.692 0.6657 0.4875 0.6625 0.6135 0.5894 0.4021
σ̂42 0.734 0.7147 0.5301 0.6953 0.6505 0.6318 0.4329
σ̂5 0.385 0.3872 0.3574 0.3910 0.3859 0.3756 0.3390

TABLE 2. Standard error estimates for the Melanoma data set.
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Abstract: Spatially balanced sampling is an emerging area in statistical sam-
pling. These designs are popular because they are one way to ensure the selected
sample has spatial coverage over the entire survey area. This feature of spatial
coverage aids in the resultant sample being representative of the population of
interest.
One of the first and the most commonly used spatially balanced design is called
GRTS (Generalized Random Tessellation Stratified sampling) where sample effort
is spread evenly over the target region. The term spread evenly in this context
means having coverage of survey effort over the region. The coverage from GRTS
has a stochastic component rather than a fixed interval, regularly spaced coverage
as in a systematic sampling design.
We have extended the idea of GRTS to a new design called Balances Acceptance
Sampling (BAS). The BAS design allows surveys to be balanced in dimensions
higher then two (n - dimensional space). Until now, most designs have considered
balance in 2-D geographic space. With BAS we can achieve balance in 3-D space,
or in higher dimensions. In some applications these dimensions can be features
other than the spatial measures of geographic location, and the design allows
aspects such as time for repeat surveys to be incorporated into sample balance.

Keywords: Sample; Environmental Sampling; Spatial Sampling.

1 Introduction

Spatial sampling is a broad category referring to designs that incorporate spa-
tial reference in site selection. The purpose of sampling is usually to estimate
a population parameter, such as the mean or total of some characteristic of in-
terest. For example, in environmental applications surveys may be to estimate
the density or abundance of a plant species of interest. In social science applica-
tions the survey may be to estimate household income within a city. Interest in
spatial sampling has increased because of the availability of georeferenced data,
computation capacity, and the overarching need for surveys to be cost-efficient.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
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The gold standard of survey designs is simple random sampling (Cochran 1977),
where selection of individual units in the sample is at random. In the above
examples, individual units could be a quadrat or plot within which plants are
counted, or, individual households from which household income is recorded. A
spatial sample would appear very similar to a simple random sample except that
the selection process would use information on the spatial location of the sample
units (Wang et al. 2012).
A feature of many natural and social systems is that characteristics observed in
one area are likely to be similar to the ones observed in an adjacent area. For
example, the counts of plants in one plot will be similar to the counts in an adja-
cent plot (Grafström et al. 2012, Stevens and Olsen 2004). This is because of the
underlying biotic and abiotic processes that drive the species distribution. In hu-
man populations individual neighbourhoods tend to have more similar household
incomes than are observed among neighbourhoods, because of socio-economic
factors. One way to view this is that there is limited new information provided
from a sample unit that is spatially adjacent to another unit that has already
been measured. This motivated development of survey designs where the sample
is evenly, or near to evenly, spread over the study area. A design that generates
samples that are well-spread over the population is called a spatially balanced
survey design.
There are many different methods of spatially balanced survey designs (Wang
et al. 2012). The design that stimulated the most interest in spatially balanced
sampling, and began the use of this phrase, is Generalized Random Tessellation
Stratified sampling (GRTS), developed by Stevens and Olsen (2003). In this de-
sign an invertible mapping technique is used to transform two-dimensional space
into one-dimensional space. Then, a systematic sample is selected along the lin-
ear representation. Sampling location geo-references are generated from selecting
points at regular intervals in this one-dimensional space (Brewer and Hanif 1983).
The one-dimensional space is then mapped back to the two-dimensional original
space. By maintaining the spatial properties of the original units, the resultant
sample is spatially balanced, with neither no one area being over-represented with
high sample intensity nor under-represented with low sample intensity.

2 Other spatially balanced designs

Local Pivotal Method (LPM) is a design for spatially balanced sampling (Graf-
ström et al. 2012). The method is based on a method introduced by Deville and
Till (1998). The algorithm involves sequentially updating each point’s inclusion
probability. Starting with N points, neighbouring points compete to be included
in the sample. The winning point of each competition has its inclusion proba-
bility increased and the losing point has its decreased. Eventually n points have
inclusion probabilities of one and N-n points have inclusion probabilities of zero.
The resultant sample will have points separated spatially because it is unlikely
two adjacent points will be included in the final sample of size n. The design can
be computationally heavy with large N, and an alternative method, suboptimal
LPM, was suggested for these situations (Grafström et al. 2014), where only a
subset of neighbours are used for the comparison, rather than all possible points.
Balanced acceptance sampling, BAS, (Robertson et al. 2013) is a more recent
design for spatially balanced sampling. The method uses the Halton sequence,
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a quasi-random number sequence (Halton 1960). In two-dimensional geographic
space, Halton points are used to generate the geo-referenced locations of the
sample units (starting from a randomly chosen position in the sequence). The
design uses acceptance/rejection sampling to select sample units. If a generated
sample point is beyond the edge of the sample space the sample unit is rejected,
otherwise it is accepted. The design is straightforward computationally, and has
better spatial balance than the comparable GRTS design (Robertson et al. 2013).
The algorithm can be extended into more than two dimensions (e.g., up to five),
and this is an appealing feature for some survey situations. One application is
for surveys that involve repeat samples of the same population. Environmental
monitoring is an example, where interest is in how population parameters change
over time. This involves repeat visits to the survey area, often on an annual basis.
Other examples can be in social economic surveys where there is interest in how
indicators are changing over time. In these situations, the design can be viewed
as having three dimension, the two dimensional georeferenced space and the third
dimension that is time. Three dimensional spatial balance can be thought of as a
way of ensuring that for any one survey there is spatial balance, and no one area
is excessively over- or under-sampled. In addition, over the course of the repeat
surveys (e.g., annual surveys for 10 years), there is no one area that is excessively
repeatedly over - or under-sampled. Until now many survey designs rely on fixed
intervals between site revisits, and here BAS offers a method for randomising the
repeat interval.

Acknowledgments: Special Thanks to Peter Jaksons and Naeimeh Abi for
their involvemnt in ongoing research, and helpful suggestions.
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Abstract: The forecast of wind speed and subsequent generated power is re-
quired to efficiently balance the electricity grid. Within this paper, a number of
forecast models are applied to generate wind power predictions at a location in
Scotland, UK. Conventional statistical models are compared with more complex
machine learning techniques using all historic data as well as subsets of historic
data. Local on-site variables collected from the turbines as well as Numerical
Weather Predictions (NWP) are utilised within the framework.
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1 Introduction
Once energy is generated it must be used immediately as it cannot be stored
in large quantities. Supply must constantly meet demand to prevent outages.
Therefore, grid operators must plan and balance the network accordingly. Con-
ventional energy sources such as coal and gas can be controlled to a large degree
and grid operators can request that operators of these power plants ramp-up or
ramp-down output in real time. However, for renewable energy sources, the en-
ergy produced cannot be controlled to the same degree, although turbines can
be shut down via curtailment to reduce power output. To help manage the grid,
wind farm operators must supply energy production forecasts so that the grid
can be efficiently balanced.

This paper compares a number of forecasting techniques applied to a 30 megawatt
(MW) wind farm in Scotland, UK. The models are assessed using Mean Absolute
Error (MAE) over a forecast horizon of 24 half hour periods.

2 Data and methodology

The data available for forecasts can be grouped into two categories: on-site histori-
cal data via Supervisory Control And Data Acquisition (SCADA), and Numerical
Weather Prediction (NWP) via an external provider.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
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SCADA data is collected via an automated system at the wind farm location.
Wind speeds, power output and turbine availability are recorded on a 10 minute
resolution then aggregated to half hours. From SCADA, lagged variables are of
use for predictions as are time based variables such as month of the year and
hour of the day which can be used to represent seasonal variation via a Fourier
series.

NWP utilises mathematical models to make atmospheric forecasts via computer
simulation. Forecasts are generally made at nodes which may be close but not at
the wind farm location, at a certain height above the ground. Therefore, NWP
wind speed forecasts may not reflect the actual weather conditions at the site
and so are corrected utilising historical SCADA data via the statistical/machine
learning models outlined in Section 3. Once relationships between the outcome
variable and the NWP explanatory variables are established, the NWP forecasts
and lagged SCADA data can be fed into the model to make predictions in real
time.

NWP forecasts Historical SCADA data Time based

Wind speed Wind speed Time of day

Wind direction Turbine availability Month

Temperature Power
Pressure

TABLE 1. Variables

Note that as future turbine availability is required, wind farm operators must
submit this in advance of any forecasts.

3 Models

A number of methods were selected for model comparisons. Models were trained
on data from the start of 2013 to the end of 2015 using k-fold cross validation
for variable selection. Data from 2016 was used to compute MAEs, as shown in
Figure 2.

– Persistence
– Linear models (LM)
– Linear models with elastic net regularisation (RLM)
– Auto-Regressive Integrated Moving Average (ARIMA)
– Generalised Additive Models (GAM)
– Neural Networks (NN)
– Auto-Regressive Neural Networks (ARNN)

The persistence/naive model is a commonly used benchmark, replicating the last
known power such that P̂t+k|t = Pt. It is generally hard to improve upon the
persistence model when forecast horizons are less than a few steps ahead. Powers
of variables as well as interactions were used within the both the LMs and RLMs
to quantify non-linear relationships. ARIMA models with exogenous variables
(ARIMAX) were also applied but showed no value over linear models including
AR terms and NWP inputs. GAM smooth terms were represented with thin plate
regression splines. Finally, there was one hidden layer within the NN models and
the number of nodes were chosen to minimise the MAE.
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4 Analysis

Power can be predicted in two ways, a one stage process of forecasting power
directly, or a two stage process, forecasting wind speed then applying a transfor-
mation to convert to power. Converting wind speed to power can be achieved via
the theoretical power curve, or by estimating the on-site power curve while tak-
ing into account local conditions (Stathpoulos et al., 2013). The approach within
this paper utilises only the latter, modelling the relationship between on-site wind
speed, power and turbine availability via a Gaussian Process (GP) (see Figure 1)
as it was found that forecasting power directly resulted in higher MAEs. The ap-
proach leaves open the opportunity to include other variables. This may be useful
for forecasts where the transformation from wind speed to power is dependent
on wind direction, due to the surrounding terrain, for example.

FIGURE 1. On-site power curve by availability with superimposed GP model

As wind speeds are Weibull distributed, the response variable was transformed
to approximate normality by firstly fitting a Weibull distribution to the histori-
cal wind speed then dividing 3.6 by the shape parameter, α, rendering the data
approximately normal (Dubey, 1967). Forecasts were back transformed as neces-
sary.
Figure 2 shows MAEs by forecast horizon. It is clear that models based only on
auto regressive terms (ARIMA and ARNN) do not perform as well as those which
include NWP forecasts, out performing the naive approach only towards latter
forecast horizons. The GAM does not perform as well as the others which may
infer that random variation in the training dataset may have been modelled. RLM
models outperform standard LMs and using more recent data (RLM1 and LM1)
resulted in higher MAEs over all horizons. Note that the effect of regularisation
is more prominent while computing parameters with the smaller dataset. Finally,
the NNET model performed the best, outperforming all others over all forecast
horizons.5 Summary

The results show that all models tested performed well, with MAEs within
roughly 100kW of each other by horizon 24. While the NNET model did outper-
form the others, it was only marginally better, is much more complex to interpret
and takes much longer to train. This shows that the relationships between wind
speed/power and the explanatory variables can be modelled adequately without
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FIGURE 2. MAE by forecast horizon

the need for complex black box models such as neural networks. This can be
carried out using linear models with or without regularisation, utilising powers
of the input variables and interactions between them.
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1 Departamento de Informática e Estat́ıstica, Universidade Federal de Santa
Catarina, Brazil

2 Departamento de Ciências Exatas, Escola Superior de Agricultura “Luiz de
Queiroz”, Universidade de São Paulo, Brazil

3 Institute for Biostatistics and Statistical Bioinformatics, University of Hasselt,
Belgium

4 Departamento de Estat́ıstica, Universidade Estadual de Londrina, Brazil
5 Centre of Communications Technology and Mathematics, London Metropolitan

University, United Kingdom

E-mail for correspondence: luiz.rn@gmail.com

Abstract: In this paper we introduce a new regression model, based on the gen-
eralized additive models for location, scale and shape, in order to explain the
points rate of football teams in the end of a championship from the four most
important leagues in the world: Barclays Premier League (England), Bundesliga
(Germany), Serie A (Italy) and BBVA league (Spain) during three different sea-
sons (2011-2012, 2012-2013 and 2013-2014).
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1 Introduction

Football can be considered the most popular and important collective sport in
the world. This importance reflects on several aspects, among them the economic,
since a lot of money is invested on football in different areas, such as betting,
sponsorship, television rights and in particular the organization of major events.
In this manner an issue that becomes paramount for managers is the assessment
of which factors affect positive outcomes. To evaluate which variables might have
such relevance, we model the final points rate results (i.e. the proportion of points
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scored to the maximum points possible) of each team in different national cham-
pionships using the measured explanatory features. In order to do this task, we
present a new distribution on support (0, 1), called the logitSHASHo distribution
and develop its regression model based on the generalized additive models for
location, scale and shape (GAMLSS; Rigby and Stasinopoulos, 2005). We found
that the new model outperformed the beta regression model and some other
models on support (0,1).

2 GAMLSS framework

GAMLSS is a very flexible class of semi-parametric regression models that in-
volves a distribution for the response variable and may involve parametric and/or
non-parametric smoothing terms when modelling any or all of the parameters of
the distribution as functions of a set of explanatory variables. This methodology
is already implemented in the gamlss package (Stasinopoulos and Rigby, 2007) in
R, which includes several distributions with up to four parameters (conveniently
denoted by µ, σ, ν and τ).
In this work we will use only the parametric version of GAMLSS. Generically,
let Y ∼ D(θ), where D represents the response variable distribution and θ is
its vector of parameters of length 4. The parametric GAMLSS model is given
by gk(θk) = ηk = Xkβk, for k = 1, 2, 3, 4, where gk(·) is a known monotonic
link function relating the distribution parameter θk to the predictor ηk, Xk is a
known design matrix and βk is a parameter vector of length J ′k.

2.1 The logitSHASHo distribution

As we can see in Hossain et al. (2016), any distribution on the range −∞ < Z <
∞ can be transformed to a restrictive range 0 < Y < 1 using an inverse logit
transformation, i.e. Y = (1 + exp {−Z})−1. In this paper we propose a new very
flexible distribution to model response variables on the interval from zero to one,
with four parameters using the logit transformation.
If −∞ < Z < ∞ follows a sinh-arcsinh distribution (Jones and Pewsey, 2009),
then Y = (1 + exp {−Z})−1 will follow a logit sinh-arcsinh distribution, denoted
by Y ∼ logitSHASHo(µ, σ, ν, τ) for 0 < Y < 1, −∞ < µ < ∞ is the location
parameter, σ > 0 is the scale parameter, −∞ < ν <∞ determinates the skewness
of the distribution (positive skewness corresponds to ν > 0) and τ < 1 and τ > 1
yield heavier and lighter tails than the normal distribution, respectively.

3 Application

3.1 Data set

The following information about four European leagues (Barclays Premier League,
from England, Bundesliga, from Germany, Serie A, from Italy and BBVA league,
from Spain) were considered: points rate (response variable) and the covariates
season, league, shots (Sh.Pg), shots on goal (ShG.Pg), clean sheet (ClSh), off-
sides (Off.Pg), dribbles (Drbl.pg), fouled, shots conceded (Sh.con.Pg), tackles
(Tack.Pg), interceptions (Int.Pg), fouls (Fou.pg), yellow cards (YC), red cards
(RC), possession (Poss) and passes (Pass).
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3.2 Results and discussion

A stepwise selection of explanatory terms was performed for all parameters and
values of global deviance (GD), Akaike information criterion (AIC) and Bayesian
information criterion (BIC) were computed in order to compare all fitted mod-
els using the following distributions: logitSHASHo, logitSST, logitNO, beta and
generalised beta. The results are displayed in Table 1 where we can see that the
logitSHASHo model is the best fitted model when we use the GD and AIC values
(-656.28 and -636.28, respectively), while the beta model is prefered when we use
the BIC criterion.

TABLE 1. Statistics from the fitted models.

Model Parameters df GD AIC BIC

logitSHASHo 4 10 -656.28 -636.28 -601.72
Beta 2 7 -645.19 -631.19 -607.00
logitSST 4 8 -646.19 -628.19 -597.09
logitNO 2 9 -644.72 -626.72 -595.62
Generalised beta 4 9 -642.48 -624.48 -593.38

As we will see in the residual plots, the logitSHASHo model is prefered. Hence, the
final model from the logitSHASHo distribution under the GAMLSS parametric
framework is given by

µ̂ = −0.19 + 0.49 ShG.Pg + 0.29 ClSh− 0.13 Sh.Pg− 0.05 Sh.con.Pg

σ̂ = exp [−1.96 + 0.13 ShG.Pg]

ν̂ = 0.07− 0.12 YC

τ̂ = 0.68.

ShG.Pg and ClSh are positively associated to µ. This relationship can be ex-
plained using simple game facts: a team that avoids being scored (ClSh) and
creates real chances of scoring (ShG.Pg) has more chances to be successfully.
Sh.Pg, surprisingly, has a negative effect on the location parameter µ. Statisti-
cally, this can be explained by using the value of the partial correlation between
Sh.Pg and points rate given ShG.Pg, which is negative (-0.11). In practice, we
may say that just arbitrarily shooting has a negative effect, since in many cases a
football team trying to score from anywhere in the pitch, without presenting any
real risk for the opposite team is less likely to score. The last covariate used to
model µ is Sh.con.Pg which has a negative effect, since it increases the chances
to concede goals and consequently to lose the match.
The value of the scale parameter σ increases according to the number of ShG.Pg
by the football teams. Further, YC has a negative linear effect on the skewness
parameter ν. Finally, the kurtosis parameter τ is a constant smaller than one,
i.e. the final model from the logitSHASHo distribution presents heavy tails.
The worm plot for the residual analysis (Figure 1 (a)), for the model based on
the logitSHASHo distribution does not present any trend (vertical shift, slope,
quadratic or cubic shape), thus it fitted really well the skewness and kurtosis
present in the response variable. As for the beta regression model, we can see
from Figure 1(b) that the residuals present a cubic shape, indicating possible
problems in the kurtosis, and three of the dots are not between the upper dotted
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curve, which act as 95% pointwise confidence interval. Hence, we conclude that
the logitSHASHo model is the best model between the five used in this paper to
explain the current data.

(a) (b)

FIGURE 1. Worm plots of the (a) logitSHASHo and (b) beta GAMLSS models
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Abstract: We use a continuous-time multi-state model to describe the natural
history of prostate cancer. We apply the model to a two-arm randomized control
trial of prostate cancer screening. Our main interest is to estimate the sojourn
time (time between pre-clinical and clinical state). The challenge is that our
observation scheme is unusual: for each individual we observe either the pre-
clinical state, if the person is screen-detected or only the clinical state if the
disease becomes symptomatic. We show that this can be done using standard
software, by using R package msm.

Keywords: Continuous Time Multi-State Models; Prostate Cancer Screening;
Sojourn Time; Survival

1 Introduction

We present a multi-state model, consisting of four states (healthy, pre-clinical,
clinical and death) applied to interval-censored panel data, in a two-arm ran-
domized controlled trial. We apply this model to prostate cancer screening, using
data from the PLCO (Prostate, Lung, Colorectal and Ovarian) cancer screening
trial (Andriole et al, 2012). We are interested in estimating the sojourn time,
the transition time between pre-clinical and clinical states. This is the temporal
window of opportunity for early detection of cancer. Sojourn time is useful to
determine the frequency of screening and to estimate the potential benefits and
harms of screening. However we only observe for each individual either the pre-
clinical state, for men who are screen-detected (Screen Arm) or the clinical state
for men who are clinically diagnosed (either cancer detected between screens or
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after the screening program ended or in the control arm). There is also censoring
due to the limited time of follow-up of the trial. We show that this can be done
using standard software, R package msm.

2 Continuous Time Multi-State Model

1
Healthy

4
Dead

2
Detectable

3
Symptomatic

FIGURE 1. The 4-state model for the natural history of prostate cancer

A detailed description of this model can be found in, Jackson (2011) and van
den Hout (2016). We describe here the model briefly. An individual is observed
at times, t1, ..., tJ , with corresponding observed states, y1, ..., yJ , and a vector of
covariates, x1, ..., xJ . The set of health states is S = {1, 2, 3, 4}, where 1 denotes
healthy, 2 pre-clinical disease, 3 clinical disease and 4 death. Additionally, D =
{3, 4} is a set of absorbing states. We define prs(tj , tj+1) = P (Yj+1 = s|Yj =
r), where r, s ∈ S and j = 1, ..., J . Then the likelihood contribution for each
individual is L =

∏J
j=2 Lj , where Lj is given by,

Lj = pyj−1,yj (tj−1, tj), (1)

for yj ∈ {1, 2}. When yJ = 4 this becomes,

LJ =
∑
m=1,2

pyJ−1,m(tJ−1, tJ) qm,yJ , (2)

since we observe the death time exactly, but we do not know the state immediately
before death. When yJ = 3,

LJ = pyJ−1,2(tJ−1, tJ) q2,yJ , (3)

since by assumption a person must be in the pre-clinical state 2, before the clinical
state 3 . Finally, at the end of follow-up we do not observe whether an individual
is in state 1 or 2. The likelihood contribution then becomes,

LJ = p1,1(tJ−1, tJ) + p1,2(tJ−1, tJ). (4)

Each Lj is composed of an entry of the transition probability matrix P (t),
t = tj+1 − tj . For continuous time multi-state models this matrix equals, P (t) =
exp(Qt), where Q is a matrix with non-diagonal entries, qrs = exp(

∑
βrsxrs)

(notice we could have a different set of covariates for each transition), and diag-
onal elements qss = −

∑
k∈S qsk. If the transition is not possible, then we set a

priori, qrs = 0.
For this analysis, we consider two models. Model I denotes a model without
covariates in the transition intensities. In Model II, we add age as a covariate, for
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the transition between healthy and preclinical. This imposes a time-dependent
transition intensity from healthy to preclinical.
Estimation is possible using R package msm (Jackson, 2011). The general idea
is to maximize L with respect to the β parameters. For users of other statistical
software, any general optimization algorithm could be used for instance, Nelder-
Mead or Broyden-Fletcher-Goldfarb-Shanno.

3 Data

PLCO (Prostate, Lung, Colorectal and Ovarian) cancer screening trial is a mul-
ticenter randomized control trial. A total of 76, 685 men were randomized aged
between 55 and 74. Randomization occured between 1993 and 2001. The screen-
ing protocol consisted of six annual screens, with a PSA test. The latest published
report included results at 13 years of follow-up (Andriole et al, 2012). For the cur-
rent analysis we use a random sample of 4000 men from the 13 years of follow-up
data.

4 Simulation Experiment

The goal of this simulation experiment is to show that it is possible to obtain
unbiased estimates of the qrs’s and consequently, of the sojourn time, in the
context of a two-arm trial. The basic idea of the simulation is for each individual,
to simulate time spent in the k-th state, k ∈ S. If there are two states r and s,
where one could move to, from state k, then the individual moves to the next
state according to the rule, min(Tr, Ts), where Tk is time until event k. The
Tk’s can be either Exponential or Gompertz distributed, with parameters given
by βrs = (βrs,0, βrs,1), where βrs,1 is included if age is used as a covariate. We
simulate the screen arm, by imposing a grid of observation times, with yearly
time between observations (as in the PLCO data). We also add censoring, by
ending follow-up at 13 years. We simulate two situations: Without Mixed Design
denotes the natural history during follow-up, and 2-arm Mixed Design denotes
what we would observe in a screening trial. We do 100 simulations, with 1000
individuals each. In Table 1 we verify that we can obtain an unbiased estimate
of the β parameter. The main difference lies in the standard errors, which, as
expected, are larger for the mixed design. We see a similar story for the Model II
(results not shown).

5 Preliminary Results

We used the PLCO data and the multi-state model to estimate prostate cancer
sojourn time. We estimated a sojourn time of about 1.7 years for both models,
with AIC value equal to 12669 (Model I ) and 12653 (Model II ). Model II seems
to be better than Model I, i.e., the addition of the age covariate, did improve the
model. The estimated sojourn time is substantially lower than what we would
expect, given previous literature. This is the case since there is a substantial
amount of missclassification in the control arm, namely, many men in state 3,
are actually in the state 2, as they received the PSA screening test (Pinsky et
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TABLE 1. Simulation Results for Model I

Parameter Value Mean Bias Relat. Bias St. Dev. St. Error

Without Mixed Design

β12,0 -2 -2.004 -0.004 0.002 0.034 0.037
β14,0 -4 -3.998 0.002 0.000 0.112 0.109
β23,0 -2 -1.993 0.007 0.004 0.049 0.051
β24,0 -3 -3.010 -0.010 0.003 0.081 0.090

With 2-Arm Mixed Design

β12,0 -2 -2.003 -0.003 0.002 0.047 0.051
β14,0 -4 -4.005 -0.005 0.001 0.159 0.154
β23,0 -2 -1.993 0.007 0.004 0.099 0.098
β24,0 -3 -3.028 -0.028 0.009 0.189 0.201

al, 2005). We aim to extend the model, to obtain an unbiased estimate of the
sojourn time in the presence of missclassification.
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Abstract: A great interest in Public Policies in Brazil is the comparison of un-
dergraduate students who come from Public High Schools (Pu HS) with those
who come from Private High Schools (Pr HS). In this paper we analyze the per-
formance of undergraduate students in Calculus I and Physics I. The database
is from the University of Campinas (Unicamp), one of the top Public Research
Universities in Brazil. First, we used a multinomial model to evaluate the pro-
portion of students approved (in none, Calculus I only, Physics I only and in
both subjects) according to socioeconomic status, demographic characteristics
and pre-enrollment tests (e.g. SAT scores). Then, we studied the number of times
the students took these courses until they pass. We used discrete survival models
with the censored observations being those who did not pass the course until the
end of the study. For the survival models, the analysis can be done separately
with two univariate models, one for each course (Calculus I and Physics I), or as
bivariate survival models.

Keywords: Multinomial model; Categorical data; Censored data; Discrete sur-
vival model; Survival analysis.

1 Introduction

A topic of great interest to educators and administrators of Universities is the
performance of students in subjects like Calculus I and Physics I. They are usually
required courses for all students in Engineering and Exact Sciences majors in the
first year of enrollment in the university, but there are many questions regarding
the factors which may contribute more to bad/good performance of the students.
The database of this study is from the State University of Campinas (Unicamp),
located in the state of São Paulo, Brazil, which is one of the top research univer-
sities in South America with a highly selective entrance exam. Unicamp has an
entrance exam which consists of two phases. The first phase consists on a multiple
choice test of general knowledge. The second phase consists on open questions of
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Mathematics, Portuguese, Geography, History, Biology, Chemistry, Physics and
an Essay Writing. We will consider here only the scores on the second phase.
A great interest in Public Policies is the academic performance of those from
Public High Schools (Pu HS) and those from Private High Schools (Pr HS). In
Brazil, most of middle class students go to Pr HS, because the Public High School
system is not very good. In view of this, Unicamp implemented an affirmative
action program which gives a bonus in the second phase of the Entrance Exam
Score (EES), when the candidate studied all High School years in Public Schools.
Therefore, for the models considered here, the type of High School will be a very
important covariate.
The primary goal of this study is to evaluate the performance of students in
Calculus I and Physics I, especially when they are taking theses courses for the
first time. Therefore, we would like to evaluate, when the students are taking
these courses for the first time, the proportion who failed both, approved only in
Calculus I or only in Physics and approved in both, according to a multinomial
model with nominal response. We will be able to see what are the factors which
can better explain the variation of performance of these students.
Our secondary goal is to model the average number of times a student need
to take Calculus I/ Physics I until he/she passes. In this case, we can think of
this as discrete survival model (Collet, 2003) and when the student did not pass
the course, it is a censored observation. Note that there are university policies
to determine when a student should be dropped out from the university, since
public universities in Brazil are completely free for all enrolled students.

2 Data set

The original data set consists of 16,503 records of students who enrolled at Uni-
camp from 2009 to 2013. It was selected from the database only students with
Calculus I and/or Physics I as required courses, having about 28% from Pu HS
students and 72% from Pr HS. So, there are records for all the times the student
took the subject with their respective grades. We also have entrance exam scores
- EES (e.g., SAT scores) in each subject (Mathematics, Portuguese, Geography,
History, Biology, Chemistry and Physics), some academic variables as well as
socioeconomic status, which are considered as covariates in the models. Among
the students who have Calculus/Physics as required courses, there are 1259 stu-
dents who took only Calculus I or Physics I and 5384 who took both Calculus I
and Physics I. Table 1 shows the number of times the students took the subjects
according to type of High School.
Figure 1 shows the proportion of students approved (in none, only Calculus I,
only Physics I and in both) according to type of High School when they are
taking the courses for the first time. One can see that there are more students
from Pr HS who were approved in both courses and more students from Pu HS
who failed both courses. When comparing those who passed only in one of the
courses, the difference is quite small.

3 Statistical models

The first model considered here is a generalized logit model for multinomial re-
sponse (Agresti, 2013). Let Yi be a r.v. indicating the number of subjects student
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TABLE 1. Number of students taking Physics I and Calculus I by type of High
School and number of times taking them.

Number of times taking the course

Subject High School 1 2 3 4 5 6 ≥ 7

Physics I Public 1126 269 91 49 17 8 0
Private 3275 519 143 60 25 5 0

Calculus I Public 1273 328 113 48 23 8 5
Private 3704 602 190 96 31 12 7

Pu HS Pr HS

Type of High School
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FIGURE 1. Bar plots of the proportion of students approved (in none, only
Calculus I, only Physics I and in both) according to type of High School when
they are taking the courses for the first time.

i approved, whereYi ∈ {0, 1, 2, 3}, i.e., 0 if student i failed in Calculus I and
Physics I; 1 if student i was approved in Calculus I only; 2 if student i was ap-
proved in Physics I only; and 3 if student i was approved in both subjects. Now,
let πij denote the probability of response j for student i, j = 1, 2, . . . 4. When the
final category is the baseline, the j − th logit is

log

(
πij
πi4

)
= xiβj , for j = 1, 2, 3 (1)

with xi being the ith row of the design matrix and βj the respective vector of
fixed effect for logic j.
For the second analysis, we can use univariate discrete survival models (Collet,
2003; Hosmer and Lemeshow, 1989) The likelihood function here is written in
terms of the probability of passing the course (Calculus/Physics) in the j − th
time, j = 1, 2, . . . , k. Let Ti be the number of times student i took the course
until being approved. Here Ti ∈ {1, 2, 3, . . .} is a discrete r.v. Let pj(xi) = P (Ti =
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j | Ti ≥ j − 1,xi) be the probability of individual i pass the course in the j − th
time given that he did not pass the (j − 1)− th time. The likelihood is given by

L(β, γ) =

k∑
j=1

∑
i∈Rj

[
δij log

(
1− γexp(x′iβ)

j

)
+ (1− δij) log

(
γ

exp(x′iβ)
j

)]
, (2)

where δij = 0, if student i did not pass the course in the j− th time and δij = 1,

otherwise. pj(xi) = 1 − γexp(xiβ)
j , with γj = S0(j)/S0(j − 1) and S0(.) is the

baseline survival.
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Abstract: The focus of the present contribution is on the modelling of subjec-
tive heterogeneity for repeated measurements of ordinal variables, which occur,
for example, in questionnaires. The proposal is a multivariate random effects
model based on CUB models, a class of mixture distributions for rating data
that accounts for uncertainty of choices. Model performances are assessed on the
basis of a survey on relational goods.
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1 Introduction and Preliminaries

Within the framework of ordinal data analysis, a general mixture model with an
uncertainty component as considered in Iannario and Piccolo (2016) and Tutz et
al. (2016) is specified by:

P (Ri = r|xi) = πiPM (Yi = r|xi) + (1− πi)PU (Ui = r), r = 1, . . . ,m (1)

where Ri, i = 1, . . . , n, is the observed ordinal response and xi is a vector
of subjects’ characteristics. The unobserved variables Yi and Ui stand for the
pure-preference choice and the uncertainty, respectively, both taking values in
{1, . . . ,m}. The distribution PM (Yi = r|xi) of Yi can be any ordinal model M ,

whereas PU (Ui = r) =
1

m
is assumed to follow a discrete Uniform distribution.

The general model (1) is a CUP model: C ombination of U niform and Preference
structures. In this contribution, we consider the traditional CUB model of Pic-
colo (2003), in which the distribution of Yi is the (shifted) Binomial distribution
gr(ξi) with feeling parameter ξi:

Pr(Ri = r|xi) = πigr(ξi)+(1−πi)
1

m
, gr(ξi) =

(
m− 1

r − 1

)
ξm−ri (1−ξi)r−1. (2)
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In (2), parameters ξi and πi are linked to the row vector of subjects’ covariates
xi by:

logit(ξi) = γ0 + xi γ, logit(πi) = β0 + xi β.

The mixing proportion πi is referred to as the uncertainty parameter, since 1−πi is
the weight for the Uniform component. Thus, πi measures the individual propen-
sity to adhere to a meditated choice for the response, so that each choice takes
place within the individual. As for any mixture model, πi determines the distinc-
tion between the two separate sub-groups in the population: those responding
driven by their feeling/preferences, and the others adhering to a random process
for their choices. In the following a multivariate model is proposed that uses CUB
models for the marginal responses and accounts for individual propensities across
the repeated measurements. The model contains a subject-specific random effect
in the mixing proportion πi, which is considered fixed across the items. In this
vein, CUB models gain a multidimensional perspective avoiding the shortcom-
ings of an item-by-item analysis. Hierarchical CUB models with random effects
for the feeling component have been introduced in Iannario (2012).

2 The Random CUB Models

We consider several measurements on the same subject on a given latent trait, as
in questionnaire analysis. In order to simplify the presentation, covariates are not
included. Let Ri1, . . . , RiK denote the responses of the person i to a questionnaire
with K items, for i = 1, . . . , n, all measured on the same ordinal scale with m
categories. The RCUB model (Random CUB Model) is defined as the following
mixed model for Ri1, . . . , RiK :

Pr(Rij = r|η
′
, bi) = πigr(ξj) + (1− πi)

1

m
, r = 1, . . .m, j = 1, . . . ,K, (3)

with η
′

= (β0, ξ1, . . . , ξK)
′

and ξj being the CUB feeling parameter for item j. A
subject-specific parameter bi is included in the mixing proportion by:

πi =
exp(β0 + bi)

1 + exp(β0 + bi)
, bi ∼ N (0, σ2). (4)

As usual in mixed models, the bi’s are assumed to be i.i.d. random variables and
observations are conditionally independent given the random effect:

Pr(Ri1 = ri1, . . . , RiK = riK |η
′
, bi) =

K∏
j=1

Pr(Rij = rij |η
′
j , bi), i = 1, . . . , n,

where we set η
′
j = (β0, ξj). Note that σ2 = 0 yields CUB (CUP) models with

uncertainty parameter equal for all items to 1/(1 + exp(−β0)). The rationale be-
hind RCUB models is that the subject-specific tendency to responses determined
by uncertainty is driven by a subject-specific parameter bi, which is constant
across items. Moreover, the parameter β0 quantifies the common uncertainty
among items and respondents, while σ accounts for the unspecified effects. This
approach allows for a parsimonious parameterization of repeated ordinal mea-
surements, since the covariance structure of the variables is explained by the
variance component σ2.
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As customary for mixed-effect models, estimation of the fixed-effect parameters
θ
′

= (η
′
, σ2)

′
, with η

′
= (β0, ξ

′
), ξ

′
= (ξ1, . . . , ξK)

′
is pursued by integrating

out the random parameters bi of the full log-likelihood (Pawitan, 2001), thus
obtaining the (marginal) log-likelihood to be optimized:

L(θ) =

n∑
i=1

log Ii, Ii =

∫ ∞
−∞

K∏
j=1

Pr(Rij = rij |ξj , β0, bi)ϕ(bi;σ)d bi, (5)

where ϕ(·, σ) denotes the density function of the normal distribution N (0, σ2).
Then, after simple algebraic manipulations and the application of the Gauss-
Hermite quadrature formula, the marginal log-likelihood (5) is maximized by
means of the quasi-Newton method resulting from the Broyend-Fletcher-Goldfarb-
Shanno (BFGS) algorithm.

3 The case study

In 2014, an observational study was carried out by the Department of Political
Sciences, University of Naples Federico II to examine relational goods. Ratings
were collected on a 10-point Likert scale from 1 = “Never, Not at all” to 10 =
“Always, Totally, Absolutely Yes”). We fit an RCUB model to selected variables
and report the results of an item-by item analysis with CUB models. It is seen
that there is a significant variation of the tendency to the uncertainty (σ̂ = 1.93).

TABLE 1. Selected Questionnaire Items.
CUB RCUB

π̂k ξ̂k β̂0 ξ̂k σ̂
-0.648 1.93

Parents How often do you speak with at least one of your parents? 0.216 0.060 0.138
Friends How good are your relationships with friends? 0.742 0.169 0.140
Neighbours How good are your relationships with neighbours? 0.313 0.353 0.328

Safety Do you feel safe in the place where you live? 0.227 0.458 0.433
Familycond Does your family easily make ends meet? 0.427 0.341 0.324

4 Final remarks

The RCUB proposal stems from the need of running multi-item analysis by fo-
cusing on subjective heterogeneity while maintaining the rationale implied by
CUB models. For future work, this approach will be developed to specify the
feeling component on item-basis to include possible overdispersion, shelter effect
or, more generally, response-styles.
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FIGURE 1. Selected Questionnaire Items
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Abstract: We address the calibration constraint of probability forecasting. We
propose a generic method for recalibration, which allows to enforce this con-
straint. It remains to know the impact on forecast quality, measured by pre-
dictive distributions sharpness, or specific scores. We show that the impact on
Pinball-Loss score expectation is weak under some hypotheses and that it is al-
ways positive under more restrictive conditions.
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1 Introduction

Due to increasing need for risk management, forecasting is shifting from point
forecasts to probabilistic forecasts. According to T. Gneiting, probabilistic fore-
casting aims to maximize the sharpness of the predictive distributions, subject
to calibration, on the basis of the available information set. It means we have
a multi-objective problem, which is necessarily more difficult. That is why an
important step in building a probabilistic forecast is calibration, either in a spe-
cific way, either in a more generic manner. We propose here a generic method,
using Probability Integral Transform (PIT). PIT is usually a measure of forecast
miscalibration, we show it can be used to recalibrate it.

2 Principle of the recalibration

One stands in the following case: let E be the set of all possible states of the
world; for each forecasting time j the forecaster knows the current state of the
world e(j), and uses it to forecast. An estimated distribution Ge is associated to
each state of the world.
Then, one can calculate the estimated PIT series, it is the series of the val-
ues

(
Ge(j)(yj)

)
j
, where yj is the realization for time j.

This paper was published as a part of the proceedings of the 32nd Interna-
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FIGURE 1. Empirical c.d.f of the estimated PIT series and comparison with the
c.d.f of the uniform distribution on [0,1] respectively.

