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1 Examples of (7, F, Z) specification

Table 1: (v, F, Z) specification of four generalized linear models for categorical responses

Multinomial logit model
B exp(a; + a:T(Sj)
1+ 2;67;11 exp(ag + xTd)

PY =) (reference, logistic, complete)

Adjacent logit model

P(Y =) . .
log {P(Yz]—l—l)} =5+ xT(Sj (adjacent, logistic, complete)

Proportional odds logit model

PY <j
log {M} = o + ) (cumulative, logistic, proportional)

Proportional hazard model
(Grouped Cox Model)

log {—log P(Y > j |Y >4)} = a; + 27§ | (sequential, Gompertz, proportional)
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2 Proof of Proposition 1

The cardinal of vertex v is denoted by |v|. For each vertex v € V*, M" denotes the associated
GLM and M, the PCGLM associated with the subtree rooted at vertex v. Finally | M|
denotes the number of independent regression equations of M. Here we reason recursively
on k, the cardinal of V*.

3

e Initialisation: For k = 1, the 1-PCGLM of any subset v of {1,...,J} is a simple

GLM for categorical responses with |v| — 1 regression equations and so the desired
result.

Recursion: For k < J — 1, let us assume, considering any subset v of {1,...,J},
that all the m-PCGLMs of v, such that m < k, contain exactly |v| — 1 independent
regression equations.

Let M be a (k+ 1)-PCGLM of {1,...,J}. Noting r the root vertex, we obtain the
following decomposition:

M| =M+ > My