The theoretical c.d.f of the estimated PIT is the following:

C(y) : = Pr(G(Y) ≤ y)

= E [ E [ 1{G(Y)6y}/E ] ]

=


∑
e pe Fe ◦G

−1
e (y) if E is a discrete R.V.∫

e∈R p(e)Fe ◦G
−1
e (y) de if E is a continuous R.V.

where pe and p(e) are respectively the frequency of appearance or the p.d.f of
state e, and Fe and Ge the true and the estimated c.d.f of Y conditionally to
the state e. Obviously, if Ge = Fe for each e, then this c.d.f. is the c.d.f. of the
uniform distribution on [0,1].
If there is a bias, as shown in figure 1, we propose to use the biased PIT series
to correct the future forecasts.
That makes sense since :

Pr(C ◦ G(Y) 6 y) = Pr(G(Y) 6 C−1(y))

= C ◦ C−1(y)

= y

Hence for instance, if we are interested in forecasting the τ quantile, we will use
the model estimated for the C−1(τ) quantile
It remains to study the impact of such a correction in finite sample, as Siegert
does.

3 Impact on sharpness

We first present some theoretical results and then we show a case of positive bias
correction.

3.1 Theoretical results

Under the two following hypotheses :
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• Fe and Ge are close, i.e ∀x, ∀e, |Fe(x) − Ge(x) | 6 ε with F and G the
true and estimated distributions respectively

• the derivative of Ge(x) are lower bounded on the following interval Ig :=
[G−1
e (τ − ε) , G−1

e (τ + ε)], i.e ∀x ∈ Ig, ∀e, 1
ge(x)

6 ξ, with ge the derivative
of Ge

We prove that the impact of our correction on the absolute value of the Pinball-
Loss score expectation is less than 2 ε2 ξ
Under more restrictive hypotheses :

• ∀e, εe := (Ge ◦ F−1
e (τ)− τ) ∈ [mε ± 1√

2
mε] with mε the mean of the εe

• ∀e, 1

fe◦F−1
e (τ)

∈ [mf−1 ± 1√
2
mf−1 ] with mf−1 the mean of the 1

fe◦F−1
e (τ)

We prove that the impact of our correction on the Pinball-Loss score expectation
is always positive.

3.2 Illustration

• we simulate 10 000 independent realizations of a random variable X, with
standard normal distribution,

• For each realization x, one generates a realization of a random variable
Y with Student distribution, with degree of freedom equal to 3, and lag
parameter 2x

• we model Y with a simple Gaußian linear model Y = 2X + ε, with ε ∼
N(0, 1).

When we study the empirical c.d.f of the estimated PIT series of our simple
Gaußian linear model, it fails to pass the validity test. Nevertheless, the correction
allows to pass the validity test.
Note that it would be possible to pass the validity test with a ”climatological”
forecast, which means to forecast, independently of x, the marginal distribution
of Y . This forecast is reliable, but very inaccurate.

TABLE 1. Pinball-Loss score expectation for τ=0.5 and median quantile issued
from different models.

climatological Gaußian Gaußian, corrected true

E[PL0.5] 1.24199 0.74155 0.74152 0.73720

ratio with
true model

1.68474 1.00590 1.00586 1

As one can see in table 1, the climatological estimation has a greater Pinball-Loss
score expectation than the other even if it passes the validity test, due to loss of
information. Moreover, we remark that the score obtained with our correction is
little better than the score obtained with the simple linear Gaußian model.
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Abstract: VIAPPL is a software platform used to conduct experiments in social
interaction. Participants interact by exchanging tokens. We would like to under-
stand why participants choose certain players to interact with and how these
reasons may change over the course of the experiment. We describe two pre-
liminary models developed for the experimental data that indicate reciprocity,
in-group favouritism and charity may occur in the experiments. We discuss why
these models need to be improved upon.
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1 Introduction

Recent developments in social psychology suggest that social identities and norms
develop and change through social interaction. A person does not only develop
their identity through, and adopt the social norms of, the society that they are
in, they can affect change in society and the social norms present. Durrheim et
al. (2016a, 2016b) believed there was a need for a new type of experiment that
incorporated this strategic nature of social interaction and so developed VIAPPL
(Virtual Interaction APPLication), a software platform for carrying out these
experiments.
Participants of the experiments are avatars in a game-like environment, and are
referred to as players. They observe other players as nodes in a network, as shown
in Figure 1, and they interact by exchanging tokens. At the start of a game players
are randomly allocated to one of two groups, of which members are recognised
by the colour of their node.
Each player begins with a number of tokens, which may depend on the group to
which they have been assigned, and must choose a player to give a token to at
each round of the game (there are 40 rounds in total). At the end of each round
they observe the network shown in Figure 1. The number beside each node refers
to the number of tokens that player has. Arrows between nodes indicate to whom
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FIGURE 1. VIAPPL environment.

each player has given their token in that round. The number of tokens belonging
to each group is shown to the left of the screen. The VIAPPL technology allows
for multiple trials per game but the games considered here have only one trial.
What we would like to discover from these games is whether relationships develop
(i.e., do players reciprocate token giving), whether charity occurs (do wealthier
players, in terms of token count, give more to poorer players than other wealthy
players) and whether in-group favouritism is present in the games (do players
give more often to players in their own group than the other group). We have
data from 4 VIAPPL games, each of which has two groups of 7 players who start
with 20 tokens.

2 Methods

In order to investigate whether there is reciprocity, etc. in the games, we consider
what influences the number of tokens given from one player to another over
the course of the game, over a number of rounds or even over one round (i.e.,
whether a player gives a token to another player in a given round). The variable
of interest, Yi,j,t, is the number of tokens player i receives from player j at, or up
to, round t. The vector of covariates Xt−1 used in the models for Yt can contain
any information from rounds 1 to t− 1 of the game.
We consider first Yi,j,t = Yi,j,40 to be the total number of tokens player i receives
from player j over the 40 rounds of the game. In this case the vector of covariates is
Xt−1 = X39. A normal linear model for Y is assumed, Y40 ∼ N(XT

39β, σ
2), where

β is the vector of unknown regression coefficients and σ2 is the error variance.
The covariates are the number of tokens player i had at the end of round 39, the
number of tokens player j had at the end of round 39 and the number of tokens
given from player i to player j in the first 39 rounds, as well as a categorical
variable of which three were considered; the first describes whether players i and
j are in the same group; the second whether j and i are the same person, in the
same group but not the same person or in different groups; the third indicates
player j’s position in the network relative to player i.
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FIGURE 2. Coefficients for each variable in the logistic regression models for the
first game.

The final model included the variable describing the number of tokens player i
gave to player j and the categorical variable describing whether players i and j
were in the same group. The model for the first game, which has R2 = 0.43, is

TokensReceived = 1.82 + 0.59× TokensGiven− 1.21×Group.

The model predicts that the more tokens you give to another player, the more
tokens you will receive in return and that on average you will receive at least 1
token more over the course of the game from a player in your group than from a
player in the other group.
We also considered the case where Yi,j,t is the binary variable describing whether
player i received a token from player j in round t. We assume Yt ∼ Bernoulli(pt),
where the probability of receiving a token, pt, is related to the covariates via
logit(pt) = XT

t−1βt.
A model was developed at each round t of the game, 6 ≤ t ≤ 40, and the
covariates used were similar to those in the linear model. An exception is the
variable for the number of tokens given from player i to player j; in the model
at round t this variable is the number of tokens given from player i to player j
between rounds t − 5 and t − 1 (instead of between rounds 1 and t − 1). This
restriction to the previous 5 rounds assumes players have limited memory and
will base their decisions on the most recent information.
The variables contained in the final logistic regression models are the number of
tokens player i has, the number of tokens given from player i to player j and the
categorical variable that tells us whether players i and j are in the same group.
The coefficients of the variables in the final models for the first game are shown
in Figure 2. In the majority of rounds the fewer tokens a player has, the more
likely they are to receive a token, indicating that players are charitable. The more
tokens player i has given to player j in the previous 5 rounds, the more likely
player j is to reciprocate (again in the majority of rounds). The coefficients of
the group variable are all negative (players are less likely to give to players in the
other group) suggesting in-group favouritism is present in the game.

3 Discussion

The linear and logistic regression models indicate reciprocation and in-group
favouritism are present in the games. The logistic models also show charity occurs.
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However these simple models were used only as a first approach to modelling the
data and can be improved upon.
Players only give one token per round which places a sum constraint on the re-
sponse variable. This means observations are not independent. For example the
linear model should have

∑14
j=1 Yi,j = 40. We are therefore developing a model

which respects the compositional constraint on the vector Yj,t = (y(1,j,t), . . . , y(14,j,t))
whose elements describe the number of tokens player j has given to each other
player up to, or at, round t.
The linear regression model ignored the temporal aspect of the game. While
logistic regression models were constructed at each round and showed how the
importance of each variable changed over time, having many models makes it
difficult to interpret what is happening in the game as a whole. We are now
starting to develop temporal network models to enable more detailed analysis of
the dynamic social interaction structures in the data.

Acknowledgments: The first author is funded by the Irish Research Council.
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1 Introduction

Quantile regression analysis of clustered data is a very active area of research.
Since the seminal work of Koenker and Bassett (1978) on methods for cross-
sectional observations, there have been a number of proposals on how to accom-
modate for the dependency induced by clustered (e.g., longitudinal) designs. As
briefly outlined by Geraci and Bottai (2014) and then extensively reviewed by
Marino and Farcomeni (2015), approaches to linear quantile regression with clus-
tered data include distribution-free approaches (e.g., Koenker, 2004) and (pseudo)
likelihood-based approaches. The latter mainly adopt the asymmetric Laplace
(AL) density (Geraci and Bottai, 2007, 2014; Farcomeni, 2012).
We examined the statistical literature on nonlinear quantile regression with clus-
tered data (in our review, we did not consider nonparametric smoothing). To
the best of our knowledge, there seem to be only a handful of published articles.
Karlsson (2008) considered nonlinear longitudinal data and proposed weight-
ing the standard quantile regression estimator with pre-specified weights. Wang
(2012), taking their cue from Geraci and Bottai (2007), used the AL distribu-
tion to define the likelihood of a Bayesian nonlinear quantile regression model.
Finally, Oberhofer and Haupt (2016) established the consistency of the L1-norm
nonlinear quantile estimator under weak dependency.
In this paper, we propose an extension of Geraci and Bottai’s (2014) linear quan-
tile mixed models (LQMMs) to the nonlinear case.
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TABLE 1. Estimated fixed parameters of logistic curves at quantile levels
{0.05, 0.1, 0.5, 0.9, 0.95} by genotype.

τ 0.05 0.1 0.5 0.9 0.95

Genotype P
β1 16.24 16.97 19.51 24.02 30.66
β2 55.18 55.35 52.98 52.97 56.37
β3 7.96 8.40 8.08 8.76 9.73

Genotype F
β1 8.97 9.73 17.77 20.72 21.48
β2 53.31 51.85 55.06 54.14 53.56
β3 7.38 6.93 8.10 8.34 8.31

2 Methods

Consider data from a two-level nested design in the form (xT
ij , yij), for j =

1, . . . , ni and i = 1, . . . ,M , where xij is a given vector of covariates and yij
is the jth observation of the response vector yi = (y11, . . . , y1ni)

T for the ith
cluster. We define the nonlinear conditional quantile regression function

Qτ (yij |ui) = fij (βτ ,ui,xij) , (1)

where f is a nonlinear, smooth function of the p × 1 fixed parameter βτ , the
q × 1 random parameter ui, and the covariates xij . For given ui, model (1) can
be equivalently written as yij = fij (βτ ,ui,xij) + ετ,ij , where ετ,ij ∼ AL (0, στ ),
which denotes the AL distribution with location 0 and scale στ . This conve-
nient assumption leads to the quantile restriction Qτ (ετ,ij) = 0. We assume
ui ∼ N (0,Στ ), independently from εij , though, in principle, one can consider
different distributions for the random effects. Our goal is to maximise the (pseudo)
marginal log-likelihood

` (βτ ,Στ , στ ; y) =
∑
i

log

∫
Rq
p (yi|ui,βτ , στ ) p (ui|Στ ) dui (2)

We applied the Laplacian and importance sampling (IS) approximations to com-
pute the integral in (2). Since these approximations make use of second-order
Taylor expansions, we first smoothed the absolute residuals in the AL’s kernel
exponent using the approximation of Chen (2007). As a result, we obtained ap-
proximated log-likelihoods akin to those used in nonlinear mixed models (Pinheiro
and Bates, 1995). The R language (R Core Team, 2016) was used to implement
the proposed methods and to carry out the data analysis in the next section.

3 Growth of Soybean Plants

We presents some results using the Soybean dataset, available in the R package
nlme, which consists of measurements from an experiment to compare growth
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FIGURE 1. Left plot: Boxplots of average leaf weights per plant by
day since planting. Right plot: Fitted logistic quantile curves at level
τ ∈ {0.05, 0.1, 0.5, 0.9, 0.95} for genotypes P (dashed red line) and F (solid black
line) superimposed to observed measurements (grey dots).

patterns of two genotypes of soybeans: an experimental strain (P) and a com-
mercial variety (F). We considered the logistic function applied by Pinheiro and
Bates (2000, p.289) to these data and specified the following quantile model:

yij =
βτ,1 + u1,i

1 + exp {(βτ,2 + u2,i − xij)/(βτ,3 + u3,i)}
+ ετ,ij ,

separately for the two strains, where yij is the average leaf weight (g) per plant in
plot i = 1, . . . , 48 at xij days after planting, measured on occasion j = 1, . . . , ni.
We assumed a diagonal matrix Στ and then estimated five quantiles at levels
{0.05, 0.1, 0.5, 0.9, 0.95} using the Laplacian approximation (similar results were
obtained with the IS approximation).
The estimates of the fixed effects are given in Table 1, while a graphical presen-
tation of the results is shown in Figure 1. Genotype P showed larger asymptotes
(β1) than genotype F at all quantiles. However, asymptotes were more similar
between genotypes at τ = 0.5. Curves were steeper (as suggested by the recip-
rocal of β3) at lower quantiles in both genotypes, and genotype F had faster
growth than genotype P at all quantiles, except for the median. There was con-
siderable variation in the growth curves among plots and heterogeneity differed
by quantiles in both strains.
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1 Introduction

We focus on the analysis of the deterministic Duffing process, defined as

dx1t/dt = x2t, dx2t/dt = −(cx2t + αx1t + βx3
1t), (1)

where x1t and x2t are the position and the velocity, respectively, of the oscillation
at time t, g(x) = αx1t + βx3

1t is a restoring force, α is the natural frequency of
the vibration, β the mode of the restoring force (hard or soft spring), and c is the
damping term. The Duffing system (1) describes a periodically forced oscillator
with a nonlinear elasticity, and has been widely used in physics, economics and
engineering (Kovacic and Brennan, 2011). A characteristic feature is its chaotic
behaviour, which makes statistical inference challenging. In the present paper we
present an approach based on the Unscented Kalman Filter (UKF).

2 Methodology

The UKF algorithm is a non-linear generalization of Kalman filter which relies
on the unscented transform (Julier and Uhlmann (2004)) in order to construct
a Gaussian approximation to the filtering distribution. The UKF performs a
Bayesian estimation of a state-space model:

xt = f(xt−1) + ε, yt = h(xt) + η (2)

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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(a) (b) (c) (d) 

FIGURE 1. UKF estimates for the deterministic Duffing system with SNR=31
and n = 1000. (a) Signal estimate. (b) Estimate of parameter α. (c) Estimate of
parameter β. (d) Estimate of parameter c.

where xt ∈ RM is the (hidden) state at time t, yt ∈ RD is the measurement,
ε ∼ N(0,Σε) is the Gaussian system noise and η ∼ N(0,Ση) is the Gaussian
observation noise. The non-linear differentiable functions f and h are, respec-
tively, the transition and observation models. UKF passes a deterministically
chosen set of points (sigma points) through f to obtain the predictive distri-
bution p(xt|y1:t−1). Then, the sigma points are transformed using model h to
compute the filtering distribution p(xt|y1:t). As suggested in Sitz et al. (2002),
we merge the signal with the parameter vector λ = [α β c]T in a joint state vector
jt = [xt, λt]

T = [(f(xt−1,λt−1) + ε), λt−1]T, and yt = h(jt) + η. In our case,
the function f of model (2) is given by the numerical solution of system (1), h is
the identity function, and ε = 0.

(a) (b) (c) (d) 

FIGURE 2. UKF estimates for the deterministic Duffing system with SNR=10
and n = 1000. (a) Signal estimate. (b) Estimate of parameter α. (c) Estimate of
parameter β. (d) Estimate of parameter c.

3 Simulations

We simulate system (1) through the ode23 MATLAB function with a stepsize of
integration δt = 0.01 and starting values for the numerical integration [1, 0]. Mea-
surements are obtained from the first component, x1t, by adding observational
noise ηt ∼ N(0, σ2

η) with known variance. The time interval is t = 1, . . . , 20, and
the presented results are averaged over 10 simulations. The UKF algorithm is
performed with the EKF/UKF toolbox of Hartikainen et al. (2011). To investigate
the behaviour of the Duffing process and the UKF performance, we have sim-
ulated several scenarios, varying the Signal to Noise Ratio, SNR ∈ {30, 10, 1},
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(a) (b) (c) (d) 

FIGURE 3. UKF estimates for the deterministic Duffing system with SNR=1
and n = 1000. (a) Signal estimate. (b) Estimate of parameter α. (c) Estimate of
parameter β. (d) Estimate of parameter c.

(a) (b) (c) (d) 

FIGURE 4. UKF estimates for the deterministic Duffing system with SNR=10
and n = 100. (a) Signal estimate. (b) Estimate of parameter α. (c) Estimate of
parameter β. (d) Estimate of parameter c.

(a) (b) (c) (d) 

FIGURE 5. UKF estimates for the deterministic Duffing system with SNR=10
and n = 50. (a) Signal estimate. (b) Estimate of parameter α. (c) Estimate of
parameter β. (d) Estimate of parameter c.

and the sample size, n ∈ {1000, 100, 50} (Figures 1–5). To evaluate the impact
of initialization, we considered different offsets as starting values for the param-
eters. The offsets are sampled randomly from a Gaussian distribution in which
the mean is defined by a percentage deviation from the true parameter values
and the variance is 10% of the mean (Table 1).

4 Results and Discussion

Figures 1–5 show that the UKF successfully learns the parameters from the
noisy data, and that at the end of the filtering phase the true parameters always
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TABLE 1. Impact of the initialization for the deterministic Duffing system for
different offsets (as percentage of the true parameter values) in term of Euclidean
norm prior inference and post inference.

α β c

Prior Post Prior Post Prior Post

100% 1.00 0.05 2.04 0.24 0.10 0.01
150% 1.52 0.12 3.02 0.50 0.15 0.01
200% 2.03 0.23 3.90 0.94 0.21 0.02
250% 2.48 0.65 4.61 2.12 0.25 0.04

lie within the predicted standard error around the estimate. This suggests that
Bayesian filtering offers a successful paradigm for inference in chaotic dynamical
systems. The prediction uncertainty depends on the sample size n, and the level
of noise, quantified by the SNR. As one would expect, the uncertainty increases
with decreasing n and decreasing SNR, i.e. as information in the data is lost, and
our study allows a quantification of this trend. The increase in uncertainty par-
ticularly affects the parameter β, which is associated with the nonlinear term and
the source of the chaotic behaviour. Table 1 shows the effect of the initialization,
measured in terms of the Eucliedean distance in parameter space. This distance
is consistently reduced in the filtering process, and the posterior distance (after
filtering) is always smaller than the prior distance (before filtering). However,
the posterior distance increases with the prior distance, suggesting that a good
initialisation will improve the inference results.
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Abstract: Aim: to estimate the effect of High Blood Pressure on mortality among
people aged 65 years old in three scenarios with different socio-economic back-
ground and urbanization process by using flexible parametric survival models.
Methods: Three cohorts coming from Brazil (n=365), Argentina (n=1800) and
Italy (n=2472) were considered and only people with 65 years old included. Time
to death (months) from enrolment and all-causes mortality were considered. Sta-
tistical analysis included Frailty Coxs Model and Flexible Parametric Survival
Analysis. Due to the two-level structure of variability multilevel mixed-effect sur-
vival regression models were fitted. Main Results: Frailty Cox model showed sig-
nificant positive effects of age and an effect modification of High Blood Pressure
and Non-Communicable Diseases (NCD) but not effects proportionality. Multi-
level modelling evidenced a positive statistically significant effect of Age, NCD
and Smoking. There was also an effect modification of NCD on High Blood Pres-
sure. Overall Multilevel Flexible Models estimates were more conservative with
an increase in their precision. Conclusions: High Blood Pressure and NCD are
important causal components and strong risk factors of cardiovascular mortality
in these countries. The model obtained indicates a common causal model in three
cohorts coming from very different environments.
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1 Introduction

The present work considers three different scenarios and proposes a joined sur-
vival analysis of elderly populations coming from different cohort studies con-
ducted in Brazil, Argentina and Italy. The increase in the proportion of elderly
population worldwide is one of the most important demographic facts both in
developed countries and developing ones. Health problems affecting the elderly
population are generally chronic, then factors associated with lower survival have
been described and related to the risk of death. The aim of this work was to es-
timate the effect of High Blood Pressure (HBP) on all-causes mortality among
people 65 years old in three scenarios with different socio-economic background
and urbanization process by using flexible parametric survival models while con-
sidering countries variability.

1.1 Cohorts

Three cohorts coming from Brazil, Argentina and Italy were included. Brazil:
individuals aged 60 years old were enrolled in 2003 and followed-up until 2010 at
Botucatu (São Paulo State). A two-stage random sample (365 subjects) was used
to collect information about socio-demographic characteristics, health status and
personal history.
Argentina: Patients from a medical care center were enrolled in two cities of
Córdoba province (January 2004 and still ongoing). Complete history about
chronic diseases was recorded for 1,142 subjects.
Italy: The study was conducted at Castellana Grotte, (Bari province) enrolling
2472 subjects. A structured standard interview was performed to collect infor-
mation about socio-demographic data, health status and personal history.
Time from date of enrolment to death, migration or end of study (in months),
whichever occurred first. Follow-up ended at December 31st, 2010 in Brazil, June
30th, 2014 in Argentina and June 30th, 2015 in Italy. In this work only individuals
of 65 years old were considered.

1.2 Modelling

To explore survival probabilities Kaplan-Meier method was applied. A Frailty Cox
model assuming gamma-distributed latent random effects was fitted to handle
unobserved heterogeneity due to pooling the studies. As proportional hazard
assumption of Cox model was not satisfied, flexible parametric Royston-Parmar
survival models (RPM, Royston & Parmar 2002) were chosen. This models use
natural cubic splines to model baseline g[S0(t)] within the Aranda-Ordaz family
of link function. Due to the two-level structure of variability (subjects nested
in countries) of the overall dataset, multilevel mixed-effect survival regression
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models were fitted (Crowther et al. 2014), as it follows:

log[Hij(t)] = s(log(t)|γ, k0) +X
′
ijβ + Z

′
ibi +

P∑
p=1

s(log(t)|δp, kp)Xijp,

= s(log(t)|γ, k0) +X
′
ijβ + bi,

with Xijp covariate, s(log(t)|δp, kp) spline and coefficients vector denoted as δp,
random bi intercept (bi ∼ N(0, V )). Gender, age, HBP, Diabetes Mellitus (DM),
smoking habit and other NCDs were selected as covariates.
Post-estimation predicted hazards by categories of HBP at 65 and 80 years old
were obtained. All statistical analyses were performed using Stata statistical soft-
ware, version 14.1 (StataCorp LP, College Station, Texas).

2 Results and Conclusions

We refer to Table 1 for a summary of our main results of modelling. Overall
Mixed-RPM estimates were more conservative with a gain in precision. Figure 1
shows predicted hazard for HBP for five years survival at 65 an 80 years old. There
were increased hazards at 80 years old as evidenced on the vertical axis. Whereas
there was an initial decreased hazard (which spans for different time periods) for
men in Brazil and Italy, hazard for Argentina behaved in an irregular way.
The major findings of this study were the positive statistically significant main
effect of Age, Smoking and NCDs on all-causes. There was also a strong effect
modification of NCDs on HBP. These results were more plausible and attenuated
estimates while gain in precision. The modelling process uncover a common causal
model among different environments whereas maintain countries peculiarities,
such as survival probabilities which remain substantially different.

TABLE 1. Frailty Cox Model and Two-level Mixed Survival Parametric Model.
Brazil, Argentina and Italy.

Frailty Cox Model Multilevel Flexible Model

Variable HR CI0.95 HR CI0.95

Age 1.04** 1.01-1.08 1.06* 1.03-1.08
Sex(Female) 0.68 0.42-1.11 0.66 0.43-1.13
HBP(Yes) 0.99 0.59-1.91 1.07 0.61-1.87
DM(Yes) 0.51 0.27-2.13 0.95 0.54-1.66
NCD(Yes) 2.15** 1.31-3.56 2.12** 1.28-3.45
Smoking(Yes) 1.77* 1.05-2.98 1.61* 1.03-2.62
HBP*DM(Yes/Yes) 1.95 0.42-2.12 1.31 0.74-2.29
HBP*NCDs(Yes/Yes) 4.58** 1.14-18.37 2.30** 1.28-4.11
HBP*Smoking(Yes/Yes) 1.05 0.51-1.81 1.76 0.89-2.46
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FIGURE 1. Hazard Rate by Country and Ages 65 and 80 years old for High Blood
Pressure Status estimated using Multilevel Mixed Survival Parametric Model.
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Abstract: In this paper we aim at finding similarities among the coefficients
from a multivariate regression. Using a quantile regression coefficients modeling,
the effect of each covariate, given a response (also multivariate) is a curve in the
multidimensional space of the percentiles. Collecting all the curves, describing
the effects of each covariate on each response variable, we could be able to assess
if only one or more covariates have same effects on different responses.
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1 Introduction

Looking for curve similarity could be a complex issue characterized by subjective
choices related to the continuous transformation of observed discrete data. Here,
the alignment problem is handled introducing a new, simple and efficient proce-
dure, based on a similarity measure between curves. A more general approach
is based on the alignment of curves using a target function (Silverman, 1995).
Adelfio et al. (2012) introduced a simple procedure to identify clusters of multi-
variate waveforms based on a simultaneous assignation and alignment procedure.
This approach has been extended in Adelfio et al. (2016), where the authors fo-
cussed on finding clusters of multidimensional curves with spatio-temporal struc-
ture, applying a variant of a k-means algorithm based on the principal component
rotation of data. Quantile regression can be used to fully describe the conditional
distribution of an outcome and the effect of the covariates on it (Koenker and
Bassett, 1978). In Frumento and Bottai (2015), the authors suggest adopting
a parametric model for the coefficient function. They refer to this estimation
approach as quantile regression coefficients modeling (QRCM).
In this paper we provide a new perspective of the curve similarity approach
considering as curves the coefficient functions after applying a QRCM. A new

This paper was published as a part of the proceedings of the 32nd Interna-
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algorithm is proposed to assess if two coefficients functions have the same be-
haviour. The rest of the article is organized as follows. Section 2 briefly presents
the algorithm, Section 3 shows a simulation study and Section 4 provides con-
clusions.

2 Methods

In Frumento and Bottai (2015), the authors suggest to adopt a parametric model
for the coefficient function of a quantile regression. Conversely to standard quan-
tile regression which works in a quantile-by-quantile fashion, in the QRCM frame-
work different quantiles are estimated one at the time. This modelling approach
facilitates estimation, inference, and interpretation of the results, and generally
yields a gain in terms of efficiency. Let us consider a response variable y and a
set of q-covariates x, the coefficients β(p) are defined as functions of p ∈ (0, 1)
that depend on a finite-dimensional parameter θ,

β(p | θ) = θb(p),

where b(p) = [b1(p), . . . , bk(p)]T is a set of k known functions of p. In a multi-
variate framework, let y = [y1, . . . , yj , . . . , ym] be a set of m response variables,
correlated or not, and x be a set of q covariates. Applying the QRCM on each re-
sponse variable, we estimate the coefficient functions β1j(p,θ), . . . , βqj(p,θ) over
the percentiles. In this paper, starting from the QRCM estimation of curve ef-
fects, we propose a new algorithm to identify those covariates with the same
effect on a single response, or, similarly, to identify the responses that are related
by similar effect of a given covariate. In a generic framework, we investigate the
similarities among n general curves, parametrized by βi(p), i = 1, ..., n. The clus-
tering approach proposed in this paper is based on a new dissimilarity measures
based both on shape and distance. More in the detail, we define a new dissimi-
larity measure, based on two measures accounting both for the shape and for the
distance. Let βi(p) be the coefficient function approximated by a spline function
si(p), for p = 1, ..., Np, i = 1, ..., n. Considering two different curves βi(p) and
βi′(p) with i 6= i′, we define

dii
′

shape(p) = I(sign(s′′i (p))× sign(s′′i′(p)) = 1)

dii
′

distance(p) = I(|βi(p)− βi′(p)| ≤ f(α,dist(p))),

where s′′i (·) is the second derivative of βi(·) and f(·, ·) is a cut-off function, that
depends on α, a probability value, and dist(p), that is the vector of the distances
between all the pairs of curves for each value of p. Computed the distribution of
dist(p) for each value of p, the cut-off function selects the corresponding α−th per-
centile vector. Therefore, the proposed dissimilarity measure between two curves
is defined as:

dii
′

= 1− 1

Np

Np∑
1=1

[
dii
′

shape(p) · dii
′

distance(p)
]

(1)

In the proposed approach, the new dissimilarity measure is used to define a
dissimilarity matrix, useful for the application of a hierarchical clustering method.
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3 Simulation Study

Let us consider a multivariate scenario in which the quantile function is simulated
as

Q(p | x,θ) = β0(p | θ) + β1(p | θ)x1 + · · ·+ βq(p | θ)xq,

where x1, x2, . . . , xq are independent U(0, 5) variables and p ∈ U(0, 1). In the first
simulation scenario, the intercept is modelled as a quantile normal distribution
function (φ) for its flexibility. Other choices, as suggested in the original paper of
Frumento and Bottai (2015), could be also considered. We use q = 2 covariates
and define three groups of quantile functions

Q1(p | x,θ) = (1 + φ(p)) + (.5 + .5p+ p2 + 2p3)x1 + (.5 + 2p+ p2 + .5p3)x2,

Q2(p | x,θ) = (1 + φ(p)) + (−3 + .5p+ p2 + .5p3)x1 + (−1.5− p− .5p2 + p3)x2,

Q3(p | x,θ) = (1 + φ(p)) + (.3− .5p− p2 + 2p3)x1 + (−.5 + p− .5p2 − p3)x2,

Ten responses are generated for each quantile function (Q1, Q2, Q3). Applying the
QRCM method to these responses we obtained the 30 coefficients curves, namely
curves effect, and their lower and upper bounds, useful to select the optimal
number of clusters, for both covariates. The proposed algorithm is able to select
the correct number of clusters and to discriminate all the curves effect. In Fig. 1,
the curves for both covariates are represented in the three clusters. Results are
summarized in terms of average cluster distances within clusters, which highlight
closeness of curves, and silhouette widths to assess the cohesion of each curve
compared to the other clusters. In particular, results show a valid clustering of
curves, since silhouette widths are all greater than 0, and for clusters 2 and 3
these values are greater than 0.5. Moreover, all the average cluster distances are
lower than or equal to 0.5.
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FIGURE 1. The simulated 30 curves (solid black lines) clustered in 3 clusters,
conditioning to the first (left) and the second covariate (right), respectively. Red
lines are the mean curves; the shaded areas are identified by the mean lower and
upper bands within each cluster. The dotted line corresponds to zero.

4 Conclusions

The proposed method for curve-clustering provides a new perspective for the
study of similarity, since it is used in a context of the coefficient functions of a
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quantile regression model. The proposed algorithm, can be actually used in any
general context, since the main purpose is finding both close and similar shape
curves. Although in this paper we briefly summarize some results, showing a good
performance of the method, the curve similarity should be performed just on the
subsets of quantiles where the effects are significant. This allows to account for
a more comprehensive analysis of the relationship between variables along the
distribution of the outcome variables.
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Abstract: Finite normal mixture model is used to model the distribution of
indices of deprivation in the Czech Republic. Two composite indicators are anal-
ysed (for material and social deprivation) based on the Survey of Health, Ageing
and Retirement in Europe (survey SHARE) for the population aged more than 50
in the Czech Republic in 2013. The maximum likelihood estimates are compared
to the moment method based on L-moments with the use of AIC information
criterion. The numeric approach is used for the evaluation of quantiles of a mix-
ture.
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1 Methods

The finite normal mixture density is defined as (for K components)

f(x;ψ) =

K∑
j=1

πjf(x;µj , σj),

where f(x;µj , σj), j = 1, ...,K are component normal densities and π is a vector
of weights of the components in the mixture. The vector of unknown parame-
ters in the model ψ consists of the parameters (2K parameters) of component
distributions µj , σj , j = 1, ...,K and K − 1 free parameters πj fulfilling obvious
constraints 0 ≤ πj ≤ 1 ,

∑
πj ≤ 1. Usually the maximum likelihood estimates of

parameters are used (in this text the package mixtools, Benaglia et all. (2009) was
applied). In addition to this process, the moment method of estimation based on
L-moments is proposed. For 3K − 1 parameters in the model the same number
of ”theoretical” L-moments are evaluated by the formula (r = 1, ..., 3K − 1)

Lr =

∫ 1

0

Q(P )P ∗r−1(P )dP,
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where QP is a quantile function (of the mixture) and P ∗r is the rth shifted Leg-
endre polynomial. Unfortunately, there is not a closed formula for the quantile
function of the mixture, however the weighted average of component quantiles is a
useful approximation and initial value for a numeric method. Quantiles QP were
evaluated numerically on the grid (as a root of an equation F (QP ) = P , where F is
a cumulative distribution function of the analysed mixture) and substituted into
the formula for L-moments. Sample L-moments l1 to l3K−1 were evaluated using
Lmoments package (Karvanen, 2006) and equations Lj = lj , j = 1, ..., 3K − 1
were solved with respect to unknown parameters in the model. Standard errors
of estimates were evaluated using bootstrap. Both fits are compared with AIC
criterion.

2 Data and Results

The Survey of Health, Ageing and Retirement in Europe (SHARE, Börsch-Supan
(2016)) is a multidisciplinary and cross-national panel database of micro data of
European population aged over 50. Data from 6 waves (from 2004 to 2015) are
available at present. The module of deprivation is based on the work of (Adena
at all., 2015). Values of two composite indicators, depsoc for social deprivation
and depmat for material deprivation from this module are used to model the dis-
tribution of these indices in the Czech Republic in 2013. Depmat is an aggregate
measure of material conditions of individuals aged over 50 in Europe using a
set of 11 items that refer to two broad domains: the failure in the affordability
of basic needs and financial difficulties. Depsoc is an index for measuring social
deprivation, for this purpose 15 items from the survey were used. Answers with
alternative values yes (in case of problems)/no are weighted into composite in-
dices. Both indicators are transformed into 0 − 1 scale, 0 means no deprivation
and 1 is the highest deprivation.
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FIGURE 1. Histogram and kernel density estimate for the index of
material deprivation; the whole sample (left), positive values (right);
quartiles are given with dashed lines.

In the sample, n =4 091 respondents from the Czech republic aged above 50
are included (2 366 female and 1 725 male) with observed values of indices of
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FIGURE 2. Histogram and kernel density estimate for the index of
social deprivation; quartiles are given with dashed lines.

interest. A normal mixture with two components was selected for the index of
social deprivation depsoc (see Figure 1). For the index depmat there is 41% of
zeroes (no deprivation) in the data (Figure 2). For this reason, the model with
a discrete part (value 0 with probability π3) and a continuous part of K = 2
normal distributions for positive values. The value of π3 was estimated a relative
frequency of respondents with depmat = 0. Then for both models there are 5
parameters in the model and first five theoretical and sample L-moments must
be evaluated to obtain five equations Lj = lj , j = 1, ..., 5 to be solved with respect
to unknown parameters. Both (MLE and moment method) approaches can be
compared using AIC criterion. Fitted distributions are shown in the Figure 3.
According to the AIC criterion both methods were comparable, however the chi-
square test rejects the hypotheses of proper models (P < 0.0001). We consider
both models to be acceptable for a description of probability distribution of
analysed indices. The models enable identification of subgroups of individuals
(Figure 3); two components with estimated expected values 0.113 (L-moments
0.106) and 0.367 (L-moments 0.356) for social deprivation and three with 0 (no
material deprivation with estimated probability 0.406) and two components with
0.150 (L-moments 0.169) and 0.381 (L-moments 0.411).
The analysed indices, based on the SHARE data, correspond (at least for the
Czech Republic) to the data regularly published by the Czech Statistical Office.
Percentages of deprived (in all questions included in both surveys) are similar for
age groups 50-65, 65+, that are used in official statistics. The mixture model is
well applicable for the modelling of both distributions.
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FIGURE 3. Fitted probability distributions of the indices of depriva-
tion; material deprivation solid lines, social deprivation dashed lines.
Blue lines MLE, black lines moment method estimator.
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Abstract: In this paper we discuss estimation and diagnostic in generalized ad-
ditive partial linear models (GAPLM) for analyzing correlated data. A reweighed
iterative process based on the back-fitting algorithm is derived for the parame-
ter estimation and discussions on the extension of some diagnostic procedures
for GAPLM are given. A motivating data set is reanalyzed by the methodology
developed in the paper.
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1 Introduction

Generalized additive partial linear models (GAPLM) (see, for instance, Wang et
al.,2014) comprise an important approach for modelling correlated data. Such
models have the feature of jointly modelling the mean structure by parametric
and nonparametric components, with the information only on the marginal distri-
butions as well as on the within-subject correlation structure. The GAPLM class
combines two well known approaches, generalized estimating equations (GEE)
(Liang and Zeger, 1986) and generalized additive models (Hastie and Tibshirani,
1990).
The aim of this paper is to discuss estimation and diagnostic in GAPLM. The
model is presented in section 2, whereas an iterative process for the joint es-
timation of the parametric and nonparametric parameters is derived in section
3. Discussions on the extension of some diagnostic procedures are also given. A
motivating data set is reanalyzed in the last section.
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2 The model

Let yi = (yi1, . . . , yimi)
T be the mi × 1 response vector for the i-th subject, for

i = 1, . . . , n. We will assume that the marginal distribution of yij belongs to
the one-parametric exponential family of distributions, namely yij ∈ EF(µij , φ),
where E(yij) = µij , Var(yij) = φ−1Vij , φ

−1 > 0 denotes the dispersion parameter
and Vij is the variance function. In addition, one has a link function g(·) such
that

g(µij) = ηij = xT
ijβ +

q∑
k=1

fk(tijk),

where xij = (xij1, . . . , xijp)
T contains values of explanatory variables, β is a p-

dimensional parameter vector and fk(·) is an unknown smooth function of some
continuous explanatory variable tk. In matrix notation one has ηi = Xiβ +∑q
k=1 Nikfk, where Xi = (xT

i1, . . . ,x
T
imi)

T, Nik is the k-th incidence matrix for
the i-th subject and fk = (fk(t01k), . . . , fk(t0rkk))T with (t01k, . . . , t

0
rkk

) denoting
the distinct and ordered values of tk. The working correlation matrix (within-
subject) will be denoted by Ri(ρ), where ρ = (ρ1, . . . , ρs)

T, for i = 1, . . . , n,
j = 1, . . . ,mi and k = 1, . . . , q.

3 Parameter estimation and diagnostics

Applying the Gauss-Seidel method to solve the penalized GEE the (b+1)-th step
of the iterative process for obtaining the penalized estimates of β and f1, . . . , fq,
by fixing ρ and the smoothing parameters α1, . . . , αq, may be expressed as

β(b+1) = {
n∑
i=1

XT
i W

(b)
i Xi}−1

n∑
i=1

[XT
i W

(b)
i {z

(b)
i −

∑
` 6=0

Ni`f
(b+1)
` }]

f
(b+1)
k = {

n∑
i=1

NT
ikW

(b)
i Nik + αkMk}−1

n∑
i=1

[NT
ikW

(b)
i {z

(b)
i −

∑
6̀=k

Ni`f
(b+1)
` }],

for b = 0, 1, . . . and ` = 0, 1, . . . , q, where Wi = Di{V
1
2
i Ri(ρ)V

1
2
i }
−1Di denotes

the weight matrix, zi = ηi + D−1
i (yi − µi) is the modified dependent response

with Di denoting a diagonal matrix of derivatives dµij/dηij , Mk are related
with the spline basis functions, Ni0 = Xi and f0 = β, for i = 1, . . . , n, j =
1, . . . ,mi and k = 1, . . . , q. The iterative process above should be alternated with
consistent estimates for ρ and the solution for f = (f1, . . . , fq)

T leads to natural
cubic splines. The smoothing parameters are estimated by the AIC criterion.
Approximate standard errors are derived from the penalized estimated robust

asymptotic variance-covariance matrix for (β̂T, f̂
T

)T.
Approximate leverage measures, normal conformal curvatures under some usual
perturbation schemes and approximate standardized Pearson residuals are de-
rived. Some simulation studies, under marginal distributions in the EF as well as
within-subject correlation structures, indicate for a good agreement between the
empirical distribution of the residuals and N(0,1).
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4 Application

For illustration, we will consider a balanced study described in Myers et al. (2002,
section 6.5) in which n = 30 rats had a leukemic condition induced. Three
chemotherapy treatments were applied in groups of 10 rats, and each rat was
observed in four time periods. The number of cancer cell colonies, the number of
white blood cells (wbc) and the number of read blood cells (rbc) were observed at
each period. Fig. 1(left) describes the dispersion graph between the log(number of
cancer cells) and the number of wbc, and a nonlinear tendency may be observed.
The dispersion graph between the log(number of cancer cells) and the number of
rbc (omitted here) presents approximately a linear positive tendency.
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FIGURE 1. Dispersion graph between the log(number of cancer cells) and wbc
(left) and the simultaneous 95% confidence intervals for f(wbc) (right).

Denoting by yij the number of cancer cells for the i-th rat at the j-th instant,
we propose to explain µij = E(yij) the following GAPLM: (i) yij ∼ P(µij), (ii)
log(µij) = β1Treat1i + β2Treat2i + γrbcij + f(wbcij) and (iii) corr(yij , yij′) =

ρ|j−j
′|, for i = 1, . . . , 30 and j, j′ = 1, 2, 3, 4, where Treat1 and Treat2 denotes

dummy variables.
The model was fitted in R (codes developed by the authors) and we found the
parameter estimates (approximate standard errors) β̂1 = −0.249(0.067), β̂2 =
−0.031(0.065), γ̂ = 0.015(0.007) and ρ̂ = 0.508, with f(wbc) being significant.
The smoothing parameter and the effective degrees of freedom were estimated as
α = 636.84 and df(α) = 6.80(3 + 3.80), respectively. Fig. 1(right) presents the
simultaneous 95% confidence intervals for f(wbc). The normal probability plot
with the standardized Pearson residual (Fig. 2(left)) does not present unusual
features and a measure related with rat #28 is pointed out in Fig. 2(right). This
rat received treatment 3, and has the lowest number of cancer cells and the largest
number of wbc counts.
Therefore, based on the above results, one may conclude that treatment 1 seems
to reduce the average count of cancer cell colonies, whereas the other treatments
do not seem to have significant effects. In addition, the average count of cancer
cells colonies seems to decrease as the number of wbc increases and seems to
increase as the number of rbc increases.
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FIGURE 2. Normal probability plot for the standardized Pearson residual (left)
and the index plot of the normal conformal curvature under the case-weight
perturbation scheme (right).

Acknowledgments: Special Thanks to CNPq and FAPESP, Brazil.

References

Hastie T.J. and Tibshirani R.J. (1990). Generalized Additive Models. London: Chap-
man & Hall.

Liang, K-Y. and Zeger, S.L. (1986). Longitudinal data analysis using generalized
linear models. Biometrika, 73, 13 – 22.

Myers, R.H., Montgomery, D.C. and Vining, G.G. (2002). Generalized Linear Mod-
els: with Applications in Engineering and the Sciences. New York: Wiley.

Wang, L., Xue, L., Qu, A. and Liang, H. (2014). Estimation and model selection
in generalized additive partial linear models for correlated data with diverg-
ing number of covariates. The Annals of Statistics, 42, 592 – 624.



What is the best approach to analyze
longitudinal bounded scores? Application to
Quality of Life data

Anne-Françoise Donneau1, Cibele Russo2, Nadia Dardenne1,
Murielle Mauer3, Corneel Coens3, Andrew Bottomley3,
Emmanuel Lesaffre4

1 Biostatistics, University of Liège, CHU Sart Tilman, Liège, Belgium
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Abstract: The present study compares the linear mixed-effects model and the
beta regression model to analyze longitudinal health-related quality of life bounded
outcome scores.
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1 Aims

In medical studies, it is a common practice to assess at prespecified time intervals
the patient’s quality of life (QoL) by means of Likert-type items questionnaire
that covers different domains of the QoL (e.g., physical, emotional, social health
issues). Usually, the items are summated and linearly transformed to construct
a bounded score ranging from 0 to 100. The aim of the present study is to
contrast different approaches, namely the linear mixed-effects model and the beta
regression model, to analyze longitudinal bounded outcome scores.

2 Methods

The EORTC QLQ-C30 Fatigue scale and the Social Functioning scale from the
537 patients in the EORTC 26981 trial, a randomized multicenter phase III in
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glioblastoma evaluating the addition of temozolomide (TMZ) to radiotherapy
(RT), were compared between the two arms using different statistical approaches
for bounded outcome scores (see, for instance, Aaronson et al., 1993 and Taphoorn
et al., 2005). Quality of life was assessed using the EORTC QLQC30 version 2
questionnaire: at baseline; during radiotherapy at week 4; 4 weeks after comple-
tion of radiotherapy; at the end of the third and sixth cycle of adjuvant temo-
zolomide; and every 3 months thereafter until disease progression for patients
allocated RT+TMZ, and at equivalent time points for those allocated radiother-
apy alone. The statistical approaches selected in the present study included the
beta regression model (for bounded values) from Ferrari and Cribari-Neto (2004)
and the commonly used linear mixed-effects model (for continuous values) from
Verbeke and Molenberghs (2000). Scores were divided by 100 to fit to the condi-
tion of application of the beta distribution.

3 Results

The magnitude of the P-values for the treatment difference derived under each
statistical approach slightly varied at some assessment time points. However, the
estimations of the treatment mean scores at each time point were comparable
(See Table 1).

TABLE 1. Estimated mean scores in both arms and P-value related to treatment
effect at each assessment time for the Fatigue scale.

Linear mixed model Beta regression model
RT RT+TMZ P-value RT RT+TMZ P-value

Baseline 0.36 0.35 0.76 0.34 0.34 0.99
During RT 0.36 0.40 0.07 0.35 0.39 0.11
After RT 0.37 0.41 0.08 0.36 0.40 0.12
1st follow-up 0.33 0.40 0.05 0.31 0.40 0.04
2nd follow-up 0.31 0.32 0.90 0.28 0.30 0.63
3rd follow-up 0.29 0.31 0.74 0.30 0.34 0.54
4th follow-up 0.30 0.27 0.72 0.31 0.30 0.90

-2 Log Lik -305.9 -785.6
AIC -273.9 -753.6
BIC -205.4 -685.0

RT = Radiotherapy / RT+TMZ = Radiotherapy and temozolomide



Donneau et al. 141

4 Conclusion

The preliminary analysis of these two QoL scales showed that both statistical
approaches led to the same conclusion when considering the treatment effect,
P-values and the mean scores. However, the beta regression model presented a
better model fit for the QoL scales. This indicates that incorporating the bounded
outcome assumption into the analysis methods can improve QoL hypothesis test-
ing. Other models for longitudinal bounded outcome scores, such as truncated
regression model and coarsening approach, will be investigated and compared to
these preliminary results.
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Abstract: This work presents a mixed-effects nonlinear regression model with a
class of skewed distributions, which provide alternatives to the normal model and
other symmetric distributions and may allow better fit to correlated nonlinear
data. Many studies have been proposing models with scale mixtures of skew-
normal (SMSN) family of distributions, including skew distributions with heavy-
tailed. A real data analysis with this new proposal is performed.
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1 Introduction

Models with mixed effects can be applied in several areas of knowledge, in par-
ticular when data are correlated. Nonlinear models with mixed effects have been
explored recently because of their flexibility to deal with measures in areas such
as economics and pharmacokinetics. Russo et al. (2009) developed a nonlinear
model with random effects assuming elliptic distributions for the random compo-
nents of the model. In this work we present an asymmetric nonlinear model with
mixed-effects in which the associated error follows a distribution belonging to the
scale mixtures of skew-normal (SMSN) family of distributions, which comprises
distributions such as skew-normal, skew-Student-t, skew-contaminated normal,
skew-exponential power and skew-slash and the symmetric versions of these dis-
tributions.
A random vector y ∈ Rp follows a SMSN distribution, as discussed in Zeller
et al. (2011), Y ∼ SMSNp(µ,Σ,λ, H), with location vector µ ∈ Rp, matrix
scale Σ positive definite with dimension p× p and skewness vector λ ∈ Rp if its
probability density function (pdf) is given by

f(y) = 2

∫ ∞
0

φp(y|µ, κ(u)Σ)Φ1(κ−1/2(u)λ>Σ−1/2(y − µ))dH(u;ν),

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).



Pereira and Russo 143

where κ(.) is a strictly positive function, U is a positive random variable with
cumulative distribution function (cdf) H(u;ν), being ν supposedly known, d =
(y−µ)>Σ−1(y−µ) is the Mahalanobis distance, φp(.|µ,Σ) is the pdf of the p-
variate normal distribution and Φ1(.) is the cdf of the univariate standard normal
distribution. In the SMSN family, if the vector of parameters λ is null, we will
have a SMN family of distributions.

2 The model

A nonlinear regression model with mixed effects and under the SMSN family of
distributions, where the observed responses vector yi, i = 1, . . . , n, of dimension
mi × 1, according to Vonesh and Carter (1992), can be written as

yi = f(α, xi) + Zibi + εi, (1)

where α = (α1, . . . , αp)
> is the vector of unknown parameters, Zi is a mi × r

matrix of known constants. The random effects bi = (bi1, . . . , bir)
> and the errors

εi = (εi1, . . . , εimi)
> are uncorrelated and follow multivariate SMSN, with null

location vector and covariances matrices D and σ2Imi , respectively, and λεi = 0.
So we have the model

(
yi
bi

)
∼ SMSNq

((
f(α, xi)

0

)
,

(
Σi ZiD

DZ>i D

)
,

(
λyi

λbi

)
, H

)
. (2)

where q = mi + r and Σi = ZiDZ>i + σ2Imi and yi has marginal distribution
SMSNmi(f(α,xi),Σi,λyi ;H).

3 Maximum likelihood estimation

The estimation of the parameters θ = (α>, σ2)> is obtained numerically via the
EM-type algorithm and Fisher scoring algorithm. The model (2), with κ(ui) =
1/ui, can be represented hierarchically as

yi|Ti = ti, Ui = ui
ind.∼ Nmi(f(α,xi) + ∆iti, u

−1
i σ2Imi), (3)

Ti|Ui = ui
ind.∼ HN1(0, u−1

i ) and (4)

Ui
ind.∼ h(ui;ν), (5)

where HN1 denotes the univariate half normal distribution, ∆i = Σ
1/2
i δi, δi =

λi/(1 + λ>i λi)
1/2 and σ2Imi = Σi −∆i∆

>
i , thus ZiDZ>i = ∆i∆

>
i .

Let y = (y>1 , . . . ,y
>
n )>, u = (u>1 , . . . , u

>
n )> and t = (t>1 , . . . , t

>
n )>, under the hi-

erarchical representation (3)-(5), the complete log-likelihood function associated
with yc = (y>,u>, t>)> is given by

`(θ|yc) ∝ 1

2

n∑
i=1

{
− log |σ2Imi | −

ui
σ2

(yi − f(α,xi))
>(yi − f(α,xi))

+
2uti
σ2

∆>i (yi − f(α,xi))−
ut2i
σ2

∆>i ∆i

}
(6)
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where ûi = E(Ui|θ = θ̂,yi), ûti = E(UiTi|θ = θ̂,yi) and ût2i = E(UiT
2
i |θ =

θ̂,yi) (see Lachos et al. 2010). Maximizing Q(θ|θ̂
(k)

) = E[`c(θ|yc)|y, θ̂
(k)

] in the

k-th iteration of the EM-type algorithm, about θ̂
(k)

, we obtain

σ̂2
(k+1)

=
1

n

n∑
i=1

{
û

(k)
i r̂

(k)>
i r̂

(k)
i − 2ût

(k)
i ∆̂

(k)>
i r̂

(k)
i + ût2i

(k)
∆̂

(k)>
i ∆̂

(k)

i

}
and

∆̂
(k+1)

i =
ût

(k)
i r̂

(k)
i

ût2i
(k)

, where r̂
(k)
i = (yi − f(α̂(k),xi)).

At each iteration of the EM-type algorithm, the estimates of α(k) are obtained
by Fisher scoring algorithm

α̂(k+1) = α̂(k) +

[
n∑
i=1

{
û

(k)
i Ĵ

(k)>
i Ĵ

(k)
i + ût

(k)
i L̂

(k)>
i ∆̂

(k)

i

}]−1

[
n∑
i=1

{
Ĵ

(k)>
i

(
û

(k)
i r̂

(k)
i − ût

(k)
i ∆̂

(k)

i

)}]
,

where Ĵ
(k)
i = ∂f(α̂(k),xi)/∂α̂

(k)> and L̂
(k)
i = ∂2f(α̂(k),xi)/∂α̂

(k)∂α̂(k)>.
The prediction of the random effects bi was obtained by empirical Bayes method.

4 Application

The data from a study of the kinetics of the theophylline anti-asthmatic agent
presented in Pinheiro and Bates (2000) were analyzed with this new proposal and
compared with symmetric distributions, thus, nonlinear models were fitted under
skew-normal distribution and skew-Student-t distribution (skew-t) and compared
to normal distribution and Student-t distribution (t), whose fits are presented in
Russo (2010). We consider the models (1) and (2) where α = (lke, lka, lcl), with
yi = (yi1, . . . , yimi)

> the concentration measurement vector Ci(t) and xi = ti =
(ti1, . . . , timi)

> the vector representing the time measurements. The nonlinear
model for theophylline concentration using time as a covariate can be represented
by

yij =
Di(e

lke+lka+lcl)

elka − elke
(e−tij elke−e−tij elka )+εij , i = 1, . . . , n and j = 1, . . . ,mi.

where Di is the dose aplicated of the drug (in mg/kg) to the ith individual.
We observe that the model under the skew-Student-t distribution presented the
lowest standard errors for the parameters lke, lka and lcl, but for the parameter
σ2 the smallest standard error occurred with the skew-normal distribution and
according to the AIC and BIC information criteria obtained, the more appropri-
ate distribution for this application is the skew-normal distribution because it
presents lower values for these statistics.
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5 Discussion

The mixed nonlinear model presented is a general case of nonlinear mixed models
that include symmetric and asymmetric distributions. The proposed model can be
used when atypical observations or asymmetry are present, due to the flexibility
of the SMSN family of distributions.
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Piaúı, Brazil.
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Abstract: We present a generalized functional additive regression model for
spatio-temporal functional data representing surficial ground velocities of sim-
ulated earthquakes. The data come from a large-scale in silico experiment to
investigate the effects of physical parameters describing the conditions at the
triggering fault on the large-scale dynamics of earthquakes. We describe the per-
formance of a recently developed efficient inference algorithm on this huge data
set with a complex effect structure. The estimated effects are geophysically plau-
sible and the methodological approach seems promising.
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1 Introduction and data

The physics of seismic waves emanated by earthquakes is well-understood, but
challenging with respect to the natural complexity of topography, subsurface ve-
locity structure and earthquake source effects on large scales relevant for earth-
quake hazard assessment. Furthermore, current earthquake models rarely include
the effects of earthquake faulting dynamics. To tackle both of these challenges,
we use a generalized functional additive regression to quantify how physical con-
ditions at an earthquake fault affect the surficial ground velocity measured over
time.
The simulated earthquake data we analyse are derived from a large scale computer
experiment with the open source software SeisSol (Breuer, 2014) and are based on
a real earthquake that took place in Northridge (USA) in 1994. Absolute ground
velocities were simulated solving elastic wave equations and are defined as the

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
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(isotropic) L2 norm of the ground velocities in east-west, north-south and vertical
direction. Each of the simulations used a different set of physical conditions at the
fault. Surficial ground velocities were then recorded at 6146 virtual seismometers.
For the analysis, the first 15s of the absolute ground velocity measurements from
135 simulations were used in a resolution of 2Hz. Leading zeros were discarded
until the first relevant observation (≥ 0.01).
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FIGURE 1. Left: Categorized mean absolute ground velocity in one simulation
over the area under study, darker colours correspond to increased velocity. Right:
Typical observations of absolute ground velocity over time. The initial peak of
the ground velocity is delayed and smaller as hypocentral distance increases.

The evaluated predictors were all constant over time. Our main interest was in five
physical parameters, which were pre-set in each simulation and which consisted
of three frictional resistance variables, the direction of the regional tectonic back-
ground stress and the binary soil material of the whole area ({rock, sediment}).
Additionally included were the moment magnitude as the classical measure of
earthquake size, the local topography as well as the height and the hypocentral
distance of each seismometer.

2 Methodology

Following Scheipl, Gertheiss and Greven (2016), the generalized functional ad-
ditive model for function-on-scalar regression is written in the form yi(tl) ∼
F (µil,ν), where g(µil) =

∑R
r=1 fr(X ri, tl), with seismometers i = 1, . . . , n, ab-

solute seismic ground velocity yi(tl) recorded at time point tl and the number
of additive effects R with associated covariates X ri. Conditional on the additive
predictor and known response function g(·), yi(tl) is assumed to come from some
given distribution F with conditional expectation µil and dispersion and shape
parameters ν. Each functional additive effect fr(X ri, t) is represented in terms
of a (tensor product) P-spline basis. A prediction error based approach was used
for tuning basis sizes as the high-dimensional data dominate the penalization
prior in the estimation. The model is fitted on 468,503 data points and com-
prises 18 smooth effects with a total of 633 spline coefficients and 25 smoothing
parameters. We used a recently developed highly performant algorithm for pe-
nalized likelihood-based inference from Wood et al. (2016) that makes estimation
of this complex model on such large data feasible. Its major advances are the use
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of a highly efficient and parallelizable block-wise Cholesky decomposition and a
compressed representation of the (marginal) spline basis.
Local small-scale (radius 300m) and large-scale (2000m) topography at each mea-
suring station was included via the Topographic Position Index (TPI) introduced
by Weiss (2001), defined as the height difference between the seismometer and
the mean height in a circular neighborhood.

3 Results

A Gamma model with exponential response function g(·) explained 70.7% of the
null deviance. Excluding moment magnitude from the model improves model per-
formance measured by test set MSE. This is in line with a secondary finding that
moment magnitude can be predicted quite precisely (98.2% explained deviance
in a linear model with log-transformed response) based on the five parameters
describing the simulation setup.
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FIGURE 2. Pointwise 95% confidence intervals for the predicted mean of absolute
ground velocity for various values of the two most important predictors, with
remaining covariates being held constant at realistic values. Left: hypocentral
distance. Right: dynamic coefficient of friction.

Among the remaining predictors the hypocentral distance and the dynamic co-
efficient of friction show by far the strongest effects, a visualization is given in
Figure 2. Additional results can be found in Bauer (2016). All the estimated
effects seem geophysically plausible.
In total the model has an acceptable fit, although absolute peak ground velocities
are often underestimated. Remaining spatial structure of the mean residuals is
shown in Figure 3.

4 Conclusion

Functional additive regression models are a promising approach in modeling sur-
ficial ground velocity. Major effects are the hypocentral distance and the dynamic
coefficient of friction, with higher values leading to decreased ground velocities for
both. The estimated effects all seem geophysically plausible. In future research,
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FIGURE 3. Mean residuals (averaged over time and over simulations) over the
area under study. The black dot marks the epicenter.

the model will be refined further, e.g. by explicitly modeling spatial correlation
and by relaxing the strict assumption of the hypocenter as fixed point source for
all simulated earthquakes.
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Abstract: A new flexible cure rate survival model is developed where the initial
number of competing causes of the event of interest (say lesions or altered cells)
follows a power series distribution. This model provides a realistic interpretation
of the biological mechanism of the event of interest as it models a destructive
process of the initial competing risk factors and records only the damaged portion
of the original number of risk factors. Our proposed survival models are used for
predicting breast carcinoma survival in women who underwent mastectomy. The
postmastectomy survival rates are often based on previous outcomes of large
numbers of women who had a disease, but they cannot predict what will happen
in any particular patient’s case. Pathologic explanatory variables such as disease
multifocality, tumor size, tumor grade, lymphovascular invasion and enhanced
lymph node staining are prognostically significant to predict these survival rates.

Keywords: Cure rate models; power series distribution; proportional hazard
models; regression model; survival models

1 Introduction

The event of interest in many survival studies or cancer-relapse trials can be
the death of a patient (due to various competing causes) or a tumor recurrence
(attributed to metastasis-component tumor cells left active after an initial treat-
ment). However with the recent advances in (cancer) treatment therapies, a high
portion of the subjects are expected to be cured, i.e. remaining disease free after
prolonged follow-ups. In this vein, there is now a vast literature on ‘cure rate
models’ for survival data, though majority of these stems from either one of
the 2-component Mixture Cure model of Berkson & Gage(1952), or the Bounded
Cumulative Hazard (or, BCH model) of Yakovlev & Tsodikov(1996).

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
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Recently, Rodrigues et al.(2011) have extended the BCH model of Yakovlev &
Tsodikov(1996) through a special case of the destructive (compound) weighted
Poisson distribution. The main purpose of this study is to propose a general class
of destructive survival cure rate model.

2 Model

For an individual in the population, let M denote the unobservable number of
causes of the event of interest for this individual, for example, M can represent
the number of altered cells before the treatment initial. Consider that M follows
a power series (PS) distribution with probability mass function (pmf),

P (M = m; θ) =
amθ

m

A(θ)
, m = 1, 2, . . . , (1)

where am ≥ 0 and A(θ) =
∑∞
m=1 amθ

m and θ ∈ (0, s) (s can be ∞) is such
that A(θ) is finite. The immediate consequence of a prolonged treatment is the
formation (or not) of precancerous lesions. Given M = m, let Wj , j = 1, . . . ,m,
be independent random variables (independent of M) following a Bernoulli dis-
tribution with success probability φ indicating presence of the j-th lesion (or
competing cause), or the probability of an undestroyed clonogenic cell. The vari-
able N , denoting the total number of altered cells among the M initial cells
(competing causes), which are not destroyed or eliminated by the treatment, is
defined by

N = W1 +W2 + · · ·+WM . (2)

By damaged or destruction, we mean N ≤M . The initial M competing causes is
primary initiated malignant cells, where Wj in ( 2) denotes the number of living
malignant cells that are descendants of the initiated malignant cell j during
some time interval. In this case, N denotes the total number of living malignant
cells at some specific time. The conditional distribution of N (given M = m) is
referred to as the damaged distribution. The time to event for the jth competing
cause is represented by Zj , j = 1, . . . , N . We assume that conditional on N ,
the Zj are iid random variables with cumulative distribution function (cdf) F (t)
and survival function S(t) = 1 − F (t) that does not depend on N. The total
number of competing causes N and the time Zj are not observable (latent).
The observable time to the event of interest is defined by the random variable
T = min(Z1, . . . , ZN ), and T = ∞ if N = 0 with P (T = ∞|N = 0) = 1. Under
this setup, the survival function (Rodrigues et al., 2009) for the entire population
is given by

Spop(t) =
A(θ[1− φF (t)])

A(θ)
. (3)

The cured fraction is given p0 = limt→∞ Spop(y). From (2), we obtain p0 =

limt→∞ Spop(t) = A(θ[1−φ])
A(θ)

> 0,

this indicating that (2) is not a proper survival function. The density and hazard

function associated to (2) are given by fpop(t) = −S′pop(t) = A′(θ[1−φF (t)])
A(θ)

φ θ f(t),

and hpop(t) = A′(θ[1−φF (t)])
A(θ[1−φF (t)])

φ θ f(t) where A′(θ[1 − φF (t)]) = A′(θ) |θ(1−φF (t))

and f(t) = −dS(t)/dt.
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3 Application

To illustrate our proposed modeling discussed so far, we consider the data set
collected by Kattan et al.(2004), where a total of n = 284 women who had
been treated with mastectomy and axillary lymph node dissection at Memorial
Sloan-Kettering Cancer Center (New York, NY) between 1976 and 1979 and met
the following requirements for study inclusion: confirmation of the presence of
invasive mammary carcinoma, no receipt of neoadjuvant or adjuvant systemic
therapy, no previous history of malignancy, and negative lymph node status as
assessed on routine histopathologic examination. We report the survival times
(T ) until the patient’s death or the censoring times at the end of the study.
Some explanatory variables are associated with pathologic characteristics of the
tumor. The tumor grading was performed using the standard modified Bloom-
Richardson system. The lymphovascular invasion was obtained using morphologic
criteria. The lymph node status was measured according to immunohistochem-
istry (IHC) and hematoxylin and eosin (H&E) stains. After deleting subjects with
incomplete data and missing observation times, we have a subset of n = 365 pa-
tients with approximately 78% of censoring. We consider survival times until the
patient’s death (in years) as the response variable. The following variables were
collected from each patient: ti: observed time ti (in years); x1i: age (in years);
xi2: multifocality (0: no, 1:yes); xi3: tumor size (in cm); xi4: tumor grading (0:
I, 1: II, II and lobular); xi5: lymphovascular invasion (0: no, 1: yes) and xi6:
lymph node status (0: IHC+ IHC- and H&E-, 1: IHC+ and H&E+).
To these data, we fit some members of the model described in Section 2 such as the
destructive Poisson, geometric and logarithmic models with all covariates on the
proportions of undestroyed clonogenic cell (φ) and on the short-term survivors.

i.e, φi = exp(β0+β1x1i+···+β6xi6)
1+exp(β0+β1x1i+···+β6xi6)

. Also, based on the proportional hazard func-

tion, we incorporate the covariates through h(y|λ) = h0(y|α)exp{γ0 + γ1x1i + · · ·+ γ6xis},
with h0(y|α) = αtα−1. We apply the selection criteria AIC = −2`(ϑ̂)+2#(ϑ) for
the candidate models, according to the AIC, we select the destructive geometric
cure rate (DGCR) model as our working model. Considering the likelihood ratio
statistic, we test the effect of these covariates in the probability of undestroyed
causes and short-term survivors, i.e., H0 : γ1 = γ2 = γ3 = γ4 = γ5 = γ6 = β1 =
β2 = 0 yielding wn = 0.179 (p-value ≈ 1), indicating that the covariates age,
multifocality and lymphovascular invasion are not significant for the probability
of undestroyed causes and any of the covariates have a significant effect on short-
term survivors. Hence, the MLEs and their standard errors for the parameters
of the DGCR model with significant covariates are listed in Table 1. We con-
clude that the tumor size, tumor grading, lymphovascular invasion and lymph
node status are significant prognostic variables for determining survival time and
mortality risk in women with breast carcinoma.
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TABLE 1. MLEs of the parameters for the reduced DGCR model.
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Abstract: Vector autoregressive models (VAR) and random effects models are
used to flexibly describe the evolution of a multivariate response. However, with a
large number of responses at each occasion and many evaluations, a lot of param-
eters need to be estimated. We propose a latent vector autoregressive model that
describes the evolution of the common factors used to summarize the responses
via a combination of factor analysis (FA) models and random effects models.
The latent VAR model makes use of q common factors for p (p � q) observed
variables. The proposed model is applied to the BelRAI database to identify the
effect of oral health (OH) and general health (GH) on the development of the
other. Parameter estimation is done via Stan package.

Keywords: CFA; Longitudinal data; Oral and general health; VAR models.

1 Introduction

In most longitudinal studies, multiple outcomes are repeatedly measured over
time. In the BelRAI database (De Almeida Mello et al. 2012) three OH and four
GH items are recorded longitudinally on elderly people at baseline and regularly
at every six months. It was of clinical interest to explore the joint evolution of
oral and general health, and to know whether the information from OH provides
additional information on GH and vice versa. To evaluate the evolution of all the
items simultaneously, one could make use of the VAR models or random effects
models. However, joint modeling of all responses leads to over-parameterization
with VAR models (Koop and Korobilis, 2010) and computational problems with
random effects models (Verbeke et al. 2014). To avoid this problem, we propose a
latent VAR model which is a VAR model applied to the latent structure obtained
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from a model that combines confirmatory factor analysis and random effects
models.

2 Motivating data set: BelRAI database

To obtain a picture of the joint dependence of OH and GH, we extracted 3450
individuals from the BelRAI database. The elderly subjects were examined on 2
to 6 occasions providing in total 8320 observations. Three binary OH indicators:
non-intact teeth, chewing difficulty, and dry mouth were selected to represent
OH and four ordinal GH measures: activity of Daily Living (ADL), cognitive
performance scale (CPS), depression rating scale (DRS), and changes in health,
end-stage disease, signs, and symptoms scale (CHESS) were recorded. In each of
the responses there are missing values ranging from 5% to 20%, assumed to be
at random.

3 VAR model for the latent structure

3.1 Basic VAR model

Let Yt be a continuous (p×1) multivariate response recorded at time t. The basic
k-lag vector autoregressive (VAR(k)) model has the form:

Yt = c+ Γ1Yt−1 + ...+ ΓkYt−k + δt, t = 1, ..., T

where c is an unknown vector of intercepts, Γi (i = 1, . . . , k) are coefficient matri-
ces, and δt is a zero mean, serially uncorrelated vector of errors with covariance
matrix ∆. Thus a VAR model is a generalization of an autoregressive model by
modeling the evolution of each variable based on its own lags and the lags of the
others.

3.2 Latent VAR model with random effects for ordinal
outcomes

For ordinal outcomes, we first assume that each of them is a manifestation of a
latent standard normal distributed variable, Z, discretized by a set of cut-points.
These latent variables are modeled using a FA model with q (q � p) common
factors combined with a random effects model:

Zt = τt + Λtξt + b+ εt. (1)

We then apply the VAR model to the latent structure of the common factors,
i.e., at time point t:

ξt = Γ1ξt−1 + ...+ Γkξt−k + δt, (2)

where ξt are the common factors, Λt is the factor loading matrix, b, a vector of p
random intercepts, b ∼ N(0, D) with a diagonal matrix D, and εt ∼ N(0,Ψ) with
diagonal matrix Ψ. The restrictions τ1 = ... = τT and Λ1 = ... = ΛT are applied
to preserve the interpretation of the common factors over time. For identification,
variances of the common factors at the first time point are kept at one.
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4 Application of the latent VAR model to oral and
general health

First, model (1) is used to summarize the OH and GH items in the BelRAI
database using two common factors. VAR model (2) is then fitted to the common
factor (Figure 1): (

ξt
ηt

)
=

(
γ11 γ12

γ21 γ22

)(
ξt−1

ηt−1

)
+

(
δξ
δη

)
,

where

(
ξ1
η1

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
, δξ ∼ N(0, σ2

ξ), δη ∼ N(0, σ2
η). With this

model, the cross-lagged parameter γ12 (resp. γ21) indicates the amount of extra
information that the current OH (resp. GH) indicator provides the future GH
(resp. OH) indicator.
The model is implemented in R using the rstan package. Four chains are run
and convergence is claimed when the estimated potential scale reduction factor
is less than 1.10 and Monte Carlo standard error is less than 5% of the posterior
standard deviation.
Estimates, provided in Table 1, indicate that given current GH, OH is still pre-
dictive of future GH and vice versa.

FIGURE 1. VAR(1) model for the latent factors derived from oral health (OH)
and general health (GH) indicators.

5 Discussion

A similar idea in psychology was proposed by Oort (2001) for continuous variables
with a balanced dataset. Our procedure allows for unbalanced data and works
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TABLE 1. Posterior mean, SE and equal-tail 95% CI for the γ’s.

Parameter Est. SE 95% CI

γ11 0.958 0.004 0.951 0.967
γ12 0.032 0.009 0.015 0.048
γ21 0.039 0.012 0.016 0.062
γ22 0.994 0.001 0.991 0.996

also for ordinal data, making use of a latent structure as proposed by Liu and
Hedeker (2006), Cagnone et al. (2009) but their approaches were restricted to
just one latent factor.References
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Hamburg-Eppendorf, Hamburg, Germany

2 Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Uni-
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Abstract: Generalized estimating equations (GEE) are used for estimating the
relationship between correlated outcome variables and several risk factors. For
independent observations, non-linearity in continuous independent variables can
be taken into account by multivariable fractional polynomials (MFP). We pro-
pose an MFP procedure for GEE models (GEE-MFP) which combines a function
selection procedure with a stepwise elimination procedure. Quasi-likelihood in-
formation criteria are compared to a new Bayesian quasi-likelihood information
criterion (BQIC) for model selection. GEE-MFP is illustrated by re-analyzing
data on hypertension from the Framingham Heart Study. It is shown that the
GEE-MFP algorithm using the BQIC provides the best fit to the real data, while
the use of the established criteria overfit the data. The GEE-MFP algorithm
provides a flexible approach for modeling the functional relationship between
correlated dependent variables and several continuous independent variables.

Keywords: Akaike information criterion; Bayesian information criterion; Non-
linear relationship; Quasi likelihood information criterion; Stepwise selection.

1 Introduction

Generalized estimating equations (GEE) can adequately take into account the
correlation between the dependent variables, e.g., repeated measurements or fa-
mily members (Zeger and Liang, 1986). The main advantage is that only the
mean structure needs to be correctly specified but the correlation between the
dependent variables may be misspecified.Many extensions to GEE have been
proposed (Ziegler, 2011). GEE is, however, still limited in its capability to model
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continuous independent variables. In all software packages, the functional form
of the covariates needs to be specified in advance.
One approach to allow for nonlinearities in the independent variables are frac-
tional polynomial transformations (FPs; Royston and Sauerbrei, 2008).
The advantages of GEE and FP can be combined to a GEE-MFP method. A
first simple algorithm for two independent variables has been proposed by Cui
et al. (2009), which we generalize to handle an arbitrary number of independent
variables. Due to the large amount of possible different models, it is impossible
to search the entire model space and there is a clear need for a simple search
strategy to find the best-fitting model. To this end, we propose a simple feasible
algorithm.

2 The GEE-MFP algorithm and the Bayesian QIC

The function selection procedure (FSP, Fig. 1, left) is combined with a P value-
based stepwise procedure (SWP; Fig. 1, right).

(a) (b)

1

FIGURE 1. Left: Function selection procedure of the proposed GEE-MFP ap-
proach. Right: Stepwise procedure of the proposed GEE-MFP approach.

To measure the goodness-of-fit (GOF) of a GEE model, Pan (2001) proposed the
QIC, an extension of the Akaike information criterion. GOF is investigated by
measuring the difference between the estimated model-based covariance matrix
Â and the estimated robust covariance matrix Ĉ. Therefore, the QIC is estimated

by Q̂IC(R) = −2ϕ̂Q(µ̂) + 2tr
(
Â

−1
Ĉ
)

where ϕ̂Q(µ̂) is the quasi likelihood

function, ϕ the dispersion parameter, µ̂ and Q(µ̂) are estimated using the model
with working correlation matrix R (Pan, 2001). For model selection of the mean
structure, the QIC is simplified by assuming that Q equals the independency
matrix (QICu).
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Cui et al. (2009) used the QICu for selecting the best FP transformations. Dis-
advantages of the AIC are that models have a large number of independent
variables, and tend to overfit the data. We propose to use the Bayesian quasi

likelihood information criterion: B̂QICu(R) = −2ϕ̂Q(µ̂) + pln(N) , where N is
the total number of observations in the study. BQICu penalizes additional pa-
rameters more strictly if the sample size is larger than 8. As a result, fewer FP2
transformations will be observed in the model building process and overfitting is
prevented.

3 Application to the Framingham Heart Study

To illustrate the GEE-MFP approach, data from the Framingham Heart Study,
cohort 2 as provided for the Genetic Analysis Workshop 13, was re-analyzed
(Cupples et al., 2003). The dichotomous outcome high blood pressure at any
investigation (HBP) was modeled using explanatory binary, categorical, and con-
tinuous variables observed at baseline.
Analysis showed that models derived using BQICu included fewer variable vari-
able transformations compared with QIC and QICu models. FP2 transformation
were never for one of the covariates using BQICu, and transformations were more
stable in the sense that less different FP transformations were chosen for each
covariate. The SWP using BQICu yielded in lower FP transformations for each
covariate and less covariates were chosen.
The effect of different transformations on the model fit is illustrated for the
variable age (Fig. 2). The age distribution of study participants was divided into
deciles, and the proportion of subjects with HBP within each decile was plotted
against the median age per age decile group. A good fit would be close to these
points.

GEE with linear influence QIC and QICu before SP
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FIGURE 2. Comparison of fits using the different selection and goodness of fit
criteria before and after stepwise procedure.

QIC and QICu models (FP2 for age) were not close to the estimated proportions.
Models using BQICu (linear in age) provided a good fit to the data. Results were
similar for other variables kept in the models after SWP.
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4 Conclusion

We propose to use fractional polynomial transformations together with GEE
for the joint analysis of an arbitrary number of independent binary, categorical,
and continuous variables together on correlated possibly non-normal dependent
outcome. The approach may be combined with a SWP using a quasi-likelihood
criterion based on the BIC.
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Abstract: Capture-recapture methods are used to estimate the total size N
of a population when it is partially observed. Due to an incomplete identifica-
tion/registration mechanism in real life applications, we observe only the pos-
itive counts representing the number of repeated identifications, and in order
to estimate N , we wish to predict the number of units of the unobserved part.
Sometimes, a validation sample is available in the study, providing complete in-
formation on the unobserved units. The estimate of the total population size can
be obtained by fitting jointly a zero-truncated distribution to the truncated data
and an untruncated distribution of the same class to the untruncated data by
means of the EM algorithm. In this paper, we consider a flexible non-parametric
mixture model approach allowing the heterogeneity of the data by means of a
nested EM algorithm using validation information. A simulation study illustrates
the major ideas of this application.

Keywords: capture-recapture; validation information; mixture models.

1 Introduction and background

The aim of this work is to determine the size N of an elusive target population.
Let us assume that the members of the population are identified at m observa-
tional occasions where m is considered fixed. For each member i the count of
identifications Xi returns a count in 0, 1, ...,m and i takes values from 1 to N . It
is assumed that Xi is observed if unit i has been identified for at least one oc-
casion. We have then that Xi is observed and let X1, ..., Xn denote the observed
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counts with n representing the total number of recorded individuals. We assume
w.l.o.g. that Xn+1 = ... = XN = 0. Let fx be the frequency of units with count
X = x. The population can be described by a probability density function px(θ)
which denotes the probability of exactly x identifications for a generic unit where
px ≥ 0 and

∑∞
x=0 px = 1. It is possible to incorporate a validation sample into

the modelling and decrease the bias in the estimation process. In this sample all
the counts are observed. We will denote by g0, g1, ..., gm the frequency distribu-
tion associated with this sample. Situations of heterogeneity in the population
can be modelled using non-parametric mixture models. We start with the simple
homogeneous case of one component using the binomial distribution through the
EM algorithm. Mixture models were utilized to allow for more components and
include validation information. Simulation studies allowed to enhance the value
of including validation information into the modelling to estimate the total size
of the population.

2 Case study - Salmonella data

The following data was provided by the Animal and Plant Health Agency, UK.
A European Union wide baseline survey of Salmonella infection was carried out
between October 2004 and September 2005. The results of that survey were used
as a basis for setting flock prevalence reduction targets for Salmonella national
control programmes in each member state of the EU. In the UK, a randomized
sample of 454 commercial layer flock holdings was tested for Salmonella. In order
to be able to monitor the progress of control measures for Salmonella, it is im-
portant to be able to obtain an accurate estimate of the initial prevalence at the
time of the EU baseline survey. The goal of this study is to determine the number
of farms which had Salmonella infected poultry but for which result in the survey
was negative. 53 holdings tested positive for Salmonella in one or more samples
of the survey using a EU survey method which consists of a total of 7 tests, so
each farm could have 0,1,...,7 positives as Table 1 (second row) shows.

TABLE 1. Positive and validation samples for salmonella data.

x 0 1 2 3 4 5 6 7

fx ? 17 9 5 6 5 5 6

gx 3 1 3 2 3 3 4 2

The same method was conducted in 21 of the infected farms which established
the validation sample as shown in Table 1 - third row. This sample also allows
to observe infected holdings with all repeated tests negative.

3 Non-parametric mixture models

Our interest lies in estimating the size N of a target population knowing that
no zero counts have been captured. To model px = px(θ) we need to find an
estimate θ̂ for θ so that p̂x = px(θ̂). Since we are dealing with a fixed number
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of sampling occasions m = 7, a binomial distribution to model the data seems
appropriate and we can estimate θ using the EM algorithm. However, specific
assumptions such as independence of observations and homogeneity are required
by the simple binomial model. Also, the benefits of having a validation sample
have not yet been considered. Mixture models allow relaxing these assumptions
offering a flexible approach in modelling heterogeneity. Let f(x, θ) denote the
simple, parametric binomial density function. The finite mixture distribution is
given by px = p(x,Q) =

∑k
j=1 f(x|θj)qj and appears as the marginal distribu-

tion with respect to some variable Z having distribution Q, where Q is the mix-
ing distribution giving non-negative weights qj to θj . Notice that

∑k
j=1 qj = 1.

The mixing distribution can be seen as the heterogeneity distribution of the
listing parameter of the population. If Q is available, we can estimate N , for
example, by means of the Horvitz-Thompson estimator as n

(1−p(0,Q))
. There-

fore, we need to estimate Q and this will be done by maximum likelihood. We
have two likelihoods for capture-recapture modelling: the unconditional likeli-

hood LU (θ,N) =
∏m
j=0

(∑k
l=1

(
m
l

)
θlj(1− θj)m−l

)fj+gj
and the conditional,

observed joint likelihood LC(θ) =
∏m
j=1

∑k
l=1

m
l

θlj(1−θj)m−lql
1−
∑k
j=1 qj(1−θj)

m


fj

×

∏m
j=0

(∑k
l=1

(
m
l

)
θlj(1− θj)m−l

)gj
. The estimation of the unconditional like-

lihood would imply the maximization of the unknown f0. However, LU (Q) =

LC(Q)×B(N,Q) where B(N,Q) =

(
N
n

)
pf00 (1− p0)n. Hence, the unconditional

likelihood depends to a large extent from the conditional likelihood which the EM
algorithm for mixtures maximizes very easily. In the following we will consider
only the conditional likelihood.

4 Application of the EM algorithm with mixtures to
the case study

This theory was applied to the Salmonella data using a mixture model with 2
and 3 components using just the positive sample (Pos) or both samples (Pos-Val).
Note that only the positive models and the positive with validation information,
respectively, are comparable. Simulation studies allow to conclude that we get
an estimate for the population size more accurate and with less bias using a
validation sample (details not reported here).

5 Conclusion

The mixture model approach using only the positive sample can be extended to
include information from the validation sample, the untruncated sample includ-
ing also zero counts which are not observed in conventional capture-recapture
settings. It was done here using the binomial mixture model with 2 and 3 com-
ponents. We have focused on the model selection criteria AIC and BIC to choose
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TABLE 2. Details of the obtained mixture models. The first column indicates
the samples used in the model, f̂0 is the number of unreported cases, N̂ is total
size of the population, k is the number of components of the mixture model, θ̂j
and q̂j are the parameters of the mixture model.

Model f̂0 N̂ k θ̂j q̂j log-likelihood AIC BIC

Pos 1 54 1 0.45 - -146.05 294.1 296.40

Pos-Val 1 54 1 0.48 - -187.79 377.58 379.88

Pos 9 62 2
5.47
1.25

0.34
0.66

-98.75 203.49 209.40

Pos-Val 7 60 2
5.47
1.46

0.41
0.59

-144.64 295.28 301.19

Pos 20 73 3
6.49
3.99
0.78

0.13
0.25
0.62

-96.91 203.82 213.67

Pos-Val 9 62 3
4.24
6.38
1.16

0.31
0.17
0.52

-143.13 296.26 306.11

the more appropriate model. According to that, the mixture model with 2 com-
ponents might be used for both samples. More trust can be developed in the
model for the unobserved part using validation information.
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Abstract: The age-at-capture and length-at-capture of common hake (Mer-
luccius gayi gayi) was collected in San Antonio and Talcahuano areas in Chile
between 1967 and 2010. In addition, the number of annual rings in sagittal otolith,
a common estimate of the age of the fish, is determined. This estimate is, how-
ever, interval-censored. Research questions such as the comparison of the age-at-
capture over the years and the relationship of age- with length-at-capture require
appropriate modeling techniques. It was also of interest to know whether there are
different growth patterns inferred from the otolith radii in the hake and whether
there is a trend in growth over the many years data were collected. This involves
mixture modeling of longitudinal data. Because of the complexity of the data, a
Bayesian approach was used to address the research questions.

Keywords: common hake; radius-at-capture; length-at-capture; Bayesian infe-
rence; repeated measurements

1 Introduction

Measurements were taken on the common hake (Merluccius gayi gayi) in mainly
two maritime zones in Chile, i.e. between the IV (central zone) and the X Region
(south zone) in Chile. It is of scientific but also commercial interest to determine
growth parameters of the hake and their evolution over time. At capture, the
length of the fish is determined as well as the otolith is extracted (a destructive
measurement) to determine the age of the fish. Based on the number of rings,
but also the lengths of the different otolith radii, it is of interest to estimate
the length of the hake at different ages. It is also of interest to examine the
relationship of the otolith radii and the length of the fish, and to explore trends
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of this relationship over time. Knowledge of fish age characteristics is necessary
for stock assessments, and to develop management or conservation plans. The
latter allows for prediction of the volume of the future captures. Some of the
research questions involve techniques that allow for interval-censored responses
and/or interval-censored covariates. But also mixture modeling is involved, and
hierarchical modelling of longitudinal measurements. Because of the complexity
of the data, Bayesian modeling is envisaged.

2 Background and description of the hake data set

The unpublished data set consists of measurements from 8347 common hake
otoliths from the San Antonio and Talcahuano areas in Chile from Fisheries
Development Institute (IFOP). The data set is composed of hake lengths, and
measurements taken on otoliths collected during the years 1967-2010. Ages-at-
capture fish range from 1 to 20 years for females and from 1 to 15 years for
males. An historical analysis of otolith growth could help to describe the ways
in which a given population grows and shrinks over time, as controlled by birth,
death, and migration. It is the basis for understanding changing fishery patterns
and issues such as habitat destruction, predation and optimal harvesting rates.
The population dynamics of fisheries is used by fisheries scientists to determine
sustainable yields.
For illustrative purposes, we present in Table 1 the length-at-capture, radius-at-
capture and radii of the otolith for each annulus for a female fish caught in 2002.
In Figure 1 we show the length-at-capture as a function of age-at-capture for
female and male hake and the fitted growth curve model.
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4.3 Fitting non-linear model considering length vs age by Sex

The von Bertalanffy growth model is given by

Li = L∞ (1− exp{−K (ti − t0)}) + εi with εi ∼ N(0, σ2), (1)

where Li is the length-at-capture and ti is the age-at-capture for the ith fish, respectively. The parameter
interpretation of the von Bertalanffy growth model is given by

• L∞ is the asymptotic (average) length
• K is the growth rate coefficient (units are years−1), and
• t0 represent the age when (average) length was zero.

The Figure 2 show us the data and fitted von Bertalanffy growth model considering length-at-capture versus
age-at-capture for each sex. In addition, we could see from Figure 2 the age-at-capture is between 1 and 20
(years) for females and between 1 and 15 (years) for males.
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FIGURE 1. Hake study: Length-at-capture of fish as a function of age-at-capture
((a) = females, (b) = males) obtained from number of rings in otolith, together
with estimated length obtained from von Bertalanffy growth model ignoring in-
terval-censored character of age measurement.
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TABLE 1. Hake study: Measurements taken at capture of a four years old female
fish caught in 2002.

Radius at year (µm)
Length-at-capture (cm) Radius-at-capture (µm) 1 2 3 4

44 6.9 3 5 6 6.7

3 Statistical modelling approach

A popular growth curve model in biology is the von Bertalanffy growth model
given by

Li = L∞ (1− exp{−K (ti − t0)}) + εi with εi ∼ N(0, σ2),

where Li is the length-at-capture and ti is the age-at-capture for the ith fish, re-
spectively. The parameters of the von Bertalanffy growth model are interpreted
as follows: L∞ is the asymptotic (average) length, K is the growth rate coeffi-
cient (units are years−1), and t0 is the age when (average) length was zero. To
estimate the length of the hake as a function of sex, year of capture and age deter-
mined by the number of rings in the otolith necessitates a regression model with
an interval-censored covariate, see e.g. Bogaerts, Komarek and Lesaffre (2017).
Model estimation, selection and checking will be done using a Bayesian approach.
Another possibility is to regress on the otolith maximal radius-at-capture. This
regression model will be compared to the previous model with respect to fit to
the fish lengths.
There is also interest in exploring the annual radii and to see how that has evolved
over time during the study period. This analysis involves a time series model on
longitudinal profiles where year is taken as time measurement and the annual
radii in the hake as longitudinal measurements. Notice that these longitudinal
measurements are unbalanced across the fish.
All calculations were and will be done using R in combination with Bayesian
software such as JAGS and Stan.

4 Conclusion

This rich data set allows for many interesting explorations and complex modelling
using a Bayesian approach, which will be illustrated at the meeting.
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Abstract: The purpose of this research is to develop a model to predict the
quality of hard disk drives in an outgoing reliability test process. This would
reduce the loss of resources, such as cost reduction and testing time. The amount
of data in this research is huge, therefore 2 data mining techniques which are
logistic regression analysis and neural networks are employed in this study. SAS
Enterprise Miner Workstation 13.2 was used to analyze the data. The data is
separated into 3 sets which are training set 60%, validation set 20% and test
set 20%. There are 197 quantitative independent variables. In order to reduce
the independent variables, the relationship between each independent variable
and the quality of the hard disk drive was tested and it was found that only
25 variables were related to the quality of the hard disk drive. Therefore, 25
independent variables were used to build the neural network model. Since logistic
regression needs to eliminate independent variables that creates multicollinearity
problem. Following this 17 variables were left to build a logistic regression model.
The results show that the neural network model has 95.98% accuracy while the
logistic regression model has 72.37% accuracy. Therefore, it is seen that the neural
network model performs better predictions for hard disk drive quality than the
logistic regression model.

Keywords: Hard Disk Drive; Logistic Regression; Neural Networks.

1 Introduction

Currently, the hard disk drive which is an electronic storage device, is very im-
portant. It is used for storing information and its size is growing exponentially.
The hard disk industry has expanded from the computers market to other mar-
kets, such as mobile phone, DVD player, TV and CCTV. In this research, the
researchers focus on the prevention of waste in the process of outgoing reliabil-
ity test (ORT) before deliver them to the customers. It was found that there
are many types of abnormalities in read/write heads. Therefore, the researchers
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would like to study and create a model to predict the hard disk drive whether the
read/write heads were fault. Since there are 197 independent variables and data
is huge. Therefore, 2 data mining techniques which are logistic regression and
neural networks are employed. Logistic regression model is a regression model
where the dependent variable is categorical. It used to predict whether an event
will occur. By configuring one or more variables that are expected to affect the
occurrence of the event. (Freedman. D. A. 2009) In the case of binary logistic re-
gression, two values are defined as 0 and 1. The error term e is a random variable.
It is assumed that E(e) = 0 , the error are uncorrelated, and no multicollinear-
ity among independent variables. Logistic regression requires sample size n larger
than regular regression analysis. The sample size is n>30p, where p is the number
of independent variables. Artificial neural networks has been inspired by attempt
to simulate human biological neural systems. The human brain consists mainly
of neurons, The linking of neurons through fibers called axons is used to deliver
signal from one neuron to another. Whenever nerve cells are stimulated, nerve
cells are connected to other axon via dendrites. The connectors between den-
drites and axons are called synapses. Artificial neural network is widely used in
classification, modeling, forecasting, controlling, and clustering. (Tan, P.N.2005)

2 Methodology

2.1 The study of outgoing reliability test.

Examine hard disk abnormalities occurring in the pre-delivery test process and
found that the error most occur in the read/write heads set. Therefore, this
research focuses on modeling prediction of hard disk test results of malfunction
at read/write heads set. The data is divided into 60 % learning set, the 20 %
verification set and the 20% testing set. Each set has the same ratio of normal
hard disk and hard disk failure. The data in the learning set is used in modeling.
The data in the validation set is used to evaluate the accuracy and the test set
is used to measure the accuracy of the final model.

2.2 Data preparation.

Select relevant information, verification of data integrity, consolidate data from
multiple sources and transform the data into the format that is appropriate for
the modeling techniques.

2.3 Build the model.

The model is build with SAS Enterprise Miner workstation 13.2, and using logis-
tics regression analysis and artificial neural networks. Using data from April to
November 2015 (8 months). Study the factors affecting the hard disk drive quality.
There are 197 independent variables that affect or correlate with malfunction of
the read/write head set in post-assembly hard disk test and using the chi-square
test of association to eliminate the independent variables. In this research, if the
Pearson correlation value is greater than 0.8, then the independent variables are
strongly correlated.(Campbell, I. 2007) The dependent variable refers to the hard
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disk drive quality which can be defined to be 1 as ”PASS” and 0 as ”FAIL”. Af-
ter testing the relationship between independent variables and hard disk quality,
it was found that there were only 25 independent variables were used to build
the model. For logistic regression analysis, in order to save all 25 independent
variables and eliminate multicollinearity, this research used principal component
analysis to regroup independent variables, and left 17 independent variables to
construct the logistic regression model. Based on the stepwise method, only 7
independent variables had a p-value < 0.05, indicating that these variables were
effectively or significantly correlated with hard disk quality. For artificial neural
networks, we employed multilayer neural networks and backpropagation training.
There is no specific theory for the number of nodes in hidden layer. However,
(Satish K, 2012) proved that it should be between 1 and n-1 where n is the num-
ber of independent variables. Therefore, this research set the nodes in hidden
layer from 1-24. The final model had 1 input layer with 25 input nodes which
are equal to the number of independent variables, and one hidden layer with 5
hidden nodes, and 1 output layer with 1 node and defined the learning rate of
0.1.

2.4 Select of the models

The results of learning set, validation set, and test set were compared. A confusion
matrix is a summary of prediction results on a classification problem. The number
of correct and incorrect predictions are summarized in the table. This research
uses accurary which is the ratio of correct predictions to total predictions made.
The correct predictions are composed of True Positive (TP) which is hit and True
Negative(TN) which is correct rejection. Incorrect predictions are composed of
False Positive (FP)which is Type I error, and False Negative(FN) which is Type
II error.

3 Result and conclusion

The results from artificial neural networks had 95.98% accuracy as shown in
Table 2 and the logistic regression analysis had 72.37% accuracy as shown in
Table 1. From Table 1, 2, the accuracy of training set, validation set and testing
set are similar for both logistic regression and neural networks. There is no over
fitting problem occurred (Chen, et. al., 2004). Therefore, the neural networks
analysis was used to test the hard disk drive before the outgoing reliability test.
It was found that the model was able to prevent the hard disk with malfunction
read/write heads. The results showed that 90 % of the predicted hard disk failure
are correct and it could prevent scraps from hard disk drive test process by 90%.
Thus, it could be concluded that the model derived from neural network analysis
had the ability to predict the quality of the hard disk effectively.
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TABLE 1. Logistic regression results

Data set FN TN FP TP Accuracy
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Abstract: Indonesia has single government agency disseminating official data so
that national statistics accuracy can be as simple as mostly a matter of single
agency. Higher national statistics accuracy is viable through elements of generic
statistical business process model [gsbpm]. GSBPM provides pathways to be more
accurate with bigger data. Big data in layman’s sense could be a trade-off be-
tween quantity and quality (including accuracy). With a wider availability of
smart phones, guide book and manual soft copies can easily be loaded and re-
trieved. Question libraries can be made more handy. There are more than three
hundred local languages in our country. Currently all variable descriptions avail-
able only in single national language. Interviewer may not be able to accurately
translate variable descriptions from single national language to local language.
This incapability can lead to different interpretation by respondent and in turn
different raw data obtained. Accuracy can be improved with bilingual variable de-
scriptions. Paper questionnaire space is limited for identified potential problems,
errors, discrepancies to be hand written. A personal computer on every desk offers
far more ease and flexibility for review, validate, edit sub-process. Distributive
computing power will make possible a repository of data and relevant metadata
in almost all subject matter specialist office. Currently archive is meaningful only
for small number of permanent staff members. To our thought with minimal cost
more staff members with limited skill can be exposed to data and relevant meta-
data. Every year there are around half a thousand new statistics under-graduate
level employees having personally-owned notebook computer at home and avail-
able for after office hours limited back-up. There are staff members having more
than twenty years tenure and ready for assessing how well the data reflect their
initial expectations. It can be done by viewing the data from different perspec-
tives using different tools and media. Our thought is that we can introduce a
formal written documentation in addition to informal oral assessment.

Keywords: Big data; Smart phones; Distributive Computing.
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Advertised landed house price data among other things can be used to evaluate
interest rate.

FIGURE 1. sub process 1·3 2·3 3·3 4·3 5·3 6·3 7·3 8·3 9·3 gsbpm version four.

1.3 Any organization which is serving central bank may establish output objec-
tives such how many regions will be covered. Will it be all five hundred Indonesian
regions ? To be accurate will it be of equal importance for all regions ? Otherwise
do some regions having central bank office are more important ? To be accurate
will it be of equal dead line for all regions ? Otherwise do some regions having
central bank office are less tolerant to delay ? That is some regions expectation
is well ahead of deadline.

FIGURE 2. Sub process 1·3 only gsbpm version four.

2.3 Will same primary raw data collection methodology be applied to all regions
? If same primary raw data collection methodology is applied will it be person to
person interview ? Will it be paper-based interview ? Otherwise do some regions
having central bank office may use cellular-phone-based personal interview ? For
further accuracy do some regions having central bank office may use advertised
house price eliminating direct personal contact with primary raw data provider
?

FIGURE 3. Sub process 2·3 only gsbpm version four.

3.3 Configure workflows for more accurate primary raw data collection. In general
the smaller a region the less accurate primary raw data in any given collection
time. In general the more remote a region the less accurate primary raw data in
any given collection time. Remote small region understandably has least accurate
primary raw data in any given collection time. Therefore accuracy improvement
is different for workflow in accessible regions with good transport. Workflow in
limited-communication regions will be different.
4.3 Accuracy improvement during run collection of cellular-phone-based personal
interview can be achieved in several subtle steps such as adherence to standard op-
erating procedure improvement. Always recharge before power supply depletion.
Prepare fully recharged portable power bank. Refresh cellular-phone memory to
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FIGURE 4. Sub process 3·3 only gsbpm version four.

accommodate raw data. Prepare secondary portable magnetic storage. Remote
small region needs back up of second generation (2G or 2·5G) cellular-phone.

FIGURE 5. Sub process 4·3 only gsbpm version four.

5.3 One acceptable fact on big data is that any particular raw data may have
accumulated in some sort of series. Depending on intelligence of raw data analyst
this sort of series can be used to review for accuracy improvement.

FIGURE 6. Sub process 5·3 only gsbpm version four.

House price data in any region may be associated to opening of newly-built non-
intersection road. House price data in other region may be associated to addition
of toll-road access. House price may be related more to development of commuter
railway and less to development of high speed train railway.
6.3 First sub process establish output objectives expect a responsibility to scruti-
nize raw data. Contrasting objectives against preliminary product is carried out.
Raw data originating from unusual circumstances deserves different treatment
to improve accuracy. Unusual circumstances applies both to more favorable con-
dition as well as less favorable condition. Preliminary product scrutiny is done
with ease in case of way ahead of schedule activities or any expense far less than
activities budget.

FIGURE 7. Sub process 6·3 only gsbpm version four.

7.3 Central bank publishes result of residential property survey for primary house.
First page of report has shown methodology of quarterly survey covering sixteen
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cities spread over 15 regional offices. The report does not mention stratifica-
tion explicitly. Reader of report may to certain extent interpret that Balikpapan
represents a stratum of Eastern Kalimantan and and newly renamed Northern
Kalimantan. Interpret that Manado represents a stratum of Northern Sulawesi
and Gorontalo and Western Sulawesi. To be more accurate central bank may
conduct a press conference.

FIGURE 8. Sub process 7·3 only gsbpm version four.
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Abstract: In modern industrial and biomedical research, the data often contains
a large number of variables measured at mixed data types (continuous, nominal
or binary) but the information on some variables is missing. Imputation is a com-
mon solution where the downstream analyses require a complete data matrix. A
number of imputation methods are available that work under some distributional
assumptions. We propose an improvement over the popular nonparametric near-
est neighbor imputation method that requires no particular assumptions. The
proposed method makes practical and effective use of the information on asso-
ciation among the variables. In particular we propose a weighted version of Lq
distance for mixed-type data that uses the information from a subset of important
variables only. The performance of the proposed method is investigated under a
variety of data settings. The results show a smaller imputation error and better
performance when compared to other approaches. It is shown that the proposed
imputation method works efficiently even when the number of samples is less
than the number of variables.

Keywords: Weighted Nearest neighbors; Missing values; Mixed-type data; Ker-
nel function; High-dimensional data.

1 Introduction

Missing values are a common phenomenon in practical research. A number of
different methods are available that can be used to fill the missing values in
metrically scaled data only (e.g. Troyanskaya, et al, 2001) or handle nominal data
only (e.g. Schwender, 2012). Since one has to deal with combination of continuous
and nominal variables in many real world applications, the methods to impute
mixed data become more crucial. Since the multiple imputation techniques fail
to impute high dimensional missing data, the nonparametric simgle imoutation
methods are gaining more popularity. We propose an improved version of the
popular nonparametric nearaest neighbors method which uses information only

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).



178 Imputation in High-dimensional Mixed-Type data by Nearest Neighbors

on potentially relevant neighbors to impute missinng values. More specifically,
We introduce a distance function that is more appropriate for mixed data. It is
an extension of Tutz and Ramzan (2015) and uses information on association
among variables.

2 Weighted Distance for Mixed-type Data

LetR = (Ris) be the n×(p+m) data matrix with p continuous and m categorical
covariates defined by R = (X,Z), where X = (xig), g = 1, · · · , p, with xig
denoting ith observation of the gth continuous covariate, and Z = (zil), l =
1, · · · ,m, with zil denoting ith observation of the lth categorical covariate. Let
O = (ois) is the corresponding n× (p+m) matrix with ois = 1 if Ris is observed,
otherwise ois = 0.
The categorical observations zil in the data matrix, can assume values cl ∈
{1, . . . , kl}, l = 1, . . . ,m, where kl is the number of categories that the lth at-
tribute can take. Then the ith row of the data matrix R can be written as

RT
i = (xTi ,z

T
i )

with xTi = (xi1, · · · , xip) and zTi = (zi1, · · · , zim)
For the computation of distances, the categorical variables are transformed into
binary variables. Thus the observation zil becomes a vector, zTil = (zil1, . . . , zilks)
with zilr = 1 if Zil = r. Thus, the ith row of the transformed matrix RD has the
form

[(xi1, . . . , xip), (z
T
i1, · · · ,zTim)]T

with dummy vectors zil, l = 1, · · · ,m.
Let Ris be a missing entry in the data matrix R, that is Ois = 0. Then the
distance between the i-th and the j-th rows specific for a missing value in the
sth covariate is defined by

d(Ri,Rj) =

(
γ1

p∑
g=1

|xig − xjg|qI(oig=1)I(ojg=1).C(δsg) +

γ2

m∑
l=1

kl∑
c=1

|zilc − zjlc|qI(oil=1)I(ojl=1).C(δsl)

)1/q

, (1)

where I(.).I(.) is the number of valid components. C(.) is a convex function defined
on the interval [−1, 1]. We use C(δsl) = |ρsl|c, where c is a tuning parameter. γ1

and γ2 are tuning parameters with γ1 = 1−γ2 and δsl is a measure of association
between covariates s and l.

3 Weighted Imputation by Nearest Neighbors

Let a value is missing in the ith row of the data matrix R. One has two possible
options: (i) metric covariate has the missing value (ii) a categorical covariate has
the missing value. One finds k nearest neighbor observation vectors Rk based on
the distances

RD
(1), . . . ,R

D
(k) with d(Ri,R(1)) ≤ · · · ≤ d(Ri,R(k))
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Imputing Categorical Missing Value For the imputation of the values
zis, we use the weighted estimator

π̂isc =

k∑
j=1

w(Ri,R(j))z(j)sc, (2)

where c = 1, . . . , ks. The weighted imputation estimate of a categorical missing
value zis is

ẑis = arg maxksc=1 π̂isc, (3)

i.e. the value of c ∈ {1, . . . , ks} with highest value of π̂ is .

Imputing Continuous Missing Value The weighted imputation estimate
of continuous missing value, xis, is defined by

x̂is =

k∑
j=1

w(Ri,R(k))x(j)s (4)

The weights in equation (2) and (4) are defined by

w(Ri,Rj) =
k(d(Ri,Rj)/λ)∑k
l=1 k(d(Ri,Rj)/λ)

, (5)

where K(.) is a kernel function and λ is a tuning parameter. We use Gaussian
kernel as in the initial simulations it yielded smaller imputation errors. The tuning
parameter λ is chosen by cross validation.

4 Simulation Study

We generated S = 200 samples of size n = 100 for p = 30 predictors drawn from
a multivariate normal distribution with N(0,Σ). The correlation matrix Σ has
an autoregressive type of order 1 with ρ = 0.9. Some randomly selected variables
are converted to nominal scale. We construct categories from the continuous data
by setting cut points. In each sample, miss = 10%, 20%, 30% of the total values
were replaced by missing values completely at random (MCAR).
As initial step we investigate the performance of different kernel functions (Gaus-
sian and Triangular), value of q (q =1,2) and the convex functions (linear and
power). The results showed that the Gaussian kernel for q = 2 using power func-
tion provides smallest imputation error. We use these findings to compare the
performance of wNNSelmix with existing methods. For comparison purpose, we
compute imputation errors for continuous and categorical variables separately
and add them to get final imputation error.
The weighted nearest neighbors approach (wNNSelmix ) is compared with k-nearest
nrighbors (kNN), multiple imputation by chained equations (MICE) and random
forest (RF) methods. Figure 1 shows the results for 10% missing data. Clearly,
the proposed weghted nearest neighbors method provides smallest imputation
errors.
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FIGURE 1. Boxplots of average imputation error obtained by different imputa-
tion methods. Solid circles within boxes show mean values.
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Abstract: Hidden Markov models are prevalent in the field of animal movement
modeling, where they can be used to infer behavioral modes from various types
of movement data. Due to substantial improvements in tagging technology, such
data can nowadays be collected at much finer time scales than only a few years
ago. Behavioral modes, however, do not necessarily manifest themselves at the
fine scales at which the data are collected, but may effectively operate on much
cruder time scales. To address the mismatch between data resolution on the
one hand and biologically meaningful resolution on the other hand, we discuss
a modeling framework that allows to jointly infer behavioral modes at multiple
temporal scales. The approach is illustrated by modeling vertical movements of
a harbor porpoise throughout the northeastern part of the North Sea.

Keywords: animal movement; statistical ecology; time series.

1 Introduction

In recent years, hidden Markov models (HMMs) and related state-switching mo-
dels have emerged as increasingly popular tools for the analysis of animal behavior
data (see, e.g., Leos-Barajas et al., 2017, DeRuiter et al., 2017), where they pro-
vide a versatile framework to infer behavioral modes (e.g. foraging or traveling)
from various types of movement or general behavior data. Some types of animal
behavior of potential interest, e.g. migratory behavior, may however not directly
manifest themselves at the fine temporal grids at which data nowadays tend to
be collected, but may rather be operating on much cruder scales.
As an example, the vertical movements of a harbor porpoise can be observed at
a dive-by-dive resolution. However, behavioral modes such as foraging or travel-
ing cannot easily be inferred directly from single dives (which may for example

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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be shallow or deep), but rather become apparent from collections of dives (e.g.
a sequence of many shallow dives, occasionally interspersed with deeper dives,
typically indicates traveling behavior).
Here we discuss an extension to the basic HMM framework that regards the
time series observations as stemming from two different underlying behavioral
processes that operate on different time scales. The first process, which we call
the internal state process, determines the behavioral mode at the crude scale,
while the second process, which we call the production state process, determines
the fine-scale mode within the crude-scale mode.

2 Methodology

A basic HMM comprises an observable state-dependent process {Yt}Tt=1 which is
driven by an unobservable state process {St}Tt=1. The state process is determined
by an N -state Markov chain with transition probability matrix (t.p.m.) Γ =
(γij), where γij = Pr(St = j |St−1 = i), i, j = 1, . . . , N . The initial distribution
δ = (δi), where δi = Pr(S1 = i), gives the probability of the first observation
y1 belonging to state i. Given St = i, the state-dependent process is assumed
to generate an observation from a state-dependent distribution with density (or
probability) function fi(yt).
To extend the basic framework in a way that allows for joint inference at multiple
temporal scales, we initially segment the fine scale (e.g. dive-by-dive) observations
into M distinct (e.g. hourly) chunks, denoted by ym, m = 1, . . . ,M . Each chunk
is connected to one of K production HMMs, which generate the observations at
the fine scale. The likelihood L

(P )
k,m of the mth chunk being generated by the kth

production HMM is given by

L
(P )
k,m = δ

(P )
k P(P )(y1)

T∏
t=2

Γ
(P )
k P(P )(yt)1, (1)

where P(P )(yt) = diag(f1(yt), . . . , fN (yt)). Considering the likelihoods L
(P )
k,m, an

additional, internal K-state Markov chain {Hm}Mm=1 is considered to model the
switches among the K production HMMs, so that the likelihood L(I) of the
hierarchical HMM is given by

L(I) = δ(I)P(I)(y1)

M∏
m=2

Γ(I)P(I)(ym)1, (2)

where P(I)(ym) = diag(L
(P )
1,m, . . . , L

(P )
K,m). The model structure is illustrated in

Figure 1. Notably, due to the simplifying conditional independence assumptions,
the likelihood can efficiently be evaluated and hence directly (numerically) max-
imized (Zucchini et al., 2016).

3 Illustrating example

To illustrate the application of the suggested methodology, we model vertical
movements of a harbor porpoise in the northeastern part of the North Sea. Raw
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Figure 1: Dependence structure in hierarchically structured HMMs.

the K ⇥ K t.p.m. for the internal state process, and define

P(I)(ym) = diag
�
Lp(ym|Hm = 1), . . . , Lp(ym|Hm = K)

�
.

The likelihoods Lp(ym|Hm = k), k = 1, . . . , K, have the form as given in (1), and

only vary across k in terms of the implied production-level t.p.m. (and potentially also

the production state-dependent distributions). Then the likelihood for the hierarchically

structured HMM is,

Lh = �(I)P(I)(y1)
MY

m=2

�(I)P(I)(ym)1

As the estimated production states are generally proxies for behaviors, allowing for only the

t.p.m. to vary across the K HMMs leads to an interpretation of the K internal states (loosely

connected to K behavioral processes) as distinct manners in which an animal will persist and

switch among the production states. As long as the individual time series’ likelihoods, Lp,

can be evaluated in an e�cient manner, we can evaluate the likelihood of the hierarchically

structured HMM via the forward algorithm, since the general structure does not di↵er from

that of the basic HMM, and thus maximize it directly (Zucchini et al., 2016). The Viterbi

algorithm can be used for global state decoding, i.e. finding the sequence of the most likely

9

FIGURE 1. Dependence structure in hierarchical HMMs.

data on dive depth were processed into measures of the dive duration, the maxi-
mum depth and the dive wiggliness (as represented by the absolute vertical dis-
tance covered at the bottom of each dive) to characterize the porpoise’s vertical
movements at a dive-by-dive resolution.
The fitted state-dependent gamma distributions (extended by a zero point mass
for the dive wiggliness) displayed in Figure 2 suggest three different dive types.
State 1 captures the shortest, shallowest and smoothest dives with small variance.
State 3 exhibits opposite features, namely very long, deep and wiggly dives, with
high variation. State 2 lies in-between these two extremes, with all three variables
taking on moderately large values.
The off-diagonal transition probabilities for the internal state process were esti-
mated as γ̂12 = 0.211 and γ̂21 = 0.219. The corresponding stationary distribution
is (0.509, 0.491), indicating that about half of the observations are generated by
each of the two production HMMs. The t.p.m.s for the two production HMMs,
determining the switching behavior among the three production states, were es-
timated as

Γ̂
(P )
1 =

0.406 0.443 0.150
0.240 0.600 0.159
0.196 0.366 0.437

 and Γ̂
(P )
2 =

0.277 0.153 0.570
0.124 0.248 0.628
0.057 0.087 0.856

 ,

with corresponding stationary distributions (0.277, 0.506, 0.217) and (0.083, 0.110, 0.807),
respectively. These figures imply that when the first HMM is active, then in the
long run about 28%, 51% and 22% of the observations are generated in produc-
tion states 1, 2 and 3, respectively, whereas when the second HMM is active, then
about 8%, 11% and 81% of the dives are generated in the respective production
states. Biologically, the second production HMM can be seen as a proxy of forag-
ing behavior, which particularly manifests itself in the extensive dive wiggliness
suggesting prey-chasing. The first production HMM, which is characterized by
a large proportion of short, shallow and smooth dives, could be associated with
resting or traveling behavior. Further differentiation would require the inclusion
of additional variables, e.g. the horizontal step length performed during dive.

4 Conclusion

The proposed hierarchically structured HMM constitutes a novel framework al-
lowing for joint inference at multiple temporal scales. Environmental covariates
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FIGURE 2. Fitted state-dependent distributions.

may be included in the model to investigate their effects on state occupancy
and the dynamics of variation in behavioral modes at cruder scales than those
at which the data are collected. The suggested methodology can be extended
to allow for simultaneous modeling of multiple data streams collected at differ-
ent scales (e.g. dive depths, which are observed at a dive-by-dive resolution, and
hourly step lengths).
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part of the DEPONS project (www.depons.au.dk) funded by the offshore wind
developers Vattenfall, Forewind, SMart Wind, ENECO Luchterduinen, East An-
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Abstract: Frailty models provide a convenient way of modeling unobserved
dependence and heterogeneity in survival data which, if not accounted for duly,
would result incorrect inference. Gamma frailty models are commonly used for
this purpose, but alternative continuous distributions are possible as well. How-
ever, with cure rate being present in survival data, these continuous distributions
may not be appropriate since individuals with long-term survival times encom-
pass zero frailty. So, we propose here a flexible probability distribution induced
by a discrete frailty, and then present some special discrete probability distri-
butions. We specifically focus on a special hyper-Poisson (hP) distribution and
then develop the corresponding Bayesian simulation, influence diagnostics and
an application to real dataset by means of intensive Markov chain Monte Carlo
(MCMC) algorithm. These illustrate the usefulness of the proposed model as well
as the inferential results developed here.

Keywords: Bayesian inference, frailty models, proportional hazard models, long-
term survivors, hyper-Poison distribution.

1 Introduction

Studies on the frailty models generally assume a non-negative and continuous
frailty random variable (Hougaard ,1984). Usually, the gamma distribution, in-
verse Gaussian and positive stable are used to model the frailty random variable.
From the computational point of view, these distributions are convenient since
it is easy to derive closed-form expressions for the survival, density and hazard
functions using the Laplace transform. However, continuous frailty distribution

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
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do not allow zero risk. Zero frailty indicates that there is a subgroup of non-
susceptible individuals among whom the event of interest has not happened even
after a long period of observation. The event of interest in many survival stud-
ies or cancer-relapse trials can be the death of a patient or a tumor recurrence.
However, due to recent advances in (cancer) treatment therapies, a high portion
of the subjects are expected to be cured, i.e., remaining disease-free after pro-
longed follow-ups. For this reason, there is a vast literature on cure rate models
for survival data, also called survival models with a surviving fraction or long-
term survival models. Most of these models were obtained in a competing risks
scenario (Tsodikov et al.,2003), but they can also be obtained from the propor-
tional hazard models with discrete frailty distributions (Caroni et al.,2010). In
this paper, we focus on this direction from the Bayesian point of view.

2 The model

The frailty model assumes a proportional hazard structure conditional on the
random effect Z. This random effect is a non-negative frailty variable which
indicates the individual level of risk. So, the frailty model is basically specified
by the following hazard rate function (hrf) h(t|Z) = Z hB(t), where hB(t) is
the baseline hrf that can be equal to hB(t) exp(x>β) in the proportional hazard
scenary (Cox & Oakes, 1984). The corresponding survival function, conditional
on Z, is given by

S(t|Z) = P (T > t|Z) = exp {−ZHB(t)} = SB(t)Z , (1)

where HB(t) =
∫ t

0
hB(u)du is the baseline cumulative hazard function and SB(t)

is the corresponding survival function. A new survival model is obtained when
we assume that the frailty variable Z in (1) follows a hyper-Poisson distribution
with probability mass function

P (Z = z; η, θ) = p(z; η, θ) =
1

1F1(1; η; θ)

θz

(η)z
; z = 0, 1, . . . ,

where η, θ > 0, (a)r = a(a+ 1) . . . (a+ r − 1) = Γ(a+r)
Γ(a)

for a > 0 , r is a positive

integer, and 1F1(a; b;w) =
∑∞
r=0

(a)r
(b)r

wr

r!
is the confluent hypergeometric series.

Thus, the unconditional survival function can be expressed as

S(t) =
1F1(1; η; θSB(t))

1F1(1; η; θ)
(2)

and the fraction of ”cured” individuals is given by p0 = limt→∞ S(t). From
(2), p0 = limt→∞ S(t) = 1

1F1(1;η;θ)
> 0 implying that (2) is not a proper sur-

vival function. The density function associated with (2) is given by f(t) =
1F1(2;η+1;θSB(t))

1F1(1;η;θ)
θ
η
fB(t), where fB(t) = −dSB(t)/dt. The corresponding hazard

function is given by h(t) = 1F1(2;η+1;θSB(t))

1F1(1;η;θSB(t))
θ
η
fB(t). Note that when η = 1,

the model reduces to the cure rate survival model investigated by Yakovlev &
Tsodikov(1996).
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3 Application

We illustrate the application of the proposed model to a data set from a Phase
III cutaneous melanoma clinical trial conducted by the Eastern Cooperative On-
cology Group (Kirkwood et al.,2000). These data are part of an assay for the
evaluation of postoperative treatment performance with a high dose of a certain
drug (interferon alpha - 2b) in order prevent recurrence. Patients were included
in the study from 1991 to 1995, and follow-up was conducted until 1998. After
deleting subjects with incomplete data and missing observation times, we have a
subset of n = 417 patients with approximately 56% of censoring. The observed
time has mean equal to 3.18 and standard deviation equal to 1.69. The follow-
ing variables were associated with each participant, i = 1, . . . , 417: ti: observed
time (in years); xi1: treatment (0: observation, n = 204; 1: interferon, n = 213);
xi2: age (0: ≥ 48 years, n = 197; 1: < 48 years, n = 220); xi3: nodule (nodule
category is coded from the number of lymph nodes involved in the disease: 1:
n = 111; 2: n = 137 ; 3: n = 87; 4: n = 82); xi4: sex (0: male, n = 263 ; 1:
female, n = 154); xi5: p.s (performance status-patient’s functional capacity scale
as regards the daily activities: 0: fully active, n = 363; 1: other, n = 54); xi6:
tumor (tumor thickness in tenth of a millimeter).
We initially consider the hP cure rate model with with all regression variables,
θi = exp{β0 + β1xi1 + · · ·+ β6xi6}, i = 1, . . . , 417.
For the Bayesian analysis, we assume a Weibull distribution for the baseline
distribution function in (1), with SB(t;γ) = exp{(−t/γ2)γ1}. From posterior
summaries for the parameters of the hP model with all covariates, we observe
through the percentiles that the variable x3 (nodule category) has a significant
effect in the model since the interval does not contain zero.

TABLE 1. Posterior summaries for the hP model with only nodule category as
covariate fitted to the melanoma dataset.

Parameter Mean Standard Percentile
deviation 2.5% 97.5%

η 6.014 0.5414 5.000 7.000
γ1 1.783 0.121 1.549 2.022
γ2 2.867 0.274 2.477 3.549
β0 0.485 0.169 0.130 0.808
β3 0.293 0.053 0.189 0.400

Table 1 shows posterior summaries of the parameters of the simplified hP model
retaining only the nodule category (x3) as the covariate.
We finally conclude our melanoma analysis by considering the estimation of the
cure rate (p0) by employing the hP cure rate model. We stratified the patients
according to the nodule category. From Section 2, we have p0j = 1

1F1(1,η,θj)
, with

θj = exp(β0 + jβ3) for j = 1, . . . , 4. In Table 2, the posterior summaries reveal
that cure rate (p0j ) is decreasing with respect to the j-th nodule category, for
j = 1, 2, 3, 4.
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TABLE 2. Posterior summaries of the cure rate p0 for the hP model according
to nodule category (1-4)

Cure rate Mean Standard Percentile
deviation 2.5% 97.5%

p01 0.654 0.040 0.594 0.748
p02

0.552 0.037 0.497 0.633
p03

0.428 0.039 0.349 0.491
p04

0.289 0.051 0.183 0.393
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Abstract: Dynamic conditional score models are observation driven alterna-
tives to classical state space models which are optimal in the sense of reducing
the local Kullback–Liebler divergence between the true and the model implied
conditional density. In this paper we apply the density power divergence approach
of Basu et al. (1998) to robustify the dynamic conditional score equation with
respect to outliers. The density power divergence approach minimises an appro-
priately modified divergence governed by an additional parameter that controls
for the efficiency–robustness trade–off. Our approach combines the optimality of
the score dynamics with the robustness properties of the class of M–estimators
and it is a viable alternative to the Student–t approach of Harvey and Luati
(2014). The proposed approach is illustrated through two examples of time series
being strongly affected by outlying observations.

Keywords: Generalised autoregressive score models, robustness, minimum dis-
tance estimation, estimating equations.

1 Introduction

The class of Generalised Autoregressive Score (GAS) processes, recently intro-
duced by Creal et al. (2013) and Harvey (2013), is becoming increasingly pop-
ular tool for modeling the time varying behaviour of unobservable parameters
in an observation driven environment. The key feature of GAS models is that
the predictive score of the conditional density is used as forcing variable into the
updating equation of a time–varying parameter. Two main reasons for adopting
the GAS updating mechanism has been advocated by the literature. Firstly, the
GAS dynamics can be seen as an approximation to a filter for a model driven by a
stochastic latent parameter that is by definition unobservable. Secondly, the con-
ditional score can be considered as a steepest ascent direction for improving the
model’s local fit given the current parameter, position as usually happens into a
Newton–Raphson type algorithm. Moreover, the class of GAS models nests a large
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number of observation driven models, such as the ARCH–type models of Boller-
slev (1986). As a practical justification the GAS updating mechanism circumvents
the problem of choosing a non–adequate forcing variable. Score driven processes
have been proved to be effectively used in many applications. Harvey and Luati
(2014) and Caivano and Harvey (2014) motivate the use of score dynamics by
the need to reduce the potentially relevant effect of outliers on the extracted sig-
nal by assuming a fat–tailed distribution for the conditional innovation. In this
paper, we adopt a different perspective and we robustify the dynamic conditional
score equation to incidental influential observations and outliers by means of the
Density Power Divergence (DPD) approach of Basu et al. (1998). Our approach
combines the optimality of the score dynamics with robustness properties of the
class of M–estimators and it is a viable alternative to the Student–t approach of
Harvey and Luati (2014).

2 GAS models

Formally, assume that the observed random variable yt ∼ p
(
yt | ϑt|t−1, η

)
, where

p (·) is a probability density and ϑt|t−1 is a set of time–varying parameters and
η is a vector of time–independent parameters. The GAS(1,1) updating equation
for the time–varying parameters ϑt|t−1 is

ϑt+1|t = ω + ϕϑt|t−1 + κst (1)

st = St
(
ϑt|t−1, η

)
∇
(
yt, ϑt|t−1, η

)
, (2)

where ∇
(
yt, ϑt|t−1, η

)
is the score of the conditional density function of the ob-

served random variable evaluated at ϑt|t−1, i.e.

∇
(
yt, ϑt|t−1, η

)
=
∂ ln p

(
yt, ϑt|t−1, η

)
∂ϑt|t−1

,

and St
(
ϑt|t−1, η

)
is a positive definite, possible parameter–dependent scaling

matrix. A convenient choice for St
(
ϑt|t−1, η

)
is usually given by St

(
ϑt|t−1, η

)
=[

I
(
ϑt|t−1, η

) ]−α
, where I

(
ϑt|t−1

)
is the Fisher Information matrix and α =(

0, 1
2
, 1
)
.

3 Robust extension

The density power procedure has been introduced by Basu et al. (1998) as al-
ternatives to the classical maximum likelihood approach for robust parameter
estimation. Specifically, let pϑ (Y ) be a parametric family of distributions in-
dexed by the parameter θ and let qϑ0 (Y ) be the true unknown density of the
random variable Y . To estimate the unknown parameter ϑ0, Basu et al. (1998)
proposed the family of density power divergences which depends on the tuning
parameter β > 0, defined as

Dβ (pϑ, qϑ0) =


∫
pβ+1
ϑ (Y )−

(
1+β
β

)
qϑ0 (Y ) pβϑ (Y ) +

q
1+β
ϑ0

(Y )

β
dY, β > 0∫

qϑ0 (Y ) (log qϑ0 (Y )− log pϑ (Y )) dY, β = 0,
(3)
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and discussed the corresponding estimator obtained by minimising the empirical
counterpart of equation (3). The tuning parameter β controls for the trade–off
between robustness and efficiency. Here, we apply the methodology of Basu et
al. (1998) to robustify dynamic conditional score models. The advantages of ro-
bustifying the DCS models using the approach of Basu et al. (1998) are twofold.
First, it provides a general estimation methodology that bridges the gap between
the maximum likelihood and the robust L2 estimation where deviations from
efficiency are controlled for by the tuning parameter β. Second, it allows for
the definition of a robustified score entering the transition equation as forcing
variable. Furthermore, coherently with the theory of the DCS models, the ro-
bustified version of the score is defined as the first derivative of the probability
density function of the observed variable and the robustified score is redescend-
ing. The robustified version of the GAS updating equation for the time–varying
parameters defined in equations (1)–(2) becomes

ϑt+1|t = ω + ϕϑt|t−1 + κs∗t (4)

s∗t = S∗t
(
ϑt|t−1, η

) (
∇∗
(
ϑt|t−1, η

)
− ξ
)
, (5)

where∇∗
(
yt, ϑt|t−1, η

)
= ∇

(
yt, ϑt|t−1, η

)
p
(
yt, ϑt|t−1, η

)β
is the roubstified score

of the conditional density function, evaluated at ϑt|t−1, ξ =
∫
∇∗
(
yt, ϑt|t−1, η

)
p
(
yt, ϑt|t−1, η

)
dyt

is the mean of the robustified score and S∗t
(
ϑt|t−1, η

)
= Jβ

(
ϑt|t−1, η

)
is a positive

defined, possible parameter–dependent scaling matrix with

Jβ
(
ϑt|t−1, η

)
=

∫
∇∗
(
z, ϑt|t−1, ϑ

)
∇∗
(
z, ϑt|t−1, η

)′
p
(
z, ϑt|t−1, η

)
dz − ξξ′.

4 Application

We apply the robust GAS to the problem of signal extraction from two series
which are characterised by the presence of extreme outliers: the daily series of
electricity prices from the Nord Pool Energy Market from January 1, 2013 to
November 30, 2016 and the series of US average weekly hours in manufacturing
from 1940 to 2016. The two series are plotted in the top panels of Figure 1. The su-
perimposed blue and red lines denote the signal extracted using a GAS(1,1) model
with Gaussian innovations and its roubstified version with β = 0.05, respectively.
The optimal tuning parameter has been selected as suggested by Ghosh and Basu
(2013). Bottom panels plot the dynamic evolution of the scaled score that en-
ters the GAS updating equation for the two models. It is evident that the signal
extracted by the robust GAS filter is less influenced by the presence of outliers
than the filter based on the Gaussian GAS model.
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Abstract: When analyzing failure time datasets within stratified contexts, the
main focus is usually not on the clustering variables and hence the group-specific
parameters are treated as nuisance. If a fixed effects formulation is preferred and
the total number of clusters is large relative to the single-stratum sizes, standard
frequentist techniques are often misleading and the use of adjustments to make
reliable inference on the parameter of interest is complicated by the presence of
censored data. Here we show how Monte Carlo simulation may be exploited to
compute a modification of the profile likelihood in general regression settings for
survival models with unspecified censoring mechanism.

Keywords: Fixed effects; Incidental parameters; Monte Carlo simulation.

1 Introduction

Stratification of time-to-event data subject to censoring is frequent in many ap-
plied areas, although the primary concern of the study is typically not the inter-
cluster variability. To avoid the assumptions imposed on the survival analysis by
frailty models, a fixed effects approach considering the group-related traits as
unknown nuisance parameters can be adopted.
Under such a formulation, if the amount of groups is much larger than the within-
cluster sizes, usual asymptotic results are no longer valid and maximum likelihood
inference on the component of interest may be inaccurate (Sartori, 2003). One
solution to tackle this issue is offered by the modified profile likelihood (Severini,
1998). Its good performance has been proved in the literature for various models
with incidental parameters, but in regression contexts with failure data it is
unclear how to properly deal with random censoring schemes (Pierce and Bellio,
2006). We present here a convenient strategy to calculate the modified profile
likelihood in stratified regressions for survival times with unspecified censoring
mechanism.
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tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
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Cortese and Sartori (2016) opted for eliminating the group-specific parameters
from the likelihood of Weibull-distributed survival data by integration. The same
model, within an extended regression framework, is studied below to illustrate our
less computationally intensive procedure, whose basic principle is yet immediately
applicable to different supposed distributions.

2 Modified profile likelihood in survival models under
unknown random censoring scheme

2.1 Weibull model

Let independent grouped failure times ỹit ≥ 0, i = 1, . . . , N, t = 1, . . . , Ti, be
realizations of a Weibull random variable with probability density function

pit(ỹit;ψ;λi) = ηitξ
(
ηitỹit

)ξ−1
exp
{
−
(
ηitỹit

)ξ}
, (1)

where ηit=e−(λi+x
T
itβ). The parameter of interest is ψ=(ξ, β), while the nuisance

component consists of the single intercepts λ = (λ1, . . . , λN ). One can see that
ξ>0 is the common shape parameter and β=(β1, . . . , βk) contains the regression
coefficients associated with the k-dimensional vector of fixed covariates xit.
Failures are right-censored, so data are observations from the random pair

(
Yit,∆it

)
,

where Yit=min
(
Ỹit, Cit

)
with Cit censoring time and ∆it is the censoring indica-

tor such that ∆it=1(0) if Ỹit≤(>)Cit. The censoring mechanism is only hypoth-
esized to be independent and non-informative, thus each Cit is unrelated to the
other survival or censoring times and its continuous distribution does not depend
on θ = (ψ, λ). In particular, we avoid to parametrically specify the distribution
of Cit.
For ease of exposition, suppose T1 = . . . = TN = T . Writing δi· =

∑T
t=1 δit and

δ·· =
∑N
i=1 δi· allows to express the profile log-likelihood for ψ as

lP (ψ) =

N∑
i=1

δi·

{
log δi· − log

T∑
t=1

yξite
−ξ(xTitβ)

}
− ξ

N∑
i=1

T∑
t=1

δit(x
T
itβ)

+ δ··(log ξ − 1) + (ξ − 1)

N∑
i=1

T∑
t=1

δit log yit,

with maximizer ψ̂=(ξ̂, β̂). Note that the ith element of the constrained estimate
λ̂ψ = (λ̂1ψ, . . . , λ̂Nψ) is obtained as a function of ψ by equating to 0 the scalar
partial score

lλi(θ) = −ξδi· + ξ

T∑
t=1

(ηityit)
ξ, i = 1, . . . , N, (2)

and solving the equation for λi. We define then θ̂ψ=(ψ, λ̂ψ) and θ̂=(ψ̂, λ̂ψ̂).

2.2 Monte Carlo modified profile likelihood

The modified profile log-likelihood (MPL) of Severini (1998) takes the form
lM (ψ)= lP (ψ)+M(ψ), where the modification term is expressed by
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M(ψ) =

N∑
i=1

{
1

2
log jλiλi(θ̂ψ)− log Iλiλi(θ̂ψ; θ̂)

}
. (3)

While jλi,λi is readily available from the double differentiation of the log-likelihood
with respect to λi, explicitly calculating the expected value Iλiλi(θ̂ψ; θ̂)=Eθ̂

{
lλi(θ̂ψ)lλi(θ̂)

}
requires a parametric assumption on the distribution of Cit. Such restriction is
not needed to compute the MPL via Monte Carlo simulation instead, adapting
the general idea already used by Bartolucci et al. (2016) in econometric fixed
effects models for panel data.
The expectation in (3) can be approximated through the empirical mean

I∗λiλi(θ̂ψ; θ̂) =
1

R

R∑
r=1

lrλi(θ̂ψ)lrλi(θ̂), i = 1, . . . , N, (4)

where, in our case, lrλi is the partial score (2) for the rth Monte Carlo sample
(yrit, δ

r
it), derived nonparametrically via the Kaplan-Meier estimator. Eventually,

we have yrit=min(ỹrit, c
r
it) with corresponding indicators δrit.

3 Simulation studies

Two experiments with 2000 iterations are run to discuss inference on ψ under
diverse overall proportion of censored data (Pc = 0.2, 0.4) in the survival model
described above, with k=2. Subjects of comparison are lP (ψ) and its Monte Carlo
adjustment lM∗(ψ) = lP (ψ)+M∗(ψ), where M∗(ψ) equals (3) with Iλiλi(θ̂ψ; θ̂)
replaced by (4). Dimensions of the artificial datasets are T = 4, 6, 10 and N =
50, 100, 250. In every group, the first covariate is set to 0 if t=1, . . . , T/2 and to 1
otherwise, the second is sampled independently from a N(0, 1) distribution. We
suppose ξ=1.5 and β=(−1, 1), while the independent incidental parameters are
drawn as λi∼N(0.5, 0.52). Censoring times are realizations of an Exp(ς) random
variable, with ς chosen according to the selected Pc like in Cortese and Sartori
(2016, Sec. 5).
Table 1 shows some measures of inferential accuracy for ξ from the study referred
to Pc = 0.2. Empirical bias (B), root mean squared error (RMSE) and ratio
SE/SD, where SE is the average over simulations of likelihood-based estimated
standard errors and SD is the standard deviation of the estimates, are reported
along with actual coverages of 0.95 Wald confidence intervals (CI). These results,
similar to those recorded when Pc = 0.4 and for β, attest how the Monte Carlo
modification remarkably improves point and interval estimations supplied by the
profile likelihood.
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TABLE 1. Inference on ξ in the stratified Weibull regression model with unknown
censoring distribution and Pc=0.2. Figures based on 2000 trials and R=500.

N T Method B RMSE SE/SD 0.95 CI

50 4 lP (ψ) 0.392 0.418 0.858 0.111
lM∗(ψ) 0.010 0.112 0.979 0.956

6 lP (ψ) 0.231 0.252 0.884 0.291
lM∗(ψ) 0.008 0.088 0.964 0.943

10 lP (ψ) 0.124 0.141 0.976 0.517
lM∗(ψ) 0.005 0.061 1.029 0.961

100 4 lP (ψ) 0.371 0.385 0.840 0.015
lM∗(ψ) -0.006 0.079 0.966 0.936

6 lP (ψ) 0.219 0.230 0.903 0.063
lM∗(ψ) -0.000 0.060 0.987 0.947

10 lP (ψ) 0.119 0.128 0.938 0.259
lM∗(ψ) 0.001 0.044 0.989 0.943

250 4 lP (ψ) 0.366 0.372 0.847 0.000
lM∗(ψ) -0.009 0.050 0.972 0.939

6 lP (ψ) 0.214 0.218 0.890 0.000
lM∗(ψ) -0.005 0.039 0.972 0.934

10 lP (ψ) 0.116 0.120 0.943 0.018
lM∗(ψ) -0.002 0.028 0.993 0.949
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Abstract: We present a state space model for estimating the measles disease
burden at the country level. Our approach estimates model parameters of a dy-
namic epidemic model using surveillance data from each country, and builds off
of previous work by incorporating age distribution information and explicitly
estimating the uncertainty in the estimates for use in forward projections. The
primary aim of this work is to improve our understanding of the impact of public
health measures.
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1 Introduction

We present a state space or hidden markov model of measles disease burden,
and estimate parameters of the model from surveillance data at the country level
collected by the World Health Organization (WHO). The aim is to predict the un-
observed values of the number of individuals in a population who are infected and
susceptible each year using the observed information of number of cases reported.
From this we hope to provide valueable information on the impact of regular and
supplemental vaccine campaigns both historically and in the near future. Fitting
the model to each of 193 countries will enable the setting of goals for vaccination
programs, allocation of resources, and evaluation of program success on a country
by country basis.
Our method builds off of earlier work by Chen, Fricks and Ferrari (2012). Like this
previous work it combines expert knowledge in the dynamics of measles disease
burden with surveillance data, but additionally it incorporates age distribution
of the popluation and modifies the model so that parameter estimation and for-
ward projections are tenable. First we present the basic model for progression of
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measles through time and then discuss our approach to fitting the model using a
particle filter.

2 Model

The model form is a dynamic non-linear epidemic model known as susceptible-
infected-recovered or an SIR model. In this framework individuals are assumed to
belong to one of three classes: susceptible (S, after birth), infected (I), and recov-
ered (R, who are immune to subsequent infection) (Anderson and May (1991),
Bjornstad et al. (2002)). The number of susceptibles in year t can be modeled as
a function of the number of susceptibles from year t−1, the number of births (B)
that year, the impact of vaccination campaigns, and infections from the previous
year.

St = St−1 +Bt − Vt(Bt, St−1)− It−1

Our model specifies that the impact of vaccines on the number of susceptibles
Vt(Bt, St−1) incorporates the age distribution of the population, the efficacy of
vaccinations based on age of administration in that country, and “pulsed” or
suplemental vaccine campaigns which target specific age groups.
The resulting number of infections in the year’s susceptible population is a func-
tion of the susceptible population size relative to the total population St/Nt and
other factors captured with the term et where et ∼ N(0, σe).

It ∼ Bin(St, πt(St, Nt, et))

πt = logit−1(β0 + β1
St
Nt

+ et)

Using this logistic form to model the probability of infection as a function of
the proportion of susceptibles in the population is phenomonologically consistent
with herd immunity.
The surveillance data reflects the number of reported cases, Ct, a subset of the
number of actual cases.

Ct ∼ Bin(It, pt)

Our model states that cases are reported with probability p, where p is specific
to that country and genearlly assumed to be constant. For some countries, some
years have been identified (based on outside factors) as “high reporting years”.
These are years where due to an epidemic or other reasons a country is thought to
have a higher than usual probability of reporting cases. Thus, the probability of
reporting may vary across these “high reporting” years. These years are usually
less than 10% of the years observed.

3 Fitting

We are primarily interested in the number of individuals infected each year. We
would like to “predict” these values both for each year in the past It (where t is a
year within the span of surveillance data) conditioning on all years of observed of
data. Additionally, if our parameters (β0, β1, σe) are well-estimated than we can
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use the model to run forward projections under different scenarios of vaccination
campaigns.
To this end we will use a particle filter. A filter in this context allows us to use
the conditional density of the state of a system (the pair [S, I]t in our case) at
time t given the observed part of the system up to time t (C1, ..., Ct]). Briefly,
the filtering step is as follows:

1. draw proposals [S, I]1t , ..., [S, I]Rt from f([S, I]) for j = 1, ..., R

2. evaluate conditional likelihood f(Ct|[S, I]jt) to calulate weight wj

3. resample M observations from [S, I]1t , ..., [S, I]Rt according to weights wj

These steps are then repeated to progress through the data. The evaluation of
the filter provides the value of the likelihood function of the system for a given
set parameter values. This will allow us to use the particle filter to numerically
optimize this likelihood function to give maximum likelihood estimators for the
parameters. In addition to the filter, a smooth may also be calculated where all
of the observed values of C both past and future states are used to predict It.
In this way, the particle filter approach allows us a “best guess” for the state at
time t given the observations through the conditional expectation; as well as a
means to obtain forward projections under various vaccine campaign scenarios.

4 Simulation Example

Using simulated data we examine the reliability and sensitivity of our estimation
procedure. Simulated data is generated by sampling values for β0, β1, and p,
as well as sampling a vaccine campaign history. Using preliminary fits to real
country data from 193 countries, we obtained a range of parameter values to
explore. Refer to Figure 1 for an example of a simulated country history.
From simulations such as these we will establish expected coverage of particle
clouds for past years as well as future projections.
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FIGURE 1. Particle cloud coverage of number of infections. On the x-axis is
year, and on the y-axis is number of infections. The red dots indicate the “true”
simulated number of infections. The dramatic reduction in measles cases in year
27 is a result of a supplemental vaccine campaign included in the simulation.
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Abstract: To these days most widely used approach for comparing biological
samples under multiple condition is differential expression (DE) analysis. As the
generated expression data sets are becoming larger and more complex, rather
than to investigate change in the gene behaviour as an isolated occurrence, more
popular question to answer is which parts of system are perturbed and rewired
during an altered response. To access and understand difference in signalling
relationships at the system level differential network analysis (DiNA) is used.
DiNA requires as an input reference and condition specific networks. Accurate
reconstruction of true biological network topology due to a smaller number of
samples than the number of genes is quite a complicated problem. Majority of
existing methods are relying on correlation based analysis for construction of gene
regulatory networks which entails noise like spurious inference, reaction oversim-
plification and missed latent and mediated effects. Other more accurate methods
are computationally exhaustive even when focused only on two conditions and in
the case of long time series experiments completely impractical. As a simple and
straightforward approach we propose to integrate abundant biological knowledge
and condition specific experimental data by mapping obtained DE onto verified
signalling pathways.
Here we present DiNAR, a Shiny web application that allows researcher to analyse
multiple condition data sets in the biological network context using an interactive
graphical interface with user defined thresholds and colour palettes. As a reference
network the large knowledge network of Arabidopsis thaliana, created by merging
expert knowledge based interactions with large scale experimentally validated
interactions was introduced. Translation tables based on PLAZA orthologues
information allow the automated transfer of knowledge from model organism
to some non-model plant species. Condition specific networks are automatically
generated when experimental data files are uploaded. Changes in processes of
interest can be monitored through a simple animation.
DiNAR is written in R and customised using JavaScript, HTML and CSS. App is
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accessible over the web at https://nib-si.shinyapps.io/DiNAR or it can be run di-
rectly from the GitHub repository using shiny:::runGitHub(”NIB-SI/DiNARscripts”,
”NIB-SI”) command.
Although DiNAR is demonstrated on high-throughput biological data it can han-
dle any properly formatted custom network and associated quantitative data set.

Keywords: Condition specific network; Differential network analysis; Shiny
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Abstract: We propose a median modification of the score equation for large-
dimensional parameter estimation in fixed effects one-parameter and two-parameter
logistic models, well known as Rasch models. These models are of great impor-
tance in item response theory for the analysis of data generated by aptitude tests
or questionnaires. The number of parameters grows together with the number of
subjects or items and complicates the estimation procedure. Similarly to logistic
regression, the model often presents cases of complete data separation. As a con-
sequence, all or some components of the maximum likelihood estimate may be
infinite. Moreover, the maximum likelihood estimates are often not available for
the two-parameter logistic model due to numerical irregularities of the likelihood.
The proposed method estimates the whole vector of parameters and also solves
the infinite estimate problem. The performance of the approach is evaluated by
simulation studies and compared with mean bias reduction.

Keywords: Infinite estimates; Likelihood; Logistic model; Median unbiased;
Modified score

1 Introduction

The two-parameter logistic (2PL) model is a generalization of Rasch (1960) one-
parameter logistic (1PL) model, originally proposed in the context of reading
ability tests. These models are of great importance in item response theory for
the analysis of data generated by aptitude tests or questionnaires. Without latent
variables assumptions, the number of parameters grows together with the num-
ber of subjects or items and complicates the estimation procedure. Additionally,
the data could present cases of complete or quasi-complete separation implying
nonexistence of maximum likelihood estimates. Many authors have studied the
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properties of the standard estimators of these models, such as marginal, condi-
tional and joint maximum likelihood estimators (see for instance Andersen, 1980,
Ch. 6). Although joint maximum likelihood was the preferred method of estima-
tion due to its intrinsic robustness, it soon became clear that numerical issues
were involved in the estimation of the 2PL model (Baker, 1987, 1988). For this
reason, marginal maximum likelihood with a random effects assumption on the
subjects abilities is nowadays the standard choice.
Firth (1993) proposed an implicit method for bias reduction of the maximum
likelihood estimator by adding a modification term to the score function. The
corresponding modified estimating equation does not depend explicitly on the
maximum likelihood estimate and has been found to overcome infinite estimate
problems. An alternative modification of the score equation is proposed in Kenne
Pagui et al. (2016), aiming at median centering of the estimator. This method
respects equivariance under componentwise reparameterizations and is also ef-
fective in preventing infinite estimates. The modification is obtained by equating
each score component to the approximate median of its profiled version. Both
bias and median bias reduction allow fixed effects estimation of the 2PL model,
thus avoiding the latent variable assumption.

2 The 1PL and 2PL models

Let ysi be the answer for subject s to item i, s = 1, . . . , S, i = 1, . . . , I. Assume
that the observations ysi are realisations of independent random variables Ysi ∼
Bin(1, πsi). Here, πsi is viewed as the probability that subject s succeeds in item i
of an achievement test. Under the 1PL model, log{πsi/(1−πsi)} = γs+αi, where
γs is interpreted as a measure of the ability of subject s, while αi is a measure
of easiness of item i. Thus, a large value of αi corresponds to high probability of
a correct response. When πsi is viewed as a function of γs, it is called the item
characteristic curve (ICC). The constraint α1 = 0 allows identifiability of the
model so that there are S + I − 1 unknown parameters.
The 2PL model generalises the 1PL model by assuming log{πsi/(1 − πsi)} =
βiγs +αi, where βi is interpreted as the discrimination parameter of item i. The
larger the discrimination parameter, the steeper the ICC curve is. Here, with the
constraints α1 = 0, β1 = 1, the model is identifiable and has S+2(I−1) unknown
parameters (San Martin et al., 2015).
The number of parameters drastically increases with the number of subjects and
hence a suitable estimation method is needed. For the 1PL model, the conditional
likelihood works well in estimating the item parameters since the maximum like-
lihood estimator is asymptotically biased. However, in the 2PL model, maximum
likelihood estimates are often affected by numerical instabilities and no condi-
tional likelihood is available. Therefore, the standard solution assumes γs as a
random effect, usually N(0, 1). In Section 3, we propose a method that makes no
assumption on γs.

3 Median bias reduction method

Consider a regular statistical model with parameter θ = (θ1, . . . , θp). We denote
by `(θ) the log likelihood, i(θ) Fisher information, and θ̂ the maximum likelihood
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estimator. Let irs be a generic entry of i(θ) and irs an entry of its inverse,
r, s, . . . = 1, . . . , p. Let Ur and Urs be partial derivatives of `(θ) with respect to
elements of θ with indices r and s. In particular, Ur is the rth component of
the score function. Moreover, expected values of log likelihood derivatives are
denoted as νr,st = Eθ(UrUst) and νr,s,t = Eθ(UrUsUt).
In the following, summation is understood over repeated indices. The median
bias reduced estimator, θ̃, is obtained as a simultaneous solution of the modified
score equations

Ũr = ArsUs − κ1r + 1
6
κ3r
κ2r

, r = 1, . . . , p, with Ars = irs/irr,
where κjr, j = 1, 2, 3, are approximate cumulants of the profiled version of Ur,
with the following expressions κ1r = − 1

2
irsνtu(νs,tu + νs,t,u)/irr, κ2r = 1/irr

and κ3r = irsirtiruνs,t,u/(i
rr)3 , where νtu = itu − itriur/irr. See Kenne Pagui

et al. (2016) for details and properties. In particular, the asymptotic distribu-
tion of θ̃ is the same as that of θ̂. For implementation in 1PL and 2PL mo-
dels, we vectorise the S × I data matrix obtaining a n × 1 vector of the form
y = (y11, . . . , yS1, y12, . . . , yS2, . . . , y1I , . . . , ySI)

T , with a n × p design matrix X
and where n = S × I. Due to the special structure of Rasch models, summation
over three indices in Ũr can be avoided by exploiting sparsity of arrays involved
in the modification. A further significant computational gain is achieved by im-
plementing the modification term using Rcpp rather than plain R.

4 Numerical studies

We conducted a simulation study to assess the performance of the median bias
reduced (MBR) estimator in 2PL model. We compare the new estimator with
the mean bias reduced (BR) estimator of Firth (1993) in terms of error distribu-
tion. The BR estimates are obtained through the R package brRasch available on
GitHub. Here, the simulation is under the usual assumption of a random effects
model. In particular, the results are obtained with 1,000 replications, I = 10,
S = 100 and assuming γs ∼ N(0, 1). From Figure 1, it appears that the BR and
MBR estimators of α are almost comparable in terms of estimation error, while
the MBR estimator of β is preferable. Unreported simulation results in the more
extreme settings show that the method still gives reasonable results.
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FIGURE 1. Estimation error simulated distribution for the BR and MBR esti-
mators of (α, β) with I = 10, S = 100 and γs ∼ N(0, 1).

Rasch, G. (1960). Probabilistic Models for some Intelligence and Attainment Tests.
Studies in Mathematical Psychology I. Danish Inst. Educational Research,
Copenhagen.

San Mart́ın, E., González, J., and Tuerlinckx, F. (2015). On the unidentifiability
of the fixed-effects 3PL model. Psychometrika, 80, 450 – 467.
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Abstract: A key problem in seismology is assessing the similarity or difference
between events, and constructing categorisations based on these measures. Clus-
tering algorithms remain an active area of research, but many approaches are well
documented. This paper assesses the suitability of a selection of these approaches
to the problem of seismic waves, with reference to a data set taken from Tungu-
ruhua, Ecuador between 6–13 April 2015. In addition, approaches to modelling
the waves, both parametric and nonparametric are fitted and assessed, and the
suitability of certain data transformations are considered.

Keywords: Seismic waves, Clustering, Nonparametric.

1 Introduction

To better understand the processes occurring within volcanoes, seismologists
study the seismic waves generated within — these are vibrations that propagate
through the earth, and are measured by seismometers located near the volcano.
The raw seismic data is processed to identify distinct ‘seismic events’ where the
seismic activity rises above some level. There are many aspects to the study of
these events, however one key problem concerns their categorisation with the
intention of identifying events that are similar and likely to have arisen from
a common source. Seismologists can then use this categorisation to trace the
evolution of the number of events occurring before, during, and after periods of
activity, and make inferences about the nature of the events giving rise to activity.
This process of categorisation is currently not well-defined, with a variety of simi-
larity measures and ad-hoc approaches to clustering in use. Plausible approaches
exist and are in wide use, but these are computationally expensive and have
practical shortcomings we will discuss. The analysis is further complicated by
the presence of ambient vibrations arising from natural and man-made sources,
and any categorisation must allow for the presence of significant noise in the
event signals.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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2 Data set and modelling

We study modelling seismic data for 4805 events between 06/04/2015 and 13/04/2015
recorded at the station next to the Tungurahua volcano. Each event data item
records the velocity of the vibration at 3001 distinct equally spaced points in
time over a period of 30 seconds.
Our attempts to fit flexible parametric models to the data proved very challenging
due to computational issues. An exhaustive search of suitable models would be
impossible, but whilst the failure of our efforts cannot confirm the task is impossi-
ble. However, we have considered various possible nonparametric models (Hastie
et al, 2009). All appear to give reasonable fits to the data, but wavelets appear
to best capture the behaviour of the model (Donoho and Johnstone, 1994), and
lend themselves readily to the smoothing of the wave (to remove ambient noise)
and downsampling to reduce the dimension of the problem.

3 Results

Figure 1 gives an example of an event. Note the noisy nature of the data which
leads to problems with parametric fits.
The gap statistic analysis provides useful summary information concerning the
clusters. For example, on Day One there is no strong evidence for more than 6
groups. A typical example of a dendrogram (see Figure 2) for a day of events is
rather crowded (making it difficult to identify individual events). However the
high level structure is clearly visible and it is instructive to compare the distance
of the different numbers of clusters with the Gap Statistic.

FIGURE 1. An event: example of the type of data being modelled.
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FIGURE 2. Spectral data, Euclidean distance, Ward’s method on Day 1. This
suggests 2 to 6 groups.

4 Conclusions

We started this work with the intention of investigating methods of categorising
seismic waves. At the end, we have arrived at the following conclusions.

1. Seismic events are complex, and not readily modelled using a simple para-
metric approach.

2. Smoothing of events can be performed through a variety of non-parametric
techniques, or by low-band pass.

3. Seismic events data require transformation before they can be compared
directly. Transformations include: (a) Scaling to match amplitude of events;
(b) Translation to align events; (c) Windowing to eliminate regions where
the signal to noise ratio is too low to be useful; (d) Smoothing to eliminate
high frequency noise; (e) Fourier Transform to shift the event from the
time domain to the frequency domain; (f) Principal Component Analysis
to reduce the dimension of the problem.

4. Scaling and translation are essential for clustering techniques using con-
ventional distance measures.

5. Windowing appear to stabilise the clustering under different clustering
methods and distance measures.



210 Modelling seismic waves

6. Clustering methods give quite different groupings for smoothed signals.
Relatedly, groupings are not invariant under decimation of the wavelet
smoothed signal (Donoho and Johnstone, 1994).

7. Principal Component Analysis can reduce the dimension of our data from
3001 dimensions to 200 and retain over 80% of the observed variance.

8. The existing technique of cross-correlation looks sensible and fit for pur-
pose, however we propose an alternative technique of carrying our Gap
Analysis on the Spectral Intensity Data (Tibshirani et al, 2001). The brief
simulation study we carried out suggests the technique requires refinement,
and that spectral intensity data may not be the optimal choice, and ap-
plying Gap analysis on the raw data using cross correlation as a similarity
measure may be a superior technique.

Acknowledgments: We are particularly grateful to The Instituto Geofisico
of the Escuela Politecnica Nacional (IGEPN) of Ecuador for all their hard mon-
itoring work and providing the data.
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Abstract: Across the sciences, one of the main objectives is network modelling
to discover complex relationships among many variables. The most promising sta-
tistical models that can be used for network modelling is the Exponential Random
Graph Models (ERGMs). These models provide an insightful probabilistic model
to represent a variety of structural tendencies that define complicated depen-
dence patterns hardly modelled by other probabilistic models. However, they are
restricted to the models that regarded the network as given, observed networks
data. In the present paper, we develop a novel Bayesian statistical framework
which combines the class of ERGMs with graphical models capable of modelling
non-observed networks. Our proposed method greatly extends the scope of the
ERGMs to more applied research areas. We discuss possible extensions of the
method.

Keywords: Bayesian inference; Exponential random graph models; Graphical
models; Birth-death process; Markov chain Monte Carlo.

1 Introduction

Network modeling pervades all of science since one of the main objectives of
science is to discover complex relationships among large numbers of variables.
For the prevention of epidemics, social science relies on a keen understanding
of interactions among individuals. One way to describe these kinds of complex
relationships is by means of an abstract network.
Exponential random graph models are promising and flexible family of statisti-
cal models for modelling network topology. These models have been used mainly
in the social science literature since they allow to statistically account for the

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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complexity inherent in many network data (Snijders 2002). In ERGMs, the ba-
sic assumption is that the topological structure of an observed network can be
explained by the a vector of network statistics that capture the generative struc-
tures in the network (Snijders et al. 2006). However, up till now, these models
are restricted to the observed network data. In most applications, we have multi-
variate data which are not the observed networks, like in biology in neuroscience.
The main question is that is it possible to extend the ERGMs to the multivariate
data that are not observed network? A possible solution is combining the class
of ERGMs with graphical models.
Graphical models Lauritzen(1996) provide an appealing and insightful way to ob-
tain uncertainty estimates for inferring network structure. The close relationship
between the topology of the underlying graphs and their probabilistic proper-
ties is a main aspect in graphical models, and it provides the potential tools to
interpret the underling graph structure. In this regard, Bayesian approaches pro-
vide a mainly straightforward tools, and much recent progress has been made in
graphical models (Mohammadi and Wit 2015). However, graphical models are
powerful approaches only for estimating the underlying graph structure, they are
not designed for network modeling.
In this paper, we develop a new Bayesian statistical framework for ERGMs, which
is capable not only network modeling but also estimating underlining graph for
multivariate data which are not observed networks. The proposed method greatly
extends the scope of the ERGMs to more applied research areas, which not limited
only in social science. In our method, to apply the ERGMs to non-observed
networks data, we combine the class of ERGMs with graphical models capable
of modelling non-observed networks. In particular, in our Bayesian framework,
we design a computationally efficient search algorithm to explore all the graph
space to distinguish not only important edges but also key features and detect
the underlying graph structure. This search algorithm is based on birth-death
Markov chain Monte Carlo algorithm proposed by Mohammadi and Wit (2015)
for Gaussian graphical models.

2 Exponential families and graphical models

Exponential random graph models models are the families of statistical
models that provide a flexible way to model the complex dependence structure
of networks. The aim to model data as observed networks consisting of nodes
and edges, which in the social network context represent actors and relationships
between these actors, respectively.
In an ERGMs, the random matrix G = {gij} is defined over the graph space on
a set of p nodes, with each variable in G representing the presence or absence of
a particular edge ( gij = 1 if there is a link from i to j, and gij = 0 otherwise).
Edges connecting a node to itself are not allowed so gii = 0. For a graph, the
ERGM is then given by

P (G|θ) =
1

Z(θ)
exp{θtS(G)}, (1)

where θ ∈ Θ represents a vector of unknown parameters, and Z(θ) is a normal-
izing constant and S(G) term is a network statistic of interest that gives the
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ERGMs much of its explanatory power. The vector S(G) can contain statistics
to capture the generative structures of connectivity in the network.
Note, in ERGMs data are observed networks, which is a strong limitation. In
most of the applications, data are measured on variables, such as gene expression
data and cell signalling data. The question we intend to answer is whether it is
possible to extend the idea of ERGMs to those types of data? We extend the
ERGMs to multivariate data (that are not observed networks) by combining it
with graphical models.
Graphical models Lauritzen(1996) use a graph concept to represent condi-
tional dependence relationships among random variables, as non-observed net-
works. When observed data come from noisy measurements of the variables, then
graphical models present an appealing and insightful way to describe graph-based
dependencies between the random variables. A graph G = (V,E) denotes a set of
vertices V = {1, 2, ..., p} – where each node corresponds with a random variable
– and a set of existing edges E. In this class of models, nodes in the graph G
correspond to the random variables. The absence of an edge between two nodes
determines the two corresponding variables are conditionally independent given
the remaining variables. Graphical models that follow the multivariate Gaus-
sian distribution are called Gaussian graphical models (GGMs), also known as
covariance selection models.

3 Bayesian hierarchical model for ERGMs with
non-observed networks

We can display the hierarchical model schematically as below

θ −→ G −→ K −→ X = (X1, ..., Xn).

Thus, we consider the joint posterior distribution of the parameters as bellow

P (θ,G,K | X) ∝ P (X | θ,G,K) P (K | G) P (G | θ) P (θ). (2)

In our methodology, we assume the observed data follows a multivariate Gaussian
distribution.
For prior specification on graph, by consider the idea of exponential random
graph, we use a prior on the graph as follows

P (G | θ) =
1

Z(θ)
exp{θtS(G)} (3)

where S(G) is a vector of statistics of the graph (e.g., the number of edges,
triangles, etc.) and θ ∈ Θ denotes the parameter vector of the model. For the
prior distribution of the precision matrix, we use the G-Wishart distribution.

3.1 MCMC sampling scheme

The MCMC algorithm is in three steps as follows

Step 1: Sample from θ, based on exchange algorithm (Murray et al. 2012).

Step 2: Sample from graph space, based on birth-death MCMC sampling algo-
rithm proposed by Mohammadi and Wit (2015).
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Step 3: Sample from precision matrix, based on exact sampling algorithm form
G-Wishart distribution.

For step 1, We sample from conditional distribution of θ based on exchange
algorithm (Murray et al. 2012). For step 2, we using computationally efficient
birth-death MCMC sampler proposed by Mohammadi and Wit (2015) for Gaus-
sian graphical models. Their algorithm explores the graph space by adding or
deleting an edge in a birth or death event, in which the events are based on a
continuous time birth-death Markov process.
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Abstract: In regression analysis, the data sample is often composed by sub-
populations and the impact of some of the covariates may differ across groups.
A model with group interactions can be fit to avoid biased estimates, but the
power to test for significant effects is importantly reduced, especially when the
number of sub-populations is large. We propose a prior distribution which com-
bines the information of the groups with a similar covariate effect. This increases
importantly the power whilst allowing to study differential effects across sub-
populations. The method is applied to analyse patients’ satisfaction in seven
European countries.
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1 Introduction

In regression analysis, the response is usually modelled as a function of the ex-
planatory variables assuming that the effect of each covariate is the same for all
observations. Such a model can be expressed as

yi = β0x0,i + β1x1,i + · · ·+ βpxp,i + εi, (1)

where the covariate x0 corresponds to the intercept and the error is assumed to
follow εi ∼ N (0, σ2) for i = 1, . . . , n. However, data often come from populations
with well-defined groups such as geographical region, level of education, ethnicity
or gender. Ignoring group effects may have serious consequences on the estima-
tion of regression coefficients. As a simple example, let us consider the case in
which a specific covariate has a strong negative effect on the response for women
and a strong positive effect for men. Fitting a model with a common regression
coefficient for both groups would lead to a biased estimate and perhaps infer-
ring non-significance of the covariate effect. Therefore, the following model with
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interaction terms may be more appropriate in multi-group studies

yi(g) = β0(g)x0,i(g) + β1(g)x1,i(g) + · · ·+ βp(g)xp,i(g) + εi(g), (2)

where yi(g) is the response for individual i = 1, . . . , ng in group g = 1, . . . , G. The
regressor xj,i(g) corresponds to the interaction between covariate xj,i and group
membership and εi(g) ∼ N (0, σ2). Hence, the effect of covariate xj in group g is
βj(g) for j = 0, . . . , p.
However, model (2) embraces low power to detect significant effects when the
number of groups is large. To illustrate this, let us assume that the variance
σ2 is known and that all covariates in model (1) are mutually independent,
i.e., Cov(xj , xj′) = 0 for j 6= j′. If the covariates are mean centered and stan-
dardized, the variance of the regression coefficient estimators under model (1) is
Var(β̂j) = σ2 for j = 1, . . . , p. On the other hand, with the interaction model (2)
the variance of the estimators is substantially larger, namely Var(β̂j(g)) = Gσ2

for j = 1, . . . , p. This equality holds assuming that
∑
i x

2
j,i(g) =

∑
i x

2
j,i(g′),∑

i xj,i(g) = 0 for all groups and that the interaction cross-products are null,
i.e.,

∑
i xj,i(g)xj′,i(g) = 0 for j 6= j′. Therefore, including the interaction terms

is unfavourable when a covariate has the same effect across groups, because the
model without interactions describes adequately the data and presents higher
power for significance testing.
We propose an approach that is a compromise between the two alternatives, al-
lowing for a differential effect across groups but taking into account that the
covariate effect may be similar for some or all of the sub-populations. Using a
Bayesian hierarchical model, we assume that for a given covariate xj , the interac-
tion coefficients across groups βj(1), . . . , βj(g) can be classified into 3 components:
sub-populations where the effect of the covariate is negative, groups where there
is no effect on the response and sub-populations where the impact is positive.
If no differential effects are present for the covariate, all the interaction terms
can be classified in the same component. The proposed method combines the
information of the groups with a similar covariate effect, which improves the
power in significance testing, whilst allowing to study differential effects across
sub-populations.

2 Proposed Bayesian hierarchical model

A latent variable γj(g) = {−1, 0,+1} is introduced to classify the interaction
coefficients of the model in the three defined components: the covariate xj has
no impact in group g when γj(g) = 0, the effect is negative if γj(g) = −1 and the
effect is positive when γj(g) = +1. The distribution of the interaction coefficients
conditionally on the latent variable is defined as[

βj(g)|γj(g) = −1
]
∼ N

(
µj(−), σ

2
j(−)

)
,[

βj(g)|γj(g) = +1
]
∼ N

(
µj(+), σ

2
j(+)

)
,

(3)

where µj(−) < 0 and µj(+) > 0 for j = 0, . . . , p. If γj(g) = 0 we have a degenerate
distribution and Pr(βj(g) = 0) = 1. For each covariate, the proportion of sub-
groups where xj has no impact is πj(0) = Pr(γj(g) = 0), whereas the overall pro-
portions with a negative and positive effect are respectively πj(−) = Pr(γj(g) =
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−1) and πj(+) = Pr(γj(g) = +1). The model specification is completed by assum-
ing independence for γj(g)’s across covariates and sub-populations conditionally
on πj = (πj(−), πj(0), πj(+)).
This model for the analysis of differential effects can be estimated via MCMC
methods. We select as prior distribution for the component probabilities πj ∼
Dir(0.25, 0.5, 0.25) to have Pr(βj(g) = 0) = Pr(βj(g) 6= 0). A vague inverse
gamma density IG(0.001, 0.001) is assigned to the variance of the error. In the
method, the response variable y is mean centered and standardized to facilitate
the choice of priors for the parameters in the mixture model (3). We select a priori
µj(−) ∼ U(−2, 0) and µj(+) ∼ U(0, 2) for j = 0, . . . , p, since the case βj = ±1
would imply a perfect correlation between the covariate xj and the response.
Finally, for the variances of the mixture components we specify σj(−), σj(+) ∼
U(0, 1).
After running the MCMC algorithm, a sample of the indicator component γj(g) is
obtained for each interaction in the model. If the proportion of MCMC iterations
in which γj(g) = −1 is larger than 0.5, this indicates that the effect of xj in group
g is negative. Similarly, if the proportion in which γj(g) = +1 is larger than 0.5,
the effect is positive. In any other case, we conclude that there is no impact of
the covariate in that group.

3 Simulation study

To assess the proposed method, a simulation study was carried out based on the
model yi(g) = β0(g)x0,i(g) + β1(g)x1,i(g) + β2(g)x2,i(g) + β3(g)x3,i(g) + εi(g) with
ng = 20 observations for each sub-population g = 1, . . . , 30. The intercept takes
the values β0(g) = {−3,−2.8,−2.6, . . . , 2.8} across groups, whereas β1(g) = 0
and β3(g) = 3 for all sub-populations. The covariate effect of x2 is β2(g) = 0 for
g = 1, . . . , 15 and β2(g) = 3 for g = 16, . . . , 30.
The proposed model (3) is compared with the method advocated by Benjamini
and Hochberg (1995) for multiple testing. The so called BH approach controls
the false discovery rate (FDR) which is defined as the proportion of hypothesis
H0 : βj(g) = 0 mistakenly rejected among all (mistakenly and accurately) rejected
hypothesis. This allows to control the familywise error rate in a weak sense and
admits more powerful procedures compared to Bonferroni-type methods, which
are well-known to be conservative.
In the simulation study, 100 replicated data sets were generated from the model.
Besides the FDR, we compared the methods based on: false non-discovery rate
(FNDR), type I error rate, the power and total number of interaction effects
that are misclassified (TotalMiss). The results in Table 1 show that BH presents
a lower average FDR but the power is 0.44, very low compared to 0.92 in the
proposed model (3). When looking at TotalMiss, we see that around 35% of the
120 interactions are being misclassified by BH whereas in our proposed method
it is only 9%.

4 Analysis of patient overall satisfaction

In the registered nurse forecasting (RN4CAST) study, patients were asked to
rate their hospitals on a scale from 0 (worst) to 10 (best). Additionally, the sub-
jects responded 16 items related to doctor communication, nurse communication,
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TABLE 1. Results from the simulation study.

Method FDR FNDR Type I Power TotalMiss

BH 0.017 0.476 0.013 0.446 42.370
Prop. 0.055 0.120 0.093 0.917 10.440

physical environment, pain control and discharge information. Hence, it is of in-
terest to understand how the patient experiences (reflected in the 16 items) relate
to the overall rating given by patients to the hospitals.
Furthermore, the RN4CAST is a multi-country study, so the 2942 patients in
the sample (after discarding observations with missing information) belong to
seven different countries: Belgium, Switzerland, Spain, Finland, Greece, Ireland
and Poland. Therefore, it is important to determine if the impact of the 16 items
on overall satisfaction is the same across countries or, on the contrary, whether
any patient experiences are more relevant in some specific nations.
Fitting model (1) indicates that 13 of the items are related to overall patient
satisfaction. To analyse differential effects, the BH method is applied to model
(2) finding that in 5 of those items, none of the interactions is significant. On the
other hand, the proposed method (3) indicates that all of the 13 items revealed
by model (1) have an important effect in at least four of the seven countries.
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Abstract: Chronic obstructive pulmonary disease (COPD) is a type of lung
disease characterized by persistent bronchitis and emphysema. Current therapy
is restricted to alleviate lung tissue inflammation, but is not able to stabilize or
improve lung function of patients making necessary to understand the underlying
molecular mechanisms of COPD. Genome-wide gene expression of lung tissue
provides a powerful tool to elucidate molecular mechanism of COPD patients. In
particular, Bayesian Networks (BNs) have been applied to infer genetic regulatory
interactions from microarray gene expression data. In this study we aim obtain
a clearer understanding of the genes interaction in COPD patients by learning a
BN over microarray expression data. A subset of genes was selected for the study
fulfilling that i) the genes were significantly expressed in COPD stage 4 and ii)
there is reported gene-gene experimental association. The reported associations
are introduced as prior biological knowledge in the reconstruction.
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1 Introduction

Chronic obstructive pulmonary disease (COPD) is characterized by distinct phe-
notypes as, emphysema, chronic bronchitis and fibrosis. The exact nature of the
abnormal lung tissue repair processes in COPD lungs is unknown, hence a bet-
ter understanding the underlying molecular mechanisms is thus crucial. Bayesian
Networks (BNs) have been applied to infer genetic regulatory interactions from
microarray gene expression data. This inference problem is particularly hard be-
cause of the relatively small size of the data sets. Moreover the asessment of
the inference for COPD results is unfeasible as there is a lack of known gold
standards from the biological literature. The aim of the present study is the re-
construction of a regulatory network from a microarray gene expression data set
for COPD (stage 4) patients using BNs with prior biological knowledge coming
from STRING (database of known and predicted protein-protein interactions).
Inference is done using with Markov Chain Monte Carlo (MCMC) sampling fol-
lowing the approach of Werhli et al. (2007). Two networks are obtained and
compared, one for the controls and one for the COPD data.

2 Bayesian Networks with prior knowledge

Bayesian Networks (BNs) represent probabilistic relationships between interact-
ing agents (e.g. genes) in the form of conditional independence. For BNs the
model is a Directed Acyclic Graph (DAG), a set of nodes that are connected by
(directed) edges without cycles. We denote by G the network structure, which is
the set of nodes and edges, and by q the interaction strength. Our objective is
to learn the network structure G directly from the scratch microarray data D.
Nodes are associated with genes and the edges indicate interactions between the
genes. A Bayesian learning approach uses the posterior P (G|D)

P (G|D) = P (G|D)P (G)/P (D)

where P (G) is called the prior over graphs, P (D|G) the marginal likelihood,
P (D) is a scaling constant and P (G|D) is called the posterior probability. The
term P (D|G) is the result of integrating the likelihood P (D, q|G) over all the
possible values of the parameters q. Calculating P (G|D) for all possible network
structure G is computationally impossible due to P (D) is intractable. Gene ex-
pression data implies a large number of genes with only a relative small number
of measurements. As a consequence the posterior P (G|D) will not have a clear
maximum G∗ . A solution is to use a MCMC sampling based on Metropolis Hast-
ing algorithm (MH). This produces a Markov Chain that reaches P (G|D) as its
stationary distribution (under some conditions). Generally different DAGs can
represent the same probabilistic relationships (i.e they can be equivalent). The
set of equivalent DAGs is called the equivalence class and is represented by a
CPDAG.
Introducing prior knowledge for learning BNs is done following Werhli et al.
(2007). The prior knowledge is encoded in a matrix B whose entries Bij ∈ [0, 1]
represent the belief about the presence/absence of an edge. The elements Bij
greater than/less than 0.5 reflects evidence in favor/against the presence of the
edge Gij , and Bij = 0.5 as uninformative. The prior over graphs takes the form
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of a Gibbs distribution,

P (G|β) = e−βE(G)/Z(β)

The function E(G) measures the agreement between a sampled network G and B
(e.g. using the Hamming distance). The parameter β indicates the weight of the
respective source of knowledge to the data, and Z(β) is a normalization constant.

3 Evaluation of the COPD dataset and
Implementation

The data consist of genome-wide gene expression profiling in lung tissue samples
of 72 subjects, where 48 exhibited COPD (stage 4). The others 24 are non-
COPD tissues (Controls). The 60 most significant genes based on p-value and
log2(FC) > 2 were checked in STRING data base, obtaining that 7 genes (FGG,
RORC, FGA, OSMR, NR1D1, CSF3, THBS1) had reported experimental and/or
data base associations. This set of genes is augmented as follows: i) the Pearson’s
correlation matrix ρ is built for Controls and COPD, and ii) a pair of genes is
selected if |ρcontrols| < 0.25 and |ρCOPD| > 0.75 . In this way 8 additional genes
are obtained, namely MT1M, IL1RL1, MT1P3, MT1A, SLCO4A, GPA33, TTN,
ZBED2. In total 2 networks were reconstructed for the forementioned genes i)
Controls with prior knowledge, and ii) COPD with prior knowledge. The coupling
parameter β is defined in [0, 30]. The MCMC was implemented with the REV
move from Grzegorczyk (2008) for number of 9x105 iterations, with thining every
1000 DAGs. The first half of the sample was discarded as part of the burn in phase
and Model Averaging was performed over the final set of 501 CPDAGs.

4 Results and Conclusions

After the burn in phase the 75th percentile of β (in Controls and COPD cases)
is less than 1. This suggest that COPD’s gene regulation has no apparent com-
monalities with previously reported interaction. Table 1 shows a summary of the
interactions that considerably changed between Controls and COPD. In particu-
lar interactions like FGG-FGA, and MT1P3-MT1A are reasonable as they belong
to the same family. On the other hand NR1D1 has no a well known association
with fibrogenes, this interaction (FGG-NR1D1) is present in Controls (mediated
by FGA) and COPD (directly). Our next research plan is to extend the gene set.
We will provide more precise biological interpretations in the presentation.
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FIGURE 1. Reconstructed regulatory network for Control and COPD.
On the right: Network from STRING with experimental and database associa-
tions. Doble arrows stand for reported associations. On the left: Reconstructed
network. The blue edges stand for gene interactions in the Controls. The seg-
mented red edges stand for gene interactions in the COPD. There are no common
edges. Only edges with a frequency above 0.75 are shown.

TABLE 1. Marginal edge frequency changes This table presents a set of rel-
evant gene-gene interaction whose edge frequency had a notable change between
the network for the Controls and the one for COPD.

Controls COPD

FGG-FGA 0.770 0.314
FGA-NR1D1 0.906 0.078
MT1P3-MT1A 0.890 0.614
THBS1-MT1A 0.932 0.502
RORC-NR1D1 0.760 0.114
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Abstract: An explanation to Lord’s paradox using ordinary least square regres-
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1 Introduction

In 1967 Frederic Lord posed following question (see Lord 1967 and Pearl 2016)
that became a paradox among applied statistical community. To see effects and
if there is any sex difference of diet provided in a university weights of students
at time of their arrival and those a year later are recorded. The data are inde-
pendently examined by two statisticians. The first examines the mean weight of
the girls at the beginning and at the end of the year, and finds that they are to
be identical, i.e., frequency distribution of the weight for the girls is not changed,
so is for the boys. The second statistician finds that the slope of the regression
line of the final weight on the initial weight is essentially the same for both sexes
but the regression coefficient of the variable sex to be statistically significant and
concludes that the boys showed significantly more gain in weight than the girls
when proper allowance is made for differences for initial weight.
Conclusions of the two statisticians seem to contradict with each other; the first
is predictive and the second is both predictive, and causal if the initial weight
is the only confounder of causal relation between the sex and the final weight.
The second has given causal effect of the sex on the final weight (weight gain)
by a regression coefficient. In fact, to give it by comparing, two supports of the
confounder of both sexes should coincide. But one can assume that the population
initial weight ranges of boys and girls coincide even though sample counterparts
differ (so, extrapolation is meaningful).
Let the initial weight, final weight and sex are denoted by WI , WF , S respectively
(S = 0, a girl and S = 1, a boy) and weight gain be D = WF −WI . If the effect of

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).



224 Lord’s Paradox

S on D is found by difference of conditional means, E{D|S = 1} − E{D|S = 0}
then it is no effect. This can be found by running regression of D on S. Note that
E{WF |S = 1} = E{WI |S = 1}, (say, µB) and E{WF |S = 0} = E{WI |S = 0},
(say, µG). If E{D|WI = i, S = 1} and E{D|WI = i, S = 0} are calculated simply
by partitioning the data by taking WI to be discrete or as a functions of i, then
the difference E{D|WI = i, S = 1} − E{D|WI = i, S = 0} may not be zero
for each i, so may be difference of their weighted means,

∑
iE{D|WI = i, S =

1}p(WI = i) −
∑
iE{D|WI = i, S = 0}p(WI = i). If the effect of S on WF is

calculated by it then it is different from former value (paradoxical!).
Now let us see why two types of differences of averages differ by simple algebra,
that will say that they should have two different interpretations. First assume that
we have a number of subgroups of boys and, for simplicity, the same is true for
girls. Let D1

ij be the weight gain of the j-th boy in the i-th subgroup of boys where
sub-group size is ni and D0

ij be that of the girls where sub-group size is mi and
furthermore, let f1

i = ni/
∑
k nk, f0

i = mi/
∑
kmk and fi = (ni +mi)/

∑
k(nk +

mk) for j = 1, ..., ni and i = 1, ..., a. And let A1 be difference of the average
weight gain of the boys and the girls, D̄1

i =
∑
j D

1
ij/ni and D̄0

i =
∑
j D

0
ij/mi for

i = 1, ..., a. So,

A1 =

∑a
i=1

∑ni
j=1 D

1
ij∑a

i=1 ni
−
∑a
i=1

∑mi
j=1 D

0
ij∑a

i=1 mi
=

a∑
i=1

D̄1
i f

1
i −

a∑
i=1

D̄0
i f

0
i

6= 1

2

{ a∑
i=1

D̄1
i f

1
i +

a∑
i=1

D̄1
i f

0
i −

a∑
i=1

D̄0
i f

0
i −

a∑
i=1

D̄0
i f

1
i

}
; generally

=
1

2

{ a∑
i=1

(D̄1
i − D̄0

i )(f
1
i + f0

i )
}
6=

a∑
i=1

(D̄1
i − D̄0

i )fi = A2

where fi = αf1
i + (1 − α)f0

i for i = 1, ..., a such that α =
∑a
i=1 ni/

∑a
i=1(ni +

mi) and A2 is the difference of weighted averages of the sub-group weight gain
averages. So, the difference of group averages A1 (which is zero in our case) is
different from the difference of pooled-weighted average of the sub-group averages
A2. The second statistician compares the boys and the girls subgroup-wise and
finds that it is a constant gain for the boys over the girls across the subgroups, i.e.,
D̄1
i − D̄0

i is constant for all initial weight i. Therefore he finds that the boys gain
more weight than the girls in corresponding sub-groups. Note that for simplicity
we have taken initial weights as discrete values. In fact, A2 =

∑
iE{D|S =

1,WI = i}p(WI = i)−
∑
iE{D|S = 0,WI = i}p(WI = i) is the causal effect of S

onD ifWI is the only confounder, under the linear assumption. It is different from
A1 unless E{D|S,WI} = E{D|S}. The confounding effect (A2−A1) depends on
how different f1 and f0 are (can have a measure from them).

2 Regression Solution

Now we define interpretation of ordinary least square (OLS) estimates of the re-
gression coefficients (parameters). The OLS estimation is based on the variation
of the response variable Y for a given functional form of the values of explanatory
factors. Regression coefficients are estimated so that sum of squared prediction
errors for the data in the sample is the minimum. So, reverse regression is not
generally obtainable from forward regression and may not be consistent with the



Wijayatunga et al. 225

latter. For simple linear regression one can easily establish that the reverse regres-
sion and the forward regression are consistent with each other if and only if one
of the regressions have symmetric residuals about and uni-modal at conditional
expectation of response, that implies other regression too.
Now consider the OLS linear regression model Y = β0 + β1X1 + β2X2 + ε, then
linear effect of X1 on Y when X2 is held unchanged is given by β1 if Y values
are symmetric about and uni-modal at β0 + β1X1 + β2X2. It is clear that the
supports of X2 for each value of X1 are the same (or extrapolation is meaningful
if empirical supports differ). Symmetry and uni-modality of Y values for given
values of X1 and X2 are observed if all other factors that affect or are associated,
but are not taken into consideration are allowed to vary pure randomly. This is
a fundamental assumption used in statistical modelling often implicitly.
Let us do a regression of WF on the binary variable S. Then we get the model
WF = µG+(µB−µG)S+ε1. where the regression co-efficient of S is the predictive
effect of S on WF provided that above requirement is fulfilled. The residuals of
the model are just individual values of D, i.e., ε1 = D for each subject and it is
easy to see in Fig. 1 of Lord 1967, that the residuals are predictive by WI for each
sex category separately, ε1 6⊥ WI |S. However, it may be that ε1 ⊥ S. So, if the
two clusters of values of WF for two sexes are symmetric about and uni-modal
at the respective means then the effect of S on WF is the regression coefficient of
S in the model. But it is uncontrolled confounders that are associated with WF ,
then it should be interpreted accordingly. That is, it is the predictive effect of sex
differences and causal if there are no confounders such as WI . And we see that
we get zero predictive effect from the meal change since the regression coefficient
is the same as that when the girls and boys had previous meal type.
Let we can write the distribution of residuals for each value s of S, say, f(ε1|s) as a
mixture, f(ε1|s) =

∫
g(ε1|x, s)π(x, s)dx for some random variable X, and for each

value x of X the component distribution g(ε1|x, s) may have non-zero mean such
that E{ε1|s} =

∫
E{ε1|x, s}π(x, s)dx = 0 and then we have that V ar{ε1|x, s} ≤

V ar{ε1|s} where π(x, s) = h(x|s)p(s); here h(x|s) is the conditional probability
density of X given S = s and p(s) is the marginal probability distribution of
S. If X could be identified meaningfully, then model should include such feature
variables too. In this case, X could be identified as the initial weight WI . Then
one should accept the upgraded model that includes WI too. It has residuals that
have a smaller conditional standard deviation given WI and S. Furthermore, if
WI is the only confounding factor and when it is also included in the model the
the coefficient of S is the causal effect of S on WF .
Let the residual ε′1 corresponds to the context that WI = wI and S = s and
then it can be written as ε′1 = µwI ,sε1 + ε2 where µwI ,sε1 is the expectation of it. So,
we have E{ε2|WI = wI , S = s} = 0 and also that V ar{ε2|WI = wI , S = s} ≤
V ar{ε1|S = s}. And furthermore, we can have that µwI ,0ε1 = a0 + b0wI for s = 0
and µwI ,1ε1 = a1 + b0wI for s = 1 where a0, b0 and a1 are constants. Now, given
that WI = wI and S = s, for s = 0, 1, and I(A) = 1 when A is a true statement
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and I(A) = 0 otherwise, we have

WF = WF = µG + (µB − µG)s+ µwI ,sε1 + ε2

= µG + (µB − µG)s+ (a0 + b0wI)I(S = 0) + (a1 + b0wI)I(S = 1) + ε2

= µG + (µB − µG)s+ a0I(S = 0) + a1I(S = 1) + b0wI + ε2

= µG + (µB − µG)s+ a0(1− s) + a1s+ b0wI + ε2

= µG + a0 + (µB − µG − a0 + a1)s+ b0wI + ε2

So we can obtain a super-model (regression) from a given regression model (it is
a sub-model of the former) as long as its residuals are predictive (linearly in this
case) with another explanatory variable. The predictive effect of S on WF when
controlled for WI is µB − µG − a0 + a1 that is generally different from earlier
value of µB −µG and for each individual model prediction is more accurate than
that of the previous model, therefore new model is preferred to the previous
one. If WI is only a confounder but not an intermediate variable between the
causal pathway between S and WF , and has a common support for all values
of S, then β1 is the average causal effect of S on WF in the linear case. In our
example, sample supports of WI for S = 1 and S = 0 differ but we can assume
that they are the same in the population (so, extrapolation is meaningful). Note
that the above arguments can be generalised. For restrictions of space, we avoid
presenting solution to the paradox, that is based on causal diagrams. We object
recent solution by Pearl. Our explanations comply with Lord’s initial comments.
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Abstract: Most of the models designed for modeling censored data rely on the
assumption of normality for the error distribution. It is well known that not all
applications are well modeled by this distribution. Some efforts have relaxed the
normality assumption by considering more flexible distributions such as t and log-
alpha-power. Nevertheless, these models do not consider partial observations from
the assumed distribution which potentially leads to biased inference. We have ex-
plored a real data example of measles vaccine in Haiti and confirmed both the
possibility of partial observation and asymmetry problems. Then, to solve such
problems, we propose a mixture model consisting of the Birnbaum-Saunders and
Bernoulli distributions. We discuss estimation of the model parameters based
on the maximum likelihood method. We then carry out a Monte Carlo simula-
tion study to evaluate the performance of the maximum likelihood estimators.
We use the R software in all computations and the results favor the proposed
methodology.

Keywords: Mixture model; Censoring; Birnbaum-Saunders Distribution.

1 Introduction

The determination of antibody concentration by quantitative assays is a very
important topic of research, because there is always a concentration value (T )
below which an exact measurement cannot be obtained regardless of the employed
technique. Nevertheless, this antibody concentration value (T ) is a function of
the associated assay. When left-censoring is present in data from an assay, the

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
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lower detection limit (LDL) can be used to substitute a value for the censored
observation, namely, the value T . In special, this substitution is applied in a safety
and immunogenecity study of measles vaccine in Haiti presented by Moulton and
Halsey (1995), an example explored in this paper.
A two-part model for the situation of zero excess was considered by Cragg (1971).
The Cragg model considers the possibility of having observations from the as-
sumed distribution f and from the point mass distribution. In this model, the
log-normal distribution was considered for the independent variable. The Cragg
model, however, does not consider the existence of both a lower limit and some
observations below this limit. Moulton and Halsey (1995) proposed a straight-
forward generalization of the two-part model, called Bernoulli/lognormal model,
by considering the possibility of some limiting responses resulting from interval
censoring associated with f . The generalized two-part model allows the possibil-
ity of a observation i, if located below T to be either a partial observation from
f or a realization of the point mass distribution.
The main objective of this paper is to propose a regression model for censored
data based on the mixture between the Birnbaum-Saunders (BS) and Bernoulli
distributions, that is, a censored continuous distribution and a point mass distri-
bution located below the detection limit. The Birnbaum-Saunders (BS) distribu-
tion is positively skewed and has a failure rate with upside-down bathtub shape
and a close relation with the normal distribution; see Birnbaum and Saunders
(1969) and Johnson et al. (1995). The proposed model extends to the BS case
the Moulton and Halsey (1995)’s Bernoulli/lognormal model.

2 The Bernoulli/BS mixture model

2.1 Formulation

We propose a mixture model between the Bernoulli and BS distributions (Bernoulli/BS),
that is,

g(yi) =
[
p+ (1 − p) Φ

(
ζ
c
i2

)]
Ii+(1 − p)

[
c1

α
cosh

(
y − µ1

2

)
exp

(
−

2

α2
sinh

2

(
y − µ1

2

))]
(1−Ii),

(1)

where c1 = 1/
√

2π, µ1 = x>(1)β(1), ζ
c
i2 = (2/α) sinh

(
(y0 − x>(1)β(1))/2

)
,

Ii =

{
1, if y ≤ y0,

0, if y > y0,
(2)

and Φ(·) is the CDF of the standard normal distribution, with x(1) being the
covariates associated with β(1). We assume a logit link for the random variable
D, thus it is possible to include covariates as follows

logit [P (D = 1|x(2))] = x(2)
>β(2), (3)

where x(2) are the covariates associated with β(2). The formulation of the logit
link defined in Equation (3) becomes,

τi = 1− pi =
exp (x(2)

>β(2))

1 + exp (x(2)
>β(2))

, (4)
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where the vector x(2) has a dimension q, which can be, and usually is, different
from the dimension of the vector x(1).
The log-likelihood function for the mixture Bernoulli/BS is given by

`(θ) = −(n−m) log(2)− (n−m) log(2π)
2

+ (5)∑m
i=1 Ii

[
log
(
1 + exp(x>(2)β(2)) [Φ (ζc

i2)− 1]
)
− log

(
1 + exp

(
x>(2)β(2)

))]
+
∑n
m+1 (1− Ii)

[
x>(2)β(2) + log (ζi1)− 1

2
ζ2
i2 − log

(
1 + exp(x>(2)β(2))

)]
,

where ζc
i2 is defined in Equation (1) and ζi1 and ζi2 are defined in Equation (6),

ζi1 =
2

α
cosh

(
yi − x>(1)iβ(1)

2

)
, ζi2 =

2

α
sinh

(
yi − x>(1)iβ(1)

2

)
. (6)

3 Application

We analyse a data set provided by Moulton and Halsey (1995) from a study of
measles vaccines. Neutralization antibody levels were collected from 330 children
at 12 months of age. The LDL was 0.1 international units (IU) or −2.306 in
logarithm scale. Around 86 (26.1%) of the observations fell below the LDL and
then recorded as 0.1. The following covariates were considered: X1 indicates the
type of vaccine used (0 if Schwartz and 1 if Edmonston-Zagreb); X2 is the level
of the dosage (0 if medium and 1 if high); and X3 is the gender where 0 is male
and 1 is female.
We here present the estimation results for the Bernoulli/BS model along with
those of the standard tobit, tobit-BS (Chapter 2) and Bernoulli/LPN Mart́ınez-
Flórez et al. (2013) models. The Bernoulli/BS and Bernoulli/LPN have both
a logit link. The covariates EZ and HI were used only in the logit component,
and covariate FEM entered only in the continuous component of the models.
Table 1 shows the ML estimates, Akaike information criterion (AIC) values and
standard errors for the considered models. A glance at the results indicates that,
in the Bernoulli/BS model, the receiver of Edmonston-Zagreb strain does not
contribute to the odds ratio of being above the detection limit, however, the
receiver of a high dose impacts exp(1.499) = 4.472 in the odds of being above
the detection limit. Moreover, the Bernoulli/BS model suggests that girls have
exp(−0.078) − 1 = −0.075 less concentration of measles antibody concentration
than boys. We observe that the Bernoulli/LPN and Bernoulli/BS models do not
agree on the sign of the coefficient corresponding to the FEM variable, while
the first model indicates that girls have a higher measles antibody concentration
than boys, the other indicates the opposite. Also from Table 1, we note that the
Bernoulli/BS model provides a better fit compared to the other models based on
the AIC values.

Acknowledgments: This study was partially supported by CAPES from the
Brazilian government.
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TABLE 1. ML estimates (with SE in parentheses) and AIC values for the indi-
cated models with the measles vaccine data

Continuous component

Model AIC α INT EZ HI FEM
tobit 1299.27 0.945*** 0.597** 0.225 −0.228 0.271

(0.047) (0.288) (0.297) (0.295) (0.296)

tobit-BS 1168.60 1.545*** −0.910*** 0.188* 0.074 0.121
(0.048) (0.105) (0.111) (0.109) (0.110)

Bernoulli/LPN 976.48 8.918** −2.869*** 0.222*
(3.922) (0.582) (0.134)

Bernoulli/BS 760.64 1.560*** 0.123*** −0.078***
(0.108) (<0.001) (<0.001)

Obs: Rejects H0 at *10% of significance,** 5% of significance and ***1% of significance.
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Abstract: To analyze square contingency tables with ordered categories, herein a
model that indicates the structure of asymmetry for cell probabilities is proposed.
This model is the closest to the symmetry model in terms of the f -divergence
under certain conditions and incorporates various types of asymmetry. It is shown
that the symmetry model can be separated into the proposed model and other
models. This may reveal the origin for the poor fit of the symmetry model when
it occurs for a real dataset.
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1 Introduction

To analyze square contingency tables with ordered categories, an issue of symme-
try (rather than independence) arises naturally. So, we are interested in consider-
ing a structure of symmetry. Many other statisticians, including Kateri and Pa-
paioannou (1997), Kateri and Agresti (2007), and Tahata and Tomizawa (2011),
have proposed various models of symmetry and asymmetry. In the present paper,
we propose a model that is the closest to the symmetry model in terms of the
f -divergence (Csiszár and Shields, 2004) under certain conditions. Our model is
a generalization of the symmetry model in the sense that it includes the various
types of asymmetry models.
Caussinus (1965) proved the theorem that the symmetry model holds if and
only if both the quasi symmetry model and the marginal homogeneity model
hold. When the symmetry model does not fit for a real dataset, the separation
of symmetry may be useful to identify the origin for the poor fit of symmetry.
For example, Kateri and Papaioannou (1997), Tahata and Tomizawa (2011), and
Saigusa, Tahata and Tomizawa (2015) have given the separation of the symmetry
model. In the present paper, we show that the symmetry model can be separated

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
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into some models. One is the proposed model and others are concerned with the
equality of marginal moments. The results include the separation of the symmetry
model given by Caussinus (1965) as a special case.
The present paper is organized as follows. Section 2 proposes the new model
and gives the separation of the symmetry model. Section 3 provides a numerical
example.

2 Asymmetry models

Consider an r×r square contingency table with ordered categories. Let πij denote
the probability that an observation will fall in the (i, j)th cell of the contingency
table (i = 1, . . . , r; j = 1, . . . , r). Let π = (πij) and q = (qij) be two bivariate
probability distributions. The f -divergence between π and q is defined as

IC(π : q) =
∑
i

∑
j

qijf

(
πij
qij

)
,

where f is a convex function on (0,+∞) with f(1) = 0. Also, we take f(0) =
limt→0 f(t), 0·f(0/0) = 0, and 0·f(a/0) = a limt→∞[f(t)/t] (Csiszár and Shields,
2004).
Let {ui} be a set of known scores u1 ≤ u2 ≤ · · · ≤ ur (with u1 < ur). In
an analogous manner to Kateri and Papaioannou (1997), for a given k (k =
1, . . . , r− 1) we propose that the asymmetry based on the f -divergence (ASk[f ])
model is defined as

πij = πSijF
−1

(
k∑
h=1

uhi αh + γij

)
(i = 1, . . . , r; j = 1, . . . , r),

where γij = γji, π
S
ij = (πij + πji)/2, f is a twice-differential and strictly convex

function, and F (t) = f ′(t). From the relation πSij = (πij +πji)/2, the parameters
of the ASk[f ] model must satisfy

F−1

(
k∑
h=1

uhi αh + γij

)
+ F−1

(
k∑
h=1

uhj αh + γji

)
= 2.

Note that when α1 = · · · = αk = 0, (i) the ASk[f ] model is reduced to the
symmetry (S) model (Bowker, 1948), (ii) the AS1[f ] model is reduced to the
OQS[f ] model (Kateri and Agresti, 2007) and (iii) the ASr−1[f ] model with u1 <
u2 < · · · < ur is reduced to the QS[f ] model (Kateri and Papaioannou, 1997).
The ASk[f ] model is the closest model to the S model in terms of the f -divergence
under the condition that

∑
i

∑
j u

h
i πij (or

∑
i

∑
j u

h
j πij) for h = 1, . . . , k as well

as the sums πij + πji for i = 1, . . . , r; j = 1, . . . , r are given.
When we set f(t) = t log(t), t > 0, the ASk[f ] model can be expressed as

πij
πji

=

k∏
h=1

β
uhi −u

h
j

h ,

where βh = exp[αh]. Above equation with {ui = i} is the k-th linear asymmetry
model proposed by Tahata and Tomizawa (2011).
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Let X and Y denote the row and column variables, respectively. Assume that a
set of known scores {us} can be assigned to both the rows and the columns. Let
X1 = ui when X = i (i = 1, . . . , r), and X2 = uj when Y = j (j = 1, . . . , r). For
a given positive integer k (k = 1, . . . , r − 1), consider a model defined by

E(Xh
1 ) = E(Xh

2 ) (h = 1, . . . , k),

where E(Xh
1 ) =

∑r
s=1

∑r
t=1 u

h
sπst, E(Xh

2 ) =
∑r
s=1

∑r
t=1 u

h
t πst. For a given k,

we shall refer to this model as the marginal kth moment equality model for the
scores {us} (denoted by MEk).
This leads to the following theorem.

Theorem 1. For a fixed k (k = 1, . . . , r − 1), the S model holds if and only if
both the ASk[f ] and MEk models hold.

Assume that a set of known scores {ui = i} is assigned. We now obtain that the
test statistic for the S model is asymptotically equivalent to the sum of those for
the ASk[f ] model and the MEk model under the S model.

3 Example

Table 1, which is taken directly from Stuart (1955), is the cross-classification
of the unaided distance vision of 7477 women aged 30–39 employed in Royal
Ordnance factories in Britain from 1943 to 1946. The S model fits the data poorly,
yielding the likelihood ratio statistic G2 = 19.249 with 6 degrees of freedom (df).

TABLE 1. Unaided distance vision of 7477 women aged 30–39 employed in Royal
Ordnance factories in Britain from 1943 to 1946; from Stuart (1955).

Right eye Left eye grade
grade Highest (1) Second (2) Third (3) Lowest (4) Total

Highest (1) 1520 266 124 66 1976
Second (2) 234 1512 432 78 2256
Third (3) 117 362 1772 205 2456
Lowest (4) 36 82 179 492 789

Total 1907 2222 2507 841 7477

We set f(t) = (1 − t)2 and used the integer scores {ui = i}. Consider the hy-
pothesis that the AS2[f ] model holds under the assumption that the AS3[f ]
model holds; namely, the hypothesis that α3 = 0. According to the test based
on the difference between the G2 values for the AS2[f ] and AS3[f ] models, the
hypothesis is accepted at the 0.05 level because 7.267 − 7.262 = 0.005 with 1
df. In a similar manner, the hypothesis that the AS1[f ] model holds under the
assumption that the AS2[f ] model holds is accepted at the 0.05 level because
7.271− 7.267 = 0.004 with 1 df. Therefore, the AS1[f ] model may be preferable
to the AS2[f ] and AS3[f ] models. The AS1[f ] model fits the data well. On the
other hand, the ME1 model fits the data poorly, yielding G2 = 11.978 with 1 df.
From Theorem 1 with k = 1, the poor fit of the S model is due to the lack of
structure of the ME1 model (rather than the AS1[f ] model).
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Abstract: The t linear mixed model naturally occurs from the linear mixed
model with inverse gamma distributed heterogeneous variances. Various publica-
tions emerged with the aim of proving superiority with respect to traditional lin-
ear mixed models, extending to more general settings and proposing more efficient
estimation methods. However, little attention has been paid to the mathematical
properties of the model itself and to the evaluation of the proposed estimation
methods in finite samples with many repeated outcomes. In this paper we pro-
pose an in depth analysis of the t linear mixed model, with particular focus on its
identifiability and on the evaluation of a maximum likelihood estimation method
via an intensive simulation study.
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1 Introduction

The linear mixed model (LMM) introduced by Laird and Ware (1982) has been
largely investigated and applied to diverse longitudinal studies for their appealing
feature of capturing both the intra- and inter-subject variability, together with a
broad set of possible correlation structures. However, they rely on strong normal-
ity assumptions for both the random effects and the residuals, properties often
not satisfied in real datasets which can be heavy-tailed, with outlying observa-
tions and heteroscedastic residual variances. The t linear mixed model (tLMM)
is a particular extension of the classical LMM in which the response variable is
jointly t distributed, which makes it robust to outliers. The literature on tLMM
is vast, but little has been explored on the properties of the model itself and
the accuracy of the associated estimation methods in finite samples with many
repeated outcomes. In this paper we thoroughly investigate tLMMs, study its
properties and derive identifiability conditions. According to these restrictions,
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we conduct an intensive simulation study to assess the accuracy of the estimation
method under different scenarios. We implement the maximum likelihood (ML)
estimation method introduced by Lin and Lee (2006), extending it by allowing
the inclusion of both random intercept, slope and AR(1) correlation structure at
the same time.

2 The t linear mixed model

We consider the t linear mixed model defined as

yi = Xiζ + Ziui + ei,

where yi is the vector of ni observations for subject i = 1, . . . ,m, Xi and Zi are
known ni × p and ni × q matrices corresponding to the vectors ζ and ui of the
fixed and random effects respectively, and ei the vector of residuals. The model
extends the traditional LMM by introducing a latent variable γi for the variance
of the residuals and of the random effects,

γi = 1/vi ∼ Gamma(α, β).

Given γi, the random effects are assumed to be independent of the residuals with
ui|γi ∼ N(0, viG) and ei|γi ∼ N(0, viR). Here G is the covariance matrix for the
random effects which may take a general unstructured form

G =


τ2
1 η1,2τ1τ2 . . . η1,qτ1τq

η1,2τ1τ2 τ2
2 . . . η2,qτ2τq

. . . . . . . . . . . .
η1,qτ1τq η2,qτ2τq . . . τ2

q


and R is an AR(1) correlation matrix. Under the stated distributional assump-
tions, yi is t distributed with 2α degrees of freedom and variance-covariance
matrix Var(yi) = viΩi = vi(ZiGZ

T
i +R).

3 Identifiability

We assume here the definition of identifiability conditions as restrictions on the
parameter space Θ = {θ = (ζ1, . . . , ζp, τ1, . . . , τq, η, σ

2, ρ1, . . . , ρni , α, β)} such
that the mapping θ −→ Li(θ) is one to one, namely

log(Li(θ1)) = log(Li(θ2)) ⇐⇒ θ1 = θ2,

where Li is the contribution to the total likelihood from subject i = 1, . . . ,m. In
general, in case of n observations, identifiability conditions require the number N
of parameters of the variance-covariance structure to be less or equal to n(n+1)/2
since this is the maximum number of distinct elements in Ωi. Assuming this con-
dition to be satisfied, Xi and Zi to be full rank, and the variance-covariance
matrices G and R themselves identifiable with respect to the corresponding pa-
rameters, the problem reduces to the identifiability of

fyi =
Γ(α+ ni

2
)

Γ(α)

1

(2πβ)ni/2|Ωi|1/2

(
1 +

1

2β
∆2

)−(α+ni/2)

.
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Here ∆2 = (yi − Xiζ)
TΩ−1

i (yi − Xiζ), and so formulated the problem is not
identifiable. In the literature it is commonly assumed α = β to overcome this
issue and reduce identifiability conditions to those for classical LMM. Although
a requirement on the ratio between α and β is necessary, that can be somewhat
looser, as the parameter β can be easily be compensated by Ωi. For example by
reparametrizing Ω̃i = ω Ωi, and imposing a constraint on the ratio ω = β/α,
it is possible to show that for specific combinations of G and R, the model is
identifiable.

4 Simulation study

We introduce a parametrization in compliance with identifiability conditions and
previous literature, with the latent variable γi gamma distributed with both
parameters equal to α and an extra positive parameter σ2 to rescale the variance
of the residuals ei|γi ∼ N(0, viσ

2R). We consider a tLMM including three fixed
effects (e.g. gender, age and time) and two random effects (intercept and slope),

yij = ζ0 + ζgxig + ζaxia + ζttj + δi + ωitj + eij .

The coefficients for the fixed effects are set to determined values, while we choose
a set of possible values for each of the variance-covariance parameters, the com-
bination of which results in 64 simulation settings. We initially investigate the
method accuracy with 50 subjects and then increase it to 100 for the critical
cases. Each setting is simulated 1000 times to ensure stability. In Figure 1 we
show the relative bias in estimating the variance-covariance parameters, as the
fixed effects can be estimated with good accuracy. The results from the simu-
lation study show that overall the method estimates the parameters with high
accuracy, and the estimation in the critical cases can be consistently improved
by increasing the number of subjects involved in the study.

5 Conclusion

In this work we derive identifiability conditions for the tLMM and test the ac-
curacy of a ML-based estimation method for tLMM via an intensive simulation
study. Our results show that the model should be applied with caution, as one
may occur in the wrong estimates by simply using routines implemented in the
available softwares. When identifiability conditions are accounted for, the pro-
posed estimation method is shown to be accurate.
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FIGURE 1. Relative bias in estimating the variance-covariance parameters in
all the settings.
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Abstract: Mortality data provide valuable information for the study of the spa-
tial distribution of mortality risk, in disciplines such as spatial epidemiology,
medical demography, and public health. However, they are often available in an
aggregated form over irregular geographical units, hindering the visualization of
the underlying mortality risk and the detection of meaningful patterns. It is also
common that factors that may affect mortality are usually measured in a different
spatial resolution than mortality data. In this paper, we propose the use of the
composite link models to combine information such as covariates measured at
different spatial scales (i.e. municipalities, districts or census tracts levels) within
a generalized additive framework. We called this model CL-GAM (“Composite
Link - Generalized Additive Model”). We illustrate our proposal with the analysis
of deaths by cardiovascular diseases in Madrid, Spain (period 1996–2003).

Keywords: Disease mapping; penalized Composite Link Models; Mixed models.

1 Introduction

Disease maps deal with public health data that are usually available in an ag-
gregated form over geographical units, like counties, districts, and municipalities.
Epidemiologists, health care practitioners, and other related researchers use these
data to study the spatial distribution of mortality caused by an specific disease,
and thus identify areas of excess and their potential risk factors. In this paper,
we propose the extension of the spatial penalized composite link model (P-CLM)
in Ayma et al. (2016) for the case of spatial area-to-area (ATA) disaggregation
(i.e. from coarse geographical units to smaller units), where mortality maps from
aggregated counts are combined with information at different scales.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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FIGURE 1. Left: raw log(SMR) in Madrid. Right: ATA (from municipalities to
census tracts disaggregation) smooth log(SMR).

2 Deaths by cardiovascular disease in the Community
of Madrid (1996–2003)

The data correspond to the number of observed and expected female deaths by
cardiovascular diseases in the community of Madrid, Spain, over the period 1996–
2003, which are available at different (aggregated) spatial levels. We consider
the area-to-area case (i.e. from municipalities to census tracts). Let y be the
vector of observed deaths and assume that y is Poisson distributed with mean
µ. Also, consider the longitude and latitude centroid coordinates of units v∗j ,
(x1j , x2j), given by the longitude and latitude vectors x1 = (x11, ..., x1m)T and
x2 = (x21, ..., x2m)T, respectively. Then, the P-CLM for the area-to-area case is
given by:

µ = Cγ = C (ef ∗ exp(f(x1,x2))) , (1)

where γ denotes the vector of latent expectations at the fine unit level and C is
an area-to-area composition matrix, whose entries are obtained as cij = 1 if v∗j
is contained in unit vi and 0 otherwise. The vector γ in model (1) is expressed
in terms of the vector of exposures at the fine unit level (ef). Hence, we can use
the standardised mortality ratio (SMR), i.e. SMRi = yi/ei, instead of counts.
The function f(x1,x2), represents the latent spatial trend that is modelled via a
Tensor product bivariate P-spline.
Ayma et al. (2016), derived the mixed model reparameterization of the P-CLM,
obtaining the mixed model equations with the so-called working matrices: X̆ =
W−1CΓX and Z̆ = W−1CΓZ, with W = diag(µ) and Γ = diag(γ). The co-
variance matrix of the random effects G depends on two variance components τ1
and τ2 that controls the spatial smoothness.
Finally, defining the working vector: z = X̆β+ Z̆α+ W−1 (y − µ). Hence, given

β̂ and α̂, we use penalized quasi-likehood (PQL), the solution is achieved by iter-

ation between β̂, α̂ and the restricted or residual maximum likelihood (REML)
criteria until convergence. Figure 1, illustrates the ATA P-CLM allowing for a
better visualisation of the central districts of Madrid.
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FIGURE 2. Smooth effects for covariates measured at municipality level for ATA
disaggregation of mortality rates by cardiovascular disease. Left: % of population
> 65. Right: % of unemployment.

3 Extending the CLMM to combine information at
different spatial scales

In many occasions it might be of interest to include covariates in the model which
are collected at a different scales of the response variable, or covariates measured
at different scales. The CLM provides a framework in which both situations
can be easily resolved, yielding what we call composite link generalized additive
mixed model (CL-GAMM). Given that in all cases we are interested in spatial
disaggregation of counts, we can consider different situations: (a) the covariates
are measured at the fine level; (b) the covariates are measured at the aggregated
level; and (c) when we have covariates measured both at aggregated and fine
scale levels, which generalizes the previous cases a) and b).
Including covariates measured at census tract level. In order to study
relationships between different socio-economic indicators and mortality rates, we
considered two covariates: i) an indicator of ageing (people whose ages are greater
or equal than 65 years old); ii) an indicator of unemployment for people whose
ages are greater or equal than 16 years old. Figure 2, shows the smoothed additive
effects.
Comparing mortality of two populations. Let y = (yfemale,ymale)T be the
vector of observed number of counts for females and males, and ef = (ef-female, ef-male)T

be the vector of expected number of counts for females an males at the fine unit
level. The model is extended to include a factor variable for sex and hence able
to compare both populations. Figure 3, shows the resulting ‘contrast map’ where
the difference of the mortality surfaces at census tract levels between females and
males are classified into three categories based on the smoothed spatial trends
and standard errors.

Acknowledgments: This research was supported by the Basque Government
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FIGURE 3. Classification of mortality differences between females and males
into three categories.
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Marius Ötting1, Christian Deutscher1, Roland Langrock1

1 Bielefeld University, Germany

E-mail for correspondence: marius.oetting@uni-bielefeld.de

Abstract: In recent years, several match-fixing scandals in soccer took place
in Europe and all over the world. In order to avoid match-fixing, the literature
and fraud detection systems analyse odds movements from bookmakers. In our
work, we analyse not only odds movements but also total volume placed on bets.
For the volume of money placed on bets, we use data from the betting exchange
platform Betfair. We focus on the second division in Italian Soccer (Serie B)
from season 2009/10 until 2015/16, since for this league it has effectively been
proven that some matches were fixed. To model both the mean and the variance
of the betting volume, a Generalized Additive Model for Location, Shape and
Scale (GAMLSS) is employed. Both the mean and the variance of the betting
volume are related to several explanatory variables such as the type of bet, the
matchday or the popularity of the teams. Possible smooth functions are used to
estimate effects of the non-categorical variables. Suspicious matches are detected
via normalised quantile residuals. Using this approach, our model obtains a true
positive rate of 21%, i.e. 21% of the fixed matches are detected.

Keywords: detecting corruption; soccer; flexible regression

1 Introduction

Between 2009 and 2015, several match-fixing occurrences were detected in Italian
soccer, especially in the second division (Serie B). This resulted in forced relega-
tion and point deduction for various teams, potentially endangering the integrity
of this league. Detecting match-fixing before the start of the game is challenging.
Fraud detection systems typically analyse odds movements from bookmakers.
Reade and Akie (2013) and Feustel and Rodenberg (2015) argue that in the
absence of any attempt to fix a match, the probability of a particular outcome
stated by bookmakers should be very close to the probability stated by a statisti-
cal model, because most of the relevant information for estimating the probabil-
ity is available, e.g. position in the league table or home field advantage. Feustel

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
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and Rodenberg (2015) estimate odds for certain outcomes in football matches
in England, USA, France and Italy and compare these odds with the odds from
bookmakers.
In this work, we propose to model both betting odds and the total volume of bets
placed, instead of considering only the former. We demonstrate our approach us-
ing betting volume data on the Serie B obtained from the betting exchange plat-
form Betfair. The aim of the empirical analysis is to demonstrate that modelling
betting volumes, in addition to the usual consideration of odds movements, can
help to more accurately identify suspicious matches. In this regard, the Serie B is
a useful case study, since here for several matches it has effectively been proven
that they were fixed. Furthermore, we try to minimise false positives, i.e. flagging
of matches which were not proven to be fixed.

2 Data

In order to find matches with a strong indication of match-fixing activities, pre-
game data from the betting exchange platform Betfair are analysed. The data
include the seasons 2009/10 to 2015/16. In this period, 3234 matches were played,
from which 3224 matches offer full information and are included in the data set.
In addition to betting volumes, several explanatory variables are included in
the data, such as home and away team, the date of the match, the type of bet
and the matchday. For the type of the bet, we focus on bets on the winning
team and on the number of goals scored per match. These type of bets are very
popular compared to others, e.g. bets on a particular player scoring a goal, and
therefore the total volume of these bets is typically higher on average. Due to
the high volumes, placing heavy bets on these markets by match fixers is not
as conspicuous as placing high volume bets on less popular markets. For the
number of goals scored in a match, the betting types over/under 1.5/2.5/3.5
goals are considered.
To account for popularity effects and the importance of the match, additional
variables are collected, e.g. Facebook likes of the teams and a dummy variable
indicating whether the match is important for the team in terms of the outcome
of the season. There is a large variation between the betting volumes placed on
individual games and types of bets, ranging from a few Euro to ∼ 3 million Euro.

3 Methodology

From visual inspection of the data, we found that the distribution of the betting
volumes varies substantially across several non-categorical covariates, and that it
would be difficult to accommodate these effects within a linear model. Thus, we
use the very flexible class of Generalized Additive Models for Location, Scale and
Shape (GAMLSS), which allows 1) to simultaneously model several parameters
of the distribution of the response variable (e.g. mean and variance) and 2) to
estimate smooth functional effects of non-categorical covariates (Stasinopoulos
and Rigby, 2007). We apply the semi-parametric additive formulation of GAMLSS
formulated by Stasinopoulos and Rigby (2007), given by

gk(θk) = ηk = Xkβk +

Jk∑
j=1

hjk(xjk), (1)
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where θk is a parameter of the distribution assumed for the response variable Y ,
gk(·) is a known link function, Xk is an n × J

′
k design matrix, βk is a vector of

regression coefficients of length J
′
k, and the hjk are unknown smooth functions.

In this work, we assume a normal distribution for the response variable Y , here
the logarithm of the betting volumes. Thus, the explanatory variables are linked
to two parameters of the distribution of Y , namely the mean µ (= θ1) and the
standard deviation σ (= θ2), leading to the following special case of (1):

g1(µ) = η1 = X1β1 +

J1∑
j=1

hj1(xj1) (2)

g2(σ) = η2 = X2β2 +

J2∑
j=1

hj2(xj2) (3)

The explanatory variables described in Section 2 enter the model in (2) and (3) in
different parts. Dummy variables for each season, for the type of bet, for the day
of the week and for indicating whether the match is important are included in the
linear parts both in (2) and (3). The effects of the non-categorical variables, i.e.
the matchday and the Facebook likes of the teams, are estimated using P-spline
smoothers. A major advantage of the GAMLSS framework here is the option to
model both the mean and the variance. The betting volume data is heteroscedas-
tic, as can be seen for example by comparing the betting volumes across the 42
matchdays. The variance in the betting volume increases for the last matchdays,
which can be accommodated within the GAMLSS framework by modelling the
variance via the covariate matchday. By being able to use smooth functional
effects for the non-categorical covariates — the second major advantage of the
GAMLSS framework — the model fit is substantially improved.
We apply this model is to detect outliers, i.e. suspicious matches. Outlier detection
is done by using the normalised quantile residuals, which are standard normally
distributed provided the model is correct (Dunn and Smyth, 1996). Therefore,
observations with normalised quantile residuals larger than three are flagged as
outliers and hence as suspicious matches.

4 Preliminary Results

Out of 19 matches that have effectively been proven to have been fixed, our
model flags four, equalling a true positive rate of 21%. There is little information
available on how many matches exactly were fixed in the Serie B. Thus, there
may very well have been more than 19 fixed matches from 2009 to 2015. In total,
59 matches out of 3224 matches are flagged by the GAMLSS applied. From these,
55 are not currently known to have been fixed. Assuming that these matches were
indeed free from irregularities, the GAMLSS model hence returns 55/3224 ≈ 1.7%
false positives, i.e. matches to be flagged as suspicious but unconfirmed to be
fixed.

5 Discussion

Future research should attempt to further increase the number of true positives,
and to reduce the number of false positives. For example, it may be beneficial to
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additionally model betting odds using game and team characteristics, in order
to identify deviation between actual and fair betting odds. Betting odds were
modelled for example in Reade and Akie (2013) and in Feustel and Rodenberg
(2015), and are also considered within the procedures commonly applied in fraud
detection systems. Odds can be modelled for example by fitting Poisson regression
models to the number of scored goals by a team in a match, then calculating the
odds of winning by simulation. Extensions of the Poisson distribution, such as
the zero-inflated Poisson or the bivariate Poisson, may be useful here. These
distributions involve several parameters, such that the GAMLSS framework is
again a good candidate.
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Abstract: We propose a VAR graphical model for the analysis of time series
genomic data; our goal is to relax the normality assumption of Gaussian graph-
ical models employing a semiparametric Gaussian copula. We adopt the lasso
penalized likelihood inference approach in order to obtain sparse estimates.
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Gene expression.

1 Introduction

In the last decades, significant developments in DNA microarray technology have
allowed us to collect observations of gene expression levels over time. Time-series
data provide a deeper insight on the biological process under study. This work
can be considered as an extension of the Time Series Chain Graphical Model
(TSCGM) by Abegaz and Wit (2013), since we aim to tackle the issue of non-
normality with the use of the Gaussian copula.

2 Methodology

2.1 Time series chain graphical models

TSCGMs assume longitudinal microarray data in which n replications indexed by
i = 1, . . . , n of continuous measurements across p genes indexed by j = 1, . . . , p
are repeated T times. Our aim is to model both contemporaneous and dynamic
(delayed) relationships among the genes. This will be accomplished with a time
series chain graph G = (V,E), where V is a finite set of vertices and the set of
edges E is a subset of the set V × V of ordered pairs of distinct vertices. The
time series chain graph is based on the partitioning of V into a number of blocks⋃T
t=1 Vt. Links within a time step are undirected and represent contemporaneous

This paper was published as a part of the proceedings of the 32nd Interna-
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interactions; links between time steps are directed and they explain dynamic or
delayed interactions between genes in time.
Let Xt = (X1t, . . . Xpt) be a p-variate random variable associated with the nodes
in Vt. Xt represents the gene expression levels at time t. We assume that Xt fol-
lows a Markovian dynamics, which can be translated into a vector autoregression
process of order 1 (VAR(1)):

Xt = ∆Xt−1 + εt. (1)

In the TSCGM setting, the following normality assumption is made: εt ∼ Np(0,Ω−1).
In this project, our aim is to make no assumption about the distribution of gene
expressions. Particularly, in order to weaken the gaussian assumption on εt, we
will exploit the Gaussian copula.

2.2 Copula VAR models

Let Zt = (Z1t, . . . Zpt) be a multivariate latent variable. The Gaussian copula
transformation is defined as:

Zjt = Φ−1(Fjt(Xjt)), for j = 1, . . . , p, t = 1, . . . , T, (2)

where Xjt is the gene expression level for gene j at time t, Fjt is the marginal
CDF of gene j at time t and Φ−1 is the quantile function of the univariate normal
distribution N(0, 1). The latent variable Zt follows a dynamics equivalent to that
in (1):

Zt = ΓZt−1 + ηt,

where Zt|Zt−1 ∼ Np(ΓZt−1,Θ
−1). The matrices Γ and Θ are in general different

from ∆ and Ω respectively, but they have the same nonzero entries, resulting in
the same graphs. Therefore, Γ and Θ contain all the information about the de-
pendencies among the variables. In particular, nonzero entries in Γ are equivalent
to directed edges; likewise, contemporaneous interactions (undirected edges) are
related to nonzero entries of the concentration matrix, also known as precision
matrix, Θ:

(α, β) ∈ Vt−1 × Vt ⇔ Γαβ 6= 0, (α, β) ∈ Vt × Vt ⇔ Θαβ 6= 0.

We now define the log-likelihood for n replicates each at T time steps as

`(Γ,Θ) = −npT
2

log(2π) +
nT

2
log
∣∣Θ∣∣− nT

2
Tr(SΓΘ) +D (3)

where D is the sum of the logs of the Jacobians of the transformation in (2) and
SΓ = 1

nT

∑n
i=1

∑T
t=1(Zit−ΓZi,t−1)(Zit−ΓZi,t−1)>. We exploit the marginal rank

likelihood by Hoff (2007), which can be seen as a type of marginal likelihood
function for estimation in the presence of nuisance parameters (the marginal
distributions). This allows us to neglect the term D in (3).

2.3 Kernel density estimate

The marginal CDFs involved in the transformation given in (2) are unknown: we
estimate them in a nonparametric fashion via weighted kernel CDF estimation.
Weights exponentially decay to zero as the time interval becomes larger: i.e., in
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FIGURE 1. Example of graphical representation of a Copula VAR model of
order 1 for p = 3 time series variables. Directed edges represent nonzero entries
of the transition matrix Γ and undirected edges (dashed links) characterize the
nonzero entries of Θ.

order to estimate the CDF in a time point, we use observations from the future
and from the past giving more importance to those observations closer in time.
Hence, the CDF estimate for the j-th gene at time t is

F̂jt(xijt) =

T∑
l=1

n∑
k=1

Φ

(
xijt − xkjl

hj

)
wtl,

where wtl = ω|t−l|∑T
j=1 ω

|t−j| , Φ is the CDF of the standard normal (which is the

chosen kernel), hj is the bandwidth parameter (different for each gene) and ω is
a constant which determines the decay velocity. We choose ω = 0.925.

2.4 Penalized log-likelihood

Gene networks are known to be sparse, i.e. a gene will not interact with all the
genes in the network but only with a relatively small subset of them. This results
in the matrices Γ and Θ to have many zero entries. For the purpose of obtaining
sparse estimates, we add two lasso penalties to the likelihood, for both Γ and Θ.
Therefore, the objective function for optimization is defined as

`pen(Γ,Θ) = log
∣∣Θ∣∣− Tr(SΓΘ)− λ1

p∑
i 6=j

|θi,j | − λ2

p∑
i6=j

|γi,j |

where θi,j and γi,j are the entries of Θ and Γ. The estimation is accomplished
via a two-stage iterated procedure as in Rothman (2010). The first stage consists
of the following optimization problem

Θ̂ = argmax
Θ

{
log
∣∣Θ∣∣− Tr(SΓΘ)− λ1

p∑
i 6=j

|θi,j |
}

with Γ fixed.
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We use the graphical lasso algorithm to solve it. The second stage is given by

Γ̂ = argmax
Γ

{
− Tr(SΓΘ)− λ2

p∑
i=j

|γi,j |
}

with Θ fixed.

The solution is computed using a cyclical-coordinate descent algorithm.

2.5 Model selection

The regularization parameters of the lasso penalty must be carefully tuned. One
can adopt the Bayesian information criterion (BIC) to select the parameters,
which is defined as

BIC(λ1) = −nT{log
∣∣Θ̂λ1

∣∣− Tr(SΓ̂λ2
Θ̂λ1)}+ k log(nT ),

where k is the number of nonzero estimated parameters. The values of λ1 and λ2

that jointly minimize the BIC criterion have to be chosen.
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Abstract: The positive predictive value and the negative predictive value de-
scribe the performance of a diagnostic test. There are several methods to test
the equality of predictive values of two binary diagnostic tests. However, these
methods were premised on large sample size theory and they may not be suitable
for small-size clinical trials.
In this study, we propose an exact test for conducting a small-size clinical trial
that investigates the equality of predictive values of two binary diagnostic tests.
In addition, we execute simulation studies to evaluate the performance of the
proposed exact test and existing methods in small-size clinical trials.
The proposed test can calculate exact p-value and, as a result of simulations,
the performance of it is not much different from the other methods. Therefore,
it is considered that the proposed exact test may be useful for small-size clinical
trials.

Keywords: exact method; negative predictive value; positive predictive value;
small-size clinical trials.

1 Introduction

In medicine, diagnostic tests are important for early detection and treatment of
disease. The positive predictive value (PPV) and the negative predictive value
(NPV) describe the performance of a diagnostic test. The PPV is the probability
of having the disease when the diagnostic test result is positive, and the NPV is
the probability of not having the disease when the diagnostic test result is neg-
ative. The PPV and NPV are useful clinically, and may influence the treatment
decision.
There are several methods to test the equality of predictive values of two binary
diagnostic tests (Leisenring et al, 2000; Moskowitz and Pepe, 2006; Wang et.al,
2006; Kosinski, 2013). Some researchers use regression frameworks, and others
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utilize the multivariate central limit theorem and the delta-method. These meth-
ods were premised on large sample size theory. For this reason, these methods
may not be suitable for small-size clinical trials.
In this study, we propose an exact test for conducting a small-size clinical trial
that investigates the equality of predictive values of two binary diagnostic tests.
Furthermore, we execute simulation studies to evaluate the performance of the
proposed exact test and existing methods in small-size clinical trials.

2 Methods

We performed a simulation study to assess the performance of two existing meth-
ods; one method is based on the delta-method with identical link (Tm) and the
other is weighted generalized score statistic (Twgs) in a regression framework.
The performance measure were actual type 1 error rate and empirical power. We
executed 1,000,000 repeated simulations for each method. The simulation was
conducted in the same way as Kosinskis article. The odds ratio of diseased group
was set to ORD+=5, and ORD−=2 for the odds ratio of non-diseased group. The
total sample size N was assumed to be 30, 40 and50 because this study assumes
a small-size clinical trial. PPV for new diagnostic test (PPV1) was set to 0.75 or
0.85 and PPV for the existing diagnostic test (PPV2) was 0.75. NPV for new di-
agnostic test (NPV1) was set to 0.85 or 0.95, NPV for the existing diagnostic test
(NPV2) was 0.95. The disease prevalence was assumed to be 0.4. The nominal
type 1 error rate was set to 0.05 (two-sided test).
In addition, we performed a simulation study to assess the performance of the
proposed exact test. The exact test is based on the permutation test. The simu-
lation was conducted in the same way as above.

TABLE 1. Actual type 1 error rate (PPV1=PPV2=0.75)

N Tm Tgs Exact

30 0.078 0.043 0.025
40 0.068 0.048 0.034
50 0.064 0.049 0.037

TABLE 2. Actual type 1 error rate (NPV1=NPV2=0.80)

N Tm Tgs Exact

30 0.044 0.035 0.024
40 0.051 0.042 0.032
50 0.053 0.045 0.037
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TABLE 3. Empirical power (PPV1=0.85 PPV2=0.75)

N Tm Tgs Exact

30 0.133 0.101 0.089
40 0.143 0.130 0.124
50 0.162 0.154 0.148

TABLE 4. Empirical power (NPV1=0.90 NPV2=0.80)

N Tm Tgs Exact

30 0.190 0.162 0.130
40 0.274 0.248 0.217
50 0.346 0.321 0.294

3 Results

Table 1 shows the actual Type 1 error rate for comparing two PPVs. It shows
that the actual type 1 error rate of Twgs and Exact test does not exceed the
nominal type 1 error rate 0.05. Table 2 shows the actual Type 1 error rate for
comparison of NPVs. It shows almost same findings as the case of PPV.
Table 3 shows the empirical power of PPVs. It shows that the empirical power
of Tm is the highest among three methods, and the empirical power of proposed
exact test is not much different from that of Twgs. Table 4 shows the empirical
power of NPVs. It also shows similar findings to the case of PPVs.

4 Discussion

By the result of the simulation studies, we consider that the proposed exact test
may be useful for small-size clinical trials because it can calculate exact p-value,
and the exact test does not have so less power than other methods.
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Abstract: The test treatment in confirmatory clinical trials is often assessed by
using multiple primary endpoints. We considered the efficacy of the trials that is
confirmed only when non-inferiority for all endpoints and superiority for at least
one endpoint. Perlman and Wui2004jand Nakazuru et al.i2014jproposed testing
procedures when the multiple primary endpoints are continuous variables. How-
ever, it is not yet discussed the case that a trial has multiple binary endpoints.
In this presentation, we consider a testing procedure when the multiple primary
endpoints are binary, and show the performance through Monte Carlo simula-
tions.
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1 Introduction

In confirmatory clinical trials, the efficacy of a test treatment are sometimes as-
sessed by using multiple primary endpoints. However, it is difficult to demonstrate
that each endpoint is significantly when the number of endpoints is not small.
For the reason, this manuscript deals with a case where it is superior for at least
one of the endpoint and not clinically inferior for the remaining endpoints. Perl-
man and Wu (2004) proposed a testing procedure that is applicable to the above
case. This procedure has a disadvantage that cause the inflation of type I error
when correlation coefficients among the endpoints are highly positive. Moreover,
Nakazuru et al. (2014) proposed a modified testing procedure for Perlman and
Wu method. These procedures are able to be applied only when endpoints are
continuous variables. Therefore, we propose a new testing procedure when the
case that multiple primary endpoints are binary.
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2 Notations and Hypotheses

To simplify this case, we consider comparing p binary endpoints with 2 treatment
groups comprising n1 and n2 subjects. Let Yijk(i = 1, 2; j = 1, ..., p; k = 1, ..., ni)
denote the response variable of the kth subject to the ith treatment at the jth
endpoint, Ȳij(i = 1, 2; j = 1, ..., p) is the sample mean for the jth endpoint to
the ith treatment, and set X = (X1, ..., Xp)

t with Xj = (Ȳ1j − Ȳ2j)(j = 1, ..., p),
where the superscript t denotes transpose.
A null hypothesis H0 is expressed by

H0 :

{
max

1≤j≤p
µj ≤ 0

}
∪
{

min
1≤j≤p

(µj + εj) ≤ 0

}
,

where µj = µ1j − µ2j is mean of the treatment effect, and εj(j = 1, ..., p) is non-
inferiority margin of jth endpoint that denotes prespecified positive constants.

3 Proposal of a New Procedure

3.1 Perlman and Wu Procedure

Perlman and Wui2004jproposed a testing procedure that rejects above null hy-
pothesis H0 if and only if

‖X− πs(X;N p)‖2s > c∗α and

cn1,n2(Xj + εj)/
√
σ̂jj > tα for j = 1, ..., p,

where c2n1,n2
= n1n2/(n1 + n2), and let σ̂jj denote jth diagonal element of the

pooled sample covariance matrix Σ̂, then S ≡ (n1 + n2 − 2)Σ̂ is distributed as a
Wishart distribution Wp(Σ, n1 + n2 − 2) when n1 + n2 > p + 2. Here N p is the
non-positive orthant in Rp(p-dimensional Euclidean space), ‖x‖2s ≡ xtS−1x is
the Euclidean norm determined by S, πs(X;N p) is the projection of X onto N p

with respect to this norm. Then c∗α is the critical value of size-α one-sided LRT
(likelihood ratio test) for superiority part of H0 determined by 1

α =
1

2
Pr

[
χ2
p−1

χ2
n1+n2−p

> c∗α

]
+

1

2
Pr

[
χ2
p

χ2
n1+n2−p−1

> c∗α

]
,

where χ2
n is a chi-square variable with n degrees of freedom.

3.2 Nakazuru et al.’s Procedure

Nakazuru et al.i2014jproposed a more powerful procedure rather than Perlman
and Wu procedure by modifying the Glimm et al. (2002)’s method, and it rejects
the null hypothesis if and only if

min(ū2
A, ū

2
B) > c and

cn1,n2(Xj + εj)/
√
σ̂jj > tα for j = 1, ..., p.

Here uA ≡ (uA1, ..., uAp)
t = cn1,n2AX and uB ≡ (uB1, ..., uBp)

t

= ( detA
detB

)2/pcn1,n2BX are the test statistics that distributed as a p variable stan-
dard normally distribution. Then ū2

A and ū2
B are as follows:
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ū2
A =

p∑
j=1

max(uAj , 0)2

ū2
B =

p∑
j=1

max(uBj , 0)2.

The matrix A and B are omitted here. For further details, see Nakazuru et al.
(2014). Then c is determined by

1

2p

p−1∑
j=0

p!

j!(p− j)!
1

B( p−j
2
, n1+n2−1−p+j

2
)
·

∫ c/(n1+n2−1)

0

r
p−j
2
−1(1− r)

n1+n2−1−p+j
2

−1dr +
1

2p
= 1− α

where B(a, b) is beta function defined with gamma function.

3.3 A new testing procedure

However, these methods are discussed when the efficacy of a test treatment are
continuous variables. Suppose that the vector of responses Yik = (Yi1k, ..., Yipk)
are distributed as a P -variate Bernoulli distribution with E(Yijk) = πij , V (Yijk) =

πij(1− πij), and corr(Yijk, Yij′k) = ρjj
′

i for all j 6= j′ (1 ≤ j < j′ ≤ p). Then, we
can apply the same way as Nakazuru et al.’s procedure to the case that multiple
primary endpoints are binary by using an approximation based on a multivariate
central limit theorem. Let π̂ij(i = 1, 2; j = 1, ..., p) be a sample proportion of the
jth endpoint to the ith treatment, and ∆j = π̂1j − π̂2j denote the difference of
jth endpoint. It rejects the null hypothesis if and only if

min(ū2
A, ū

2
B) > c and

∆j + εj√
π̂1j(1−π̂1j)

n1
+

π̂2j(1−π̂2j)

n2

> Zα for j = 1, ..., p,

where Zα is the upper α-percentile of standard normally distribution. On the
day of the presentation, we introduce the other procedure that is applied Westfall
PH and Troendle JF (2008) method to the part of superiority in test statistics,
and compare the performance of two procedures.

3.4 Numerical comparison

The performance of the proposed procedure was examined through Monte Carlo
simulations. In this simulation, we confirmed difference of 2 proportions in the
level of significance was set at 0.05. For evaluating powers, we assumed that
(π11, π12) = (0.6, 0.4), (π21, π22) = (0.4, 0.4), the simulated data was repeated
10,000 times. In addition, we assumed that (π11, π12) = (0.5, 0.5), (π21, π22) =
(0.5, 0.5), the simulated data was repeated 100,000 times for evaluating type I
error rates. The sample size is set as n = 30 and n = 100. The correlation
coefficient is set as ρ = 0, ρ = 0.4 and ρ = 0.8 in each case.
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TABLE 1. Estimated powers and type I error rates.

Powers Type I error rates

ρ n = 30 n = 100 n = 30 n = 100

0.8 0.5717 0.9132 0.04540 0.00025
0.4 0.4775 0.8986 0.03696 0.00026
0 0.4728 0.9009 0.03036 0.00026
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Abstract: This study focus on parameter inference in a pulmonary blood circu-
lation model for mice. It utilizes a fluid dynamics network model that takes some
parameter values and aims to mimic features of the pulmonary haemodynam-
ics under normal physiological and pathological conditions. This is of medical
relevance as it allows monitoring the progression of pulmonary hypertension.
Constraint nonlinear optimization is successfully used to learn the parameters.
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1 Introduction

Pulmonary hypertension (PH) is a leading cause of right heart failure. It involves
vascular remodelling including stiffening of the large and small arteries. Clinically,
PH is diagnosed by analysing blood pressure (BP) measured invasively in the
large pulmonary arteries. However, key parameters, including arterial stiffness,
cannot be measured in-vivo. This creates the need for methods to indirectly esti-
mate parameters from the measured hemodynamic blood flow and pressure data.
This study uses a 1D fluid dynamical network model that predicts blood flow
and pressure in the large pulmonary arteries (for details see Qureshi et al., 2017).
The model is used to predict blood flow and pressure in healthy and hypoxic
mice, for which data were acquired invasively (Tabima et al., 2012). The method
discussed here is not specific to mice, but can easily be extended to analysis of
similar data from humans for whom repeated invasive procedures are required
for diagnostic and treatment purposes. The ultimate goal behind this model, and
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hence the motivation behind inferring the parameters, is to minimize the num-
ber of invasive procedures for PH patients, as well as to assist the clinicians in
devising better treatment strategies. Thus, this study focuses on inference of key
parameters pertinent to disease detection and treatment. We have shown that
by using our statistical method we can improve BP prediction in both healthy
and hypoxic mice. This leads to enhanced reliability of key parameter estimates
obtained using the model.

2 Mathematical Model

The 1D fluids model studied here is derived from the incompressible axisymmetric
Navier-Stokes equations for a Newtonian fluid, and coupled with a constitutive
wall model predicting stiffness of the blood vessels. The arterial network geometry,
including length and radii for the 13 largest vessels in the pulmonary vasculature
is obtained from a micro CT image of a healthy mouse lung (see figure 1(a)). In
order to solve the equations, boundary conditions are specified at the inlet and
outlet vessels in the network. The system is driven by imposing an invasively
measured flow profile at the inlet of the MPA whereas conservation of blood flow
and continuity of pressure are ensured across the bifurcations. At the 7 terminal
outlet vessels, 3-element Windkessel models (represented by two resistors R1, R2

and a capacitor C) are attached. The outflow boundary conditions account for
the lumped effects of pulmonary hemodynamics beyond the truncated network
of large arteries. The model takes several parameters as input and predicts the
flow and pressure at different locations along the large pulmonary arteries. One
of these parameters is the arterial stiffness, k, which significantly changes its
behaviour during initial stages of PH.

3 Methodology

Let the statistical model be defined by: yi = f(xi;θ) + εi, where yi ∈ y are the
noisy measured flow and pressure, f(.) describes the system behaviour that comes
from numerically solving the fluids model, θ are the parameters that we wish to
infer from the observed flow and pressure, xi ∈ x denote other input variables
and ε are the errors, which we assume are i.i.d following a Gaussian distribution.
The objective function to be minimised using Constraint Nonlinear Optimization
is the Residual Sum of Squares:

RSS = (y − f(x;θ))2 =
∑
i

(yi − f(xi;θ))2 (1)

A Sequential Quadratic Programming (SQP) gradient-based method is used to
minimise the RSS (Wilson, 1967).

4 Simulations

Simulations are set up to mimic experimental waveforms, which are recorded in
the main pulmonary artery in healthy and hypoxic mice (Tabima et al., 2012).
The parameter set to be inferred includes: θ = (k, r1, r2, c), where r1, r2, c are
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resistances and capacitor factors used to predict parameters assigned at the outlet
and k is the elastance factor used to predict stiffness in all vessels. Since the
parameters are on different scales, to avoid having an ill-conditioned problem, we
rescale the parameters to have the same magnitude. There are certain parameter
configurations that violate the model assumptions, these are marked by setting
RSS to a high value (1010). In this study, the RSS is calculated for pressure and
we aim to find parameters that minimise the RSS. The initial parameter values
examined by the SQP algorithm are uniformly drawn from a Sobol sequence to
ensure a good coverage of the multidimensional parameter space (Bratley et al.,
1988). The algorithm is iterated until it satisfies the convergence criterion, i.e.
|θi − θi+1| < 1e− 11.

5 Results and Discussion

Regardless of the initial value, the algorithm converges towards the same param-
eter values for both the healthy and hypoxic mouse. Figure 1 shows our optimised
pressure waveform, plotted along the measured and the reference pressure. Panel
(d) shows the pressure fit for the hypoxic mouse. The optimized fit predicts data
better than nominal parameter values, supported by a significantly smaller RSS
than the one between the reference and the measured pressure (panel (b)). As
for the healthy mouse (panel (c)), the simulated pressure closely follows the mea-
sured pressure except near the peak, where an offset is registered. Nevertheless,
in this case too, a clear improvement is achieved over the reference pressure. We
hypothetise that this peak shift is a consequence of: (i) the model specifying the
elastic behaviour of the blood vessels and/or the boundary conditions, (ii) un-
certainty of the geometry measurements which are not specific to a given mouse,
(iii) a combination of (i) and (ii). The overall model prediction appears better
for the hypoxic than the healthy mouse. Therefore, future work could include
improvements in the fluids model and inferring geometry measurements. Finally,
we also aim to apply our statistical methods presented here to data from human
patients.
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FIGURE 1. (a): The arterial network for the fluid dynamical model, (b): com-
parison of RSS between reference and optimised pressure simulations, (c) & (d):
comparison of simulated pressure using reference and optimised parameters val-
ues for the healthy and hypoxic mice.
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1 Background and Objective

The mismatch negativity (MMN) is an event related potential (ERP) compo-
nent, which is widely considered to be an indicator of auditory discriminatory
capabilities (Näätänen et al., 2007). The MMN has been shown to correlate with
behavioral judgements, as well as to reflect behavioural training effects over time
(Lovio et al., 2012). In addition, the MMN acquired from newborns was pre-
dictive for their reading fluency many years later (Leppänen et al., 2010). The
MMN usually peaks around 100-230ms after stimulus deviancy in an oddball
paradigm, and it is sometimes followed by a long-lasting component named the
late discriminative negativity (LDN) from 250ms onwards (see Figure 1). As the
nature of these two components is not fully understood, the latter is also some-
times called MMN; alternatively, both together may be referred to as mismatch
response (MMR).

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).



Glatz et al. 263

In this work, which is part of a bigger study, we are investigating possible in-
teractions of the MMR components with other behavioral (e.g. IQ, phonological
awareness (PA)) and biographical measures (e.g. age, gender, handedness, famil-
ial risk for reading difficulties) of Dutch speaking first grade children using a
novel approach with generalized additive modeling.

2 Design and Methods

We recruited 40 first grade children who played a computer game, which either
trained reading related skills such as PA (N=20), or simple arithmetic (N=20), on
a daily basis for six weeks. Behavioral tests measured reading-related abilities be-
fore, during, and after the gaming. Electroencephalography (EEG) was recorded
before and after the training to study the MMR to syllabic speech sounds as a
potential correlate of game-based phoneme discrimination improvement.
The EEG data were preprocessed using the EEGLAB toolbox for Matlab, apply-
ing bandpass filtering (0.3 - 30Hz), re-referencing to the average of the mastoids,
ICA-based ocular artifact correction, as well as pre-stimulus baseline correction.
For the analysis of the single trial ERP data, we used generalized additive mod-
eling (GAM; mgcv package in R; Wood, 2006). Subsequently, we tested which
behavioural measures interact with the MMR to consonant, vowel and duration
deviants of speech sounds in a stepwise procedure. Starting with a basic model
including smooths over time per condition, we added a random effects structure
for participants, and subsequently tested all behavioural measures as main effects
and interactions.
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Fig. 2 illustrates the improvement of both 
groups on the CELF and the PFB. We did 
not find a statistical difference between the 
improvement of the intervention group and 
control group for both the CELF and PFB 
with respectively an independent sample t 
test and a Mann-Whitney U test (t(35) = 
.174, p = .863)   (U = 177, p = .918). The 
reading scores at the post test also did not 
show a significant difference between the 

groups with a Mann-Whitney U test (U = 
120.5, p = .126) and are illustrated in Fig. 
3.  
 
4.2 Mismatch Negativity 
 
The grand-mean waves for the MMN, 
standard and deviant for each of the deviant 
types: vowel, consonant and duration, are 
separately shown in Fig. 4, 5 and 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 – MMN, standard and deviant for vowel at Fz scalp location before and after training period in the 
intervention and control group. _____ standard. ------ deviant, gray line is MMN (the difference wave).  
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FIGURE 1. Conventional grand-average ERP analysis averaged over items and
participants. Solid line: standard stimulus; dashed line: deviant stimulus; red line:
mismatch response; shaded area: confidence interval for mismatch response.
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FIGURE 2. GAM predicted tensor smooth for the nonlinear interaction of the
consonant mismatch response (deviant subtracted from standard, color-coded)
and phonological awareness.

3 Results and Discussion

We found a significant nonlinear 3-way interaction of PA skills and condition
(standard vs. deviant syllable) over time, when predicting single trial ERP am-
plitudes (see Figure 2). Interestingly, this interaction was only found for the
consonant deviancy condition (i.e. /ti/ and /pe/ changing to /pi/ and /te/, re-
spectively), but not for the vowel or duration change. While we expected to find
an interaction of MMN with PA skills, we saw that only the LDN is modulated by
PA skills. More specifically, only the LDN to consonant change was modulated
by PA skills, which is interestingly also the condition with the smallest MMN
response.
It is not yet fully understood what cognitive processes the early and late com-
ponents of the MMR reflect. To some extent, this may be due to the fact that
the vast majority of ERP studies rely on signal averaging over items, subjects, as
well as time points (i.e., when averaging over time windows instead of consider-
ing single sampling points) when analyzing the MMR together with behavioural
data. Generalized additive modeling has recently started to be used with EEG
data (e.g. Meulman et al., 2015) as it allows to consider single trial data, and to
integrate continuous behavioural predictors into the analysis in a way that had
not been possible before. This should allow researchers to further narrow down
the functions which certain ERP components reflect.
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Abstract: In this article, the Burr type III distribution is defined and for un-
known parameter, different point estimates are derived. In shrinkage estimation,
we believe that the parameter belong to a finite interval. So we propose for such
situations an interval shrinkage approach which combines in a coherent way an
unbiased conventional estimator and non-sample information about the range
of plausible parameter values. At the end, we conclude those interval shrinkage
estimators are better than the maximum likelihood estimation.

Keywords: Maximum likelihood estimation, Interval information, Shrinkage es-
timation, Means square error

1 Introduction

Burr in 1942 introduced a family of the twelve cumulative distribution functions
for modeling lifetime data. In 2011, Asgharzadeh and Fallah done estimation
and prediction for exponential family of distributions based on records. The two
important members of the family are Burr type III and XII. Burr type III dis-
tribution allows for a wider region for skewness and kurtosis plane, which covers
several distributions including the log-logistics, and the Weibull and Burr type
XII distributions. Let us consider the cumulative distribution function, proba-
bility density function of the Burr type III distribution are given respectively
by,

F (x; θ, c) = (1− x−c)−θ , x > 0 , θ > 0 , c > 0 (1)

f(x; θ, c) = θcx−(c+1)(1− x−c)−(θ+1) , x > 0 (2)

where the parameters c > 0 and θ > 0 are the shape parameters of the distri-
bution. Our approach is closely related to the interval shrinkage estimators. The
idea of shrinkage is providing a balanced trade-off between a conventional esti-
mator and a shrinkage target (see Pandey, B. N. (1983)). Recently Nasiri (2016)

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
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introduces Interval shrinkage estimators for location parameter of the exponential
distribution.
The rest of the paper is organized as follows. In section 2 and 3, we deal with the
maximum likelihood and feasible interval shrinkage estimation of parameter. In
section 4, we compare the Bias and MSE of the estimates empirically.

2 Maximum Likelihood Estimation

Let X1, X2, . . . , Xn be a random sample of size n of the Burr type III distribution.
The log-likelihood function for based on a random sample is

l(θ) = n log(θ)− (θ + 1)

n∑
i=1

log(1 + x−ci ) + n log(c) + (c+ 1)

n∑
i=1

log(xi) (3)

The maximum likelihood estimate of the unknown parameter is obtained by max-
imizing the log-likelihood function l(θ) with respect to θ. The likelihood equation
which is obtained from the derivatives of l(θ) with respect to the parameter,
become

∂l(θ)

∂θ
=
n

θ
−

n∑
i=1

log(1 + x−ci ) (4)

The maximum likelihood estimator θ̂ of θ can be obtained by solving the likeli-
hood equation ∂l(θ)

∂θ
= 0, so

θ̂ =
n

n∑
i=1

log(1 + x−ci )
(5)

3 Feasible interval shrinkage estimator

Let (X1, X2, . . . , Xn) be the random sample of size n taken form Burr type III
distribution. Proposed shrinkage estimator and its properties following Thompson
(1968), a shrinkage estimator for the parameter θ and θg, a guess values of θ is
available, is defined as

θ̂sh = θg + ω(θ̂ − θg) (6)

A shrinkage factor is defined based on guessed value. Let θ̂sh be the shrinkage
estimation of scale parameter. Then

θ̂sh = θg + ω(θ̂ − θg)

To find we have to consider MSE of estimator as:

MSE(θ̂sh) = {(θ̂sh − θ)2}

= ω2MSE(θ̂, θ) + (ω − 1)2(θ − θg)2 + 2ω(ω − 1)(θ − θg)E(θ̂ − θ)
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Now, we have to minimize the (θ̂sh),

dMSE(θ̂sh)

dω
= 0

ω =
(θg − θ)2 + (θg − θ)E(θ̇ − θ)

MSE(θ̂ − θ) + (θg − θ)2 + 2(θg − θ)E(θ̂ − θ)
(7)

In 2011, Golosony and Liesenfeld show the shrinkage estimator towards the in-
terval θ ∈ [θ0, θ1] ⊂ Θ for unbiased conventional sample estimator of θ̂ with
E(θ̂) = θ is given by

θ̃sh=θ̂+

√
V (θ̂) · θ−θ̂

θ1−θ0

[
arctan

(
θ1−θ√
V (θ̂)

)
− arctan

(
θ0−θ√
V (θ̂)

)
+ V (θ̂)

2(θ1−θ0)
ln
[
V (θ̂)+(θ1−θ)2

V (θ̂)+(θ0−θ)2

]]
and

E(θ̃sh) = θ̂ +
V (θ̂)

2(θ1 − θ0)
ln

[
V (θ̂) + (θ1 − θ̂)2

V (θ̂) + (θ0 − θ̂)2

]
(8)

For E(θ̂) = θ, we have

θ̃sh = θ̂ +
V (θ̂)

2(θ1 − θ0)
ln

[
V (θ̂) + (θ1 − θ̂)2

V (θ̂) + (θ0 − θ̂)2

]
(9)

The estimator obtained in (9) is not linear in θ̂ and becomes identical to the
conventional estimator θ̂ as the V (θ̂) tends to zero or as (θ1 − θ0) increases. It
also tends to θ̂ as θ̂ moves away from the interval [θ0, θ1]. Furthermore if θ̂ is
equal to the midpoint of the interval θm = (θ0 − θ1)/2, the estimator θ̃sh is
equal to θ̂. The exact stochastic properties of the feasible estimator θ̂, including
its means and variance, are hard to derive analytically since it is a complex
nonlinear function in θ̂. Golosony and Liesenfeld (2011) suggest to approximate
θ̃sh by a first-order Taylor expansion around the center of the shrinkage interval
θm. The second derivative of θ̃sh equals zero at the point θm, so the first-order
Taylor expansion in this case is equivalent to second-order one. Since θ̃sh has an
inflection point at the midpoint of the interval θ̂ = θm, this expansion provides
a reasonable approximation to θ̃sh within the shrinkage interval. So it defined an
alternative useful feasible interval shrinkage estimator with mean and variance
that can be derived in a closed form. Let the half-length of the shrinkage interval
be denoted by θd = (θ1 − θ0)/2. The second-order Taylor approximation of the
estimator at the point θm is linear in θ̂ and is given by

˜̃
θsh = θ̂

[
1− V (θ̂)

v(θ̂) + θ2
d

]
+ θm

V (θ̂)

V (θ̂) + θ2
d

θ (10)

With mean and variance as

E(
˜̃
θsh) = θ − (θ − θm)

V (θ̂)

V (θ̂) + θ2
d

θ , V (
˜̃
θsh) = V (θ̂)

(
1− V (θ̂)

V (θ̂) + θ2
d

)2

It can be shown that MSE(
˜̃
θsh) ≤ V (θ̂).
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4 Numerical Study

To have some idea about mean square error (MSE) of maximum likelihood (θ̂mle)

and shrinkage interval (
˘̆
θ) estimation, we perform sampling experiments using R

software and the results are shown in Tables 1 to Table 3. The MSE of both
estimators decrease when sample size increase. Comparing the MSE of two esti-
mators, states that the interval shrinkage estimator works better than maximum
likelihood estimator.
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Abstract: Gene expression measurements are becoming more and more relevant
to detect how cellular processes operate. In this paper binomial mixtures are fit
to RNA-seq data, searching for certain discrete gene regulation mechanisms. My
results suggest that gene expression regulation is performed through a continuous
process and not by a small number of discrete ones. One other option could be
that the data used was of insufficient quality to provide accurate results.
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1 Introduction

Next generation RNA sequencing (RNA-seq) is the current gold standard of
gene expression measurements. Unlike microarray gene expression measurements,
RNA-seq is able to detect novel transcripts. Counts of detected transcripts in
RNA-seq are a proxy of cellular gene expression, but because of the count nature
of the data, statistical techniques that deal with microarray expression are not
always suitable because of their assumption of Gaussian distributed data.
Variance of gene expression can only be partially explained by an organisms ge-
netics, Lloyd-Jones et al. (2017), implying that there are multiple factors driving
gene expression. Modelling possibly unknown factors that influence gene expres-
sion can be attempted through a mixture of expression distributions, each of
which could represent some biological process.
This short paper describes the steps taken to pre-process Geuvadis RNA-seq
data from Lappalainen et al. (2013), fitting a binomial mixture distribution us-
ing a custom EM algorithm and finally doing model selection to find the best
performing model and discussing biological implications.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
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2 Methods

2.1 Data

The Geuvadis mRNA-seq dataset from Lappalainen et al. (2014) was used. This
consisted of 660 human individuals of which RNA-seq data was available from
lymphoblastoid cell lines, the total sequencing depth had a median of 4.97 million
transcripts per individual. For every gene on the first chromosome, transcripts
were counted and used as input data for the EM algorithm.

2.2 EM algorithm

The rationale for modeling RNA-seq using the binomial distribution is the fol-
lowing: If there are ni RNA-seq transcripts detected in individual i, then, finding
a number ki RNA-seq transcripts from some gene, can be modeled through a bi-
nomial process, with some probability π. Where a success is considered as finding
a transcript on the gene and a failure if the transcript is not detected on the gene.
The biological expectation in this study is that total expression can be considered
a mixture of binomial distributions, each of which may represent some biological
process.
The EM algorithm that is often used to estimate Gaussian mixtures can be
adapted to fit other probability functions, in our case the binomial. I consider
some vector of i.i.d. transcripts k = (k1, ..., kN ) for some gene, and a vector of
total transcripts for the individual n = (n1, ..., nN ) where N is the number of
individuals of which RNA-seq data is available. Analyzing each gene separately,
the log likelihood is maximized for a mixture of M ∈ {1, 2, ..., 50} binomial dis-
tributions.

l(π|p,k,n,∆) =

M∑
m=1

pm

N∑
i=1

∆i,m ·

(
ni
ki

)
· πkim · (1− πm)ni−ki (1)

Where k and n are N dimensional vectors with entries ki and ni respectively. π
and p are an M dimensional vector with entries πm ∈ [0, 1] and pm respectively,
where

∑M
m=1 pm = 1, represents the relative proportion of a distribution in the

mixture. ∆ is an N -by-M matrix with each element ∆i,m ∈ {0, 1}, indicating if
individual i is part of distribution m.
An EM algorithm for binomial mixtures was used to estimate the distribu-
tion parameters, the EM algorithm is initialized four times, and after conver-
gence, the model with the maximum log likelihood is retained. Initialization
parameters were: πm ∼ U(ARGMINi(ki/ni), ARGMAXi( ki/ni)) and pm =
1/M . In the E step, membership probability of an individual is determined m:

γi,m = Bin(ni,ki,π̂m )∑M
m=1 Bin(ni,ki,π̂m)

. In the M step, the maximum likelihood estimators

are p̂m =
∑N
i=1 γi,m
N

for probability of membership and π̂m =
∑N
i=1 γi,mki∑N
i=1 γi,mni

for the

binomial proportion. The log likelihood and BIC is determined, by taking the
highest γi,m for each individual, and setting it’s respective ∆i,m = 1. The algo-
rithm is repeated until there is less than a 10−10 difference between new and old
π̂m parameters, or if the maximum number of iterations (1000) has been reached.
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3 Results

Some genes showed non-convergence, which was mostly attributable to numerical
precision problems, when there were a low number of transcripts. If only genes
were considered median(k) > 10, 89.2 % of initializations reached convergence.
The BIC of four representative genes are shown in figure 1.
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FIGURE 2. Left: A histogram of the optimal number of mixtures, based on
minimized BIC. Right: A scatter plot of optimal number of mixtures compared
to median transcript count of the gene.

A histogram showing the best fitting number of mixtures is shown in figure 2
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(left). This would indicate that most genes are under control of a small number
of regulatory processes.
However, when plotted against the median transript count of a gene, there is a
clear correlation between the number of best fitting mixtures and the median
transcript count of a gene (figure 2, right). This indicates that the accurate de-
tection of binomial mixtures is dependent on the number of reads kj from a
gene.
Simulations were also done to validate the EM algorithm. Reads were simulated
according to convergence parameters from the algorithm, based on parameters
found in converging EM algorithms. In all cases, the algorithm converged to the
same solutions

4 Conclusion and discussion

This short paper details the steps taken to fit up to 50 different binomial mixtures
to RNA seq data. Fitted using an EM algorithm. Evidence for a small and discrete
number of distributions which regulate gene expression was not found. Perhaps
because of sample size issues, but it could also indicate that gene expression is
regulated by more continuous mechanisms.
One thing to note is that RNA-seq data can be overdispersed, so using a binomial
distribution for modelling is not always correct, Sun (2011) therefore used the
negative binomial distribution for regression of expression, using an organisms
genotype as a dependent variable. Adapting this to the negative binomial could
provide more accurate results.

Acknowledgments: Special Thanks to Marco Grzegorczyk, for much needed
guidance, in this unfamiliar field.
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Abstract: In this paper we study the weather temperature estimation perfor-
mance of a Bayesian approach based on a structural time series model. The
approach makes use of Monte Carlo Markov Chain (MCMC) sampling to approx-
imate the joint distribution of the model parameters. For our empirical analysis
we consider data with a strong seasonal pattern, namely weekly weather data.
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1 Introduction

Traditional methods to estimate time series data are the Multiple Linear Regres-
sion (MLR) and the autoregressive integrated moving-average (ARIMA) model.
We apply the Bayesian Structural Time Series (BSTS) model, which was in-
troduced by Scott et al. (2013), for the estimation of weather temperature using
contemporaneous predictors. The BSTS allows for 1. decomposing the time series
data into several latent components that can describe the underlying dynamics
of the data, such as trend, seasonality and regression, 2. variable selection and 3.
Bayesian model averaging. The structural time series model of an observation yt
at time t is

yt = µt + γt + βTxt + εt,

µt = µt−1 + δt−1 + η1t

δt = δt−1 + η2t (1)

γt = −
S−1∑
s=1

γt−13s + η3t,

where εt ∼ N (0, σ2
ε) for some positive constant σ2

ε , ηt ≡ (η1t, η2t, η3t)
T ∼ N (0, Q)

for some diagonal variance matrix Q, xt a vector of contemporaneous or lagged

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
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predictors and S the number of seasons. Furthermore, each season is assumed
to have a duration of exactly 13 weeks. The model is decomposed into four
components: µt, γt, β

Txt and εt respectively describe the general trend, seasonal
pattern, regression effect and error. The model parameters are σ2

ε , β and Q.

1.1 Spike-and-slab regression

The BSTS model incorporates the spike-and-slab regression for variable selection.
Let K denote the number of regressors. For k = 1, . . . ,K, let

γk =

{
1 if βk 6= 0

0 if βk = 0
,

and assume that the prior p(γ) is an independent Bernoulli:

γ ∼
K∏
k=1

π
γk
k (1− πk)1−γk .

Intuitively, πi is the probability of inclusion of βi.
Let βγ denote the subset of β for which βk 6= 0. The spike-and-slab prior on the
regression coefficients is then given by

p(β, σ2
ε , γ) = p(βγ |γ, σ2

ε)p(σ2
ε |γ)p(γ).

See Scott et al. (2013) for the conditional priors p(σ2
ε |γ) and p(βγ |γ, σ2

ε).

1.2 Conditional posterior distributions

Let y = (y1, . . . , yT )T and α = (α1, . . . , αT )T , where T is the size of the data.
Observe that the model in (1) can be represented as a state space time series
model:

yt = ZTαt + εt

αt = Tαt−1 +Rηt−1.

Therefore we can use the Kalman filter and smoother to obtain the posterior
distribution of the states given the data, i.e. p(α|y, θ), where θ is the set of model
parameters. However, we cannot just generate each αt from p(αt|y, θ), because
we have to take into account the autocorrelation between αt and αt+1. For this
we use the simulation smoother of Durbin et al. (2002) to generate samples from
p(α|y, θ).
The conditional posterior p(γ|y, α) is obtained by a Gibbs sampling algorithm,
where each γi is drawn conditional on every other element of γ. The conditional
posteriors p(Q|α), p(σ−2

ε |y, α, γ) and p(β|y, α, σ−2
ε , γ) are closed-form, from which

we can generate samples directly. See Scott et al. (2013) for the details.
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2 Model estimation

Let φ ≡ (θ, α)T and let ψ denote the set of parameters other than β and σ2
ε .

Considering an initial θ = θ(0) generated from the prior distributions, we obtain
a stationary distribution p(φ|y) using MCMC as follows.

1. Simulate α from p(α|y, θ) using the simulation smoother.

2. Simulate ψ from p(ψ|y, α, β, σ2
ε).

3. Simulate β and σ2
ε from p(β, σ2

ε |y, α, ψ).

By cycling through Steps 1 − 3 for M times, we obtain a sequence of MCMC
draws φ(1), . . . , φ(M). The first m samples (also known as burn-in samples) may
not be representative for the target posterior distribution and hence will be dis-
carded. The remaining sequence of MCMC draws is used to estimate the posterior
distribution of yt by means of (1) and the fit by:

ŷt =
1

M −m

M∑
i=m+1

ŷ
(i)
t .

3 Empirical analysis

For the empirical analysis we use weekly weather data from Eelde (the Nether-
lands) from 20–12–2011 until 20–12–2016, provided by Koninklijk Nederlands
Meteorologisch Instituut (KNMI). We have yt denoting the average weekly tem-
perature and xt containing nineteen candidate predictors, such as average wind
speed, relative humidity, global radiation, but also last week’s temperature. Fur-
thermore, we perform M = 5, 000 MCMC iterations, where the first m = 1, 000
samples are considered for burn-in.

TABLE 1. R2 and R2
adj of the fitted models.

Approach BSTS BSTSsub MLR MLRsub ARIMA(1,1,1)

R2 0.9375 0.9338 0.9191 0.9110 0.7678
R2
adj 0.9323 0.9319 0.9127 0.9088 0.7669

The set of predictors with inclusion probability greater than 0.500 are refer-
ence evapotranspiration (1.000), global radiation (0.999), last week’s tempera-
ture (0.995), minimum relative humidity (0.655) and average relative humidity
(0.531). We compare the fit of the BSTS model with all nineteen predictors to
the BSTS model with the set of five predictors above (BSTSsub), MLR with all
nineteen predictors, MLR with the set of five predictors above (MLRsub) and the
ARIMA(1,1,1) model. The estimation performance of the models in terms of the
(adjusted) coefficient of determination (R2 and R2

adj) can be found in Table 1.
The result in the table indicates that BSTS and even BSTSsub provide a better fit
than the traditional methods. The fitted temperature and individual components
by BSTS (with all predictors) are depicted in Figure 1. The true temperature is
included in the first subplot (red dashed line).
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FIGURE 1. Plot of the true (red dashed line) and fitted temperature by the
BSTS model as well as the individual fitted components (black solid lines).

4 Conclusion

Considering a dataset with a strong seasonal pattern, we empirically showed that
the BSTS model (even with the selected subset of predictors) provides a better
fit than the MLR and ARIMA(1,1,1) model, based on R2 and R2

adj . The BSTS
model has the advantage that it allows to visualize and study the underlying
components of the time series data as well as variable selection. Moreover, this
study demonstrates that the BSTS model performs the variable selection and the
fitting of weather temperature very well.
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Abstract: This paper presents a comparison of two classification algorithms,
the first one is an advanced prototype based classifier known as General Matrix
Learning Vector Quantization. Which is an extension of Learning vector Quan-
tization and is a relatively new algorithm. The second algorithm is the Random
Forest algorithm which is a very popular classification method that has proven
to be a very reliable classifier. It was found that GMLVQ gave slightly better re-
sults than the Random Forest algorithm for the first two datasets. On the third
dataset however, the Random Forest algorithm performed much better (13 %
of test examples were misclassified by GMLVQ as opposed to only 7 % by the
Random Forest algorithm).

Keywords: GMLVQ; Random Forest; Comparison.

1 Introduction

This section gives some theoretical background on GMLVQ and Random Forests.
As the Random Forest classifier is already well known, only a brief description is
given.

1.1 GMLVQ

GMLVQ (General Matrix LVQ) [Schneider et. al., 2009] is an extension of the
prototype based classification method Learning Vector Quantization, in which
a set of labeled prototypes are fitted to the data. A new data point with an
unknown class label is then assigned to the class of the closest prototype. Any
distance measure can be used, but usually Euclidean distance is used. GMLVQ
extends LVQ by using an advanced distance measure (eq. 1), using a matrix Λ of
adaptive relevances, depicting the relevance for each feature as well as correlations
between features.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
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dΛ(ξ,w) = (ξ −w)TΛ(ξ −w) (1)

The matrix Λ transforms each feature vector to an alternative feature space
which provides more discriminative power. Consider the closest 2 prototypes to
a training sample (ξ, y) with c(wJ) = y and c(wJ) 6= y. The updating of the
prototypes is done by minimising a cost function:

EGMLVQ =

P∑
i=1

Φ(µΛ
i ) with µΛ

i =
dΛ
J (ξi)− dΛ

K(ξi)

dΛ
J (ξi) + dΛ

K(ξi)
(2)

The model is trained by minimising EGLVQ with respect to the model parameters
[Schneider et. al., 2009].
The diagonal entries of Λ reflect the importance of each feature, while off-diagonal
elements account for correlations between features. Feature vectors can be pro-
jected onto the 2 eigenvectors of Λ corresponding to the 2 largest eigenvectors of
Λ, Giving a 2D visualisation of the dataset. This makes a GMLVQ classifier easy
to interpret.

1.2 Random Forest

Random Forest [Breiman, 2001] is an ensemble classification method that builds
many decision trees and combines them to form a new classifier. Each decision
tree is trained on a bootstrap sample of the training data. It eliminates some of
the key issues of decision trees. In particular, decision trees tend to be non-robust
and may lack accuracy when compared to other approaches [Gareth et. al., 2015].
Classification can be done by outputting the class that is most frequently given
as output by the individual trees.

2 Method

Comparing two classification methods is not easy as classification methods can
have many different parameters. Some parameters such as the learning rates for
GMLVQ have been heuristically chosen. The number of prototypes per class was
set to 1 for all the experiments.
For GMLVQ the intitial prototype learning rate used was 1 and the initial rel-
evance Matrix learning rate used was 2. Furthermore, the learning rates are re-
duced by a factor of 1.5 after every training epoch (1 ”sweep” through the training
set). 100 training epochs were used, this seemed to be a sufficient amount of time
for the prototypes to converge in all the experiments without showing overfitting
effects.
For Random Forests, the number of trees used was 128. 128 was selected heuristi-
cally as it was found that using more trees did not do much for the classification
performance in the experiments. It has also been shown that the error does not
decrease linearly as the number of trees increases [Oshiro et. al., 2012].
10-fold cross validation was used for the experiments. Perhaps not a necessity,
but it could help in avoiding random splits that are beneficial for one classifier.
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3 Results

The experiments were done using three different datasets. They were all obtai-
ned from the ”UCI Machine Learning Repository” [M. Lichman, 2013]. The first
dataset is the ”Wine” dataset. Which is a 2 class problem, containing 178 12
dimensional feature vectors. The second dataset is the ”Wisconsin Diagnostic
Breast Cancer” dataset. A 2 class problem with 569 30 dimensional feature vec-
tors. The third dataset is the ”Image Segmentation” dataset. This is a 7 class
problem with 2310 19 dimensional feature vectors. The third feature has been
removed as it is constant over all the feature vectors to obtain 18 dimensional
feature vectors.
The experiment described in ”Method” was repeated 10 times for all the datasets
for both GMLVQ and Random Forests. The test errors over all the validation
runs were averaged and can be seen in Table 1. These numbers were obtained
by dividing the number of incorrect classifications by the total number of test
examples.

4 Discussion

When looking at Table 1 it can be seen that GMLVQ shows robust performance
when compared to Random Forests. The error for the first 2 datasets is relatively
low. It is even a little bit lower than the error for Random forests. When looking
at the Image Segmentation dataset, Random Forest does perform significantly
better, however. This problem is also somewhat harder due to the fact that it
has 7 classes. Performance here for GMLVQ might still be optimized by tweaking
the learning parameters. Especially increasing the number of prototypes might
increase classification performance as some classes may be spread out over a
subspace that is too large for 1 prototype.

5 Conclusion

In this short study it can be seen that GMLVQ is a suitable classifier for certain
problems. Rivaling Random Forests in the Wine and Breast Cancer datasets.
An advantage of GMLVQ is that it is sophisticated, yet easy to interpret. One
obvious downside is that there are plenty of parameters to tweak that may affect
classification performance. Random Forest clearly wins when it comes to the
Image Segmentation dataset, but little improvements could perhaps still be made
by tweaking the parameters of GMLVQ.

TABLE 1. Test Errors

Wine Breast Cancer Image Segmentation

GMLVQ 0.0107 0.0309 0.1305
Random Forest 0.0181 0.0414 0.0724
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Abstract: In this article I compare polynomial regression and cubic spline regres-
sion methods on some functions. I summarise some advantages and disadvantages
of both regression methods, and give insight when to apply either method.
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1 Introduction

In this paper I take a look at polynomial regression and cubic spline regression.
Polynomial regression fits a function of the form ck+1x

k + ckx
k−1 + · · ·+ c2x+ c1

to the data, where k is the degree and each ci to be determined constant. The
flexibility in the model comes from the degree. Spline regression fits a polynomial
as well but with the addition of dividing the range ofX into regions, on which each
separately polynomial regression takes place. Cubic spline regression specifies
that the to be fit spline polynomials have degree 3 and connect on the section
knots in a continuous and second order smooth manner. The flexibility of splines
is mostly generated by the number of regions. In this paper I first look at the
Runge function, to illustrate some weaknesses of polynomial regression and how
splines can help. Then I will show in two cases that splines can be applied to more
functions than polynomial regression. Finally I show some downsides of splines.

2 Statistical methods

All the figures, plots, table and simulation have been made in R with build in
regression functions. The simulations have been made by taking 100 random
points uniform distribution (1000 for the cosine) over the domain of the under-
lying function as data points to fit the regression methods with. These points
are the same for all figures. The error in Figure 4 is created by adding a random
value between [−0.2, 0.2] taken form uniform distribution. The adjusted R2 val-
ues are from the corresponding built in function aswell. Table 1 has an overview
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of indication for all figures how well each model fits. A sample R code can be
found in the appendix.

3 Runge function

In this section I will use both polynomial and cubic spline regression methods on
the Runge function. The Runge function is defined as: y = 1

1+25x2
. In Figure 1 I

have plotted the regression polynomials of degree 4,9,16 over the original Runge
function and cubic spline with 3 and 7 knots at respective data quantiles. The

FIGURE 1. Runge function polynomial/spline regression

Figure and Table 1 show that a more flexible polynomial leads to a better fit.
However, at the boundaries, the polynomials are extremely poor. The cubic spline
with 7 knots is more flexible then the 3 knots spline, and fits the function better.
Note that the left boundary is approximated well but that the right boundary
still has a bit of fluctuation. Indicating that splines can alleviate the boundary
problems, but not necessarily outright solve them.

4 Spline and polynomials fit

In this section I will show that a spline can approximate some functions that
polynomial regression can not while not performing worse on polynomials. First
I will approximate the polynomial: y = x6 +x5− 3x4− 3x3− 2x2 +x with spline
and polynomial regression. The original function is a sixth degree polynomial,
and as a result polynomial regression of degree equal or more then 6 give an (al-
most) perfect fit. In Figure 2 I have plotted the original function, and polynomial
and spline approximations. The cubic splines are capable of approximating this
polynomial as well and are better fits as indicated in Table 1. The other function
that I approximate is the periodic cosine function on the domain x ∈ (−4π, π). In
this domain the cosine function achieves 9 extreme values. In Figure 3 the poly-
nomials of degree 9 and 16 have been plotted over the cosine. I have not included
a figure where a cubic spline is fit, as the cubic spline with appropriately chosen
knots (knots at multiples of π) fits the underlying function near perfect.

5 Weakness of splines

So far splines outperform polynomials. However splines are not necessarily better,
and in the section I will show two explicit downsides of splines: knot placements
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FIGURE 2. Polynomial degree 6 polynomial/spline regression

FIGURE 3. Cosine polynomial regression

and variance. Previously I have claimed that a cubic spline with appropriately
chosen knots can perfectly approximate a cosine function. However if the knots
are chosen at a different location or another amount of knots is chosen, then the
result is not necessarily as good a fit. In the following Figure 4 I have plotted a
cubic spline with 9 knots, positioned at multiples of 10% of the regression data
points. As well as a cubic spline with 7 knots, at the respective data quantiles.
Table1 indicates that both are worse fits than the polynomial of degree 16. To
indicate the variance when using spline I will try to approximate the Runge
function again, but this time the data points have an random error of up to
±0.2. The results are shown in Figure 4, including the data points used for the
approximation. The spline with 20 knots is very flexible and wobbly, typical
overfit.

FIGURE 4. Cosine Spline regression/ Runge function with error regression
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TABLE 1. Overvieuw adjusted R2 error of fits

Fits of first sub-Figure Fits of second sub-Figure

Plots Fit 1 Fit 2 Fit 3 Fit 1 Fit 2 Fit 3

Figure 1 0.7655 0.9523 0.9985 0.9399 0.9963

Figure 2 0.9081 0.9263 0.9913 0.9993

Figure 3 0.2579 0.9991

Figure 4 0.8841 0.9960 0.8156 0.8339 0.8418

6 Conclusion

Polynomial regression is a simple method to approximate functions. However at
boundary values it may become poor, and increasing the degree does not always
improve the results. Moreover there are functions that can not be well approx-
imated using polynomials. In all these cases, spline regression can yield better
results. All while not performing worse in situations that polynomial regression
suffices. It seems that in general spline performs better. However it also comes
with its own downsides. It is overly complex and has the tendency to overfit the
data. Also the position and number of knots matters for the results, but find-
ing the proper values can be difficult. Lastly, the boundary problems can persist
when using splines.

Acknowledgments: Special Thanks to dr. M.A. Grzegorczyk for his feedback
on the writing of this paper
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Komárek, Arnošt, 10
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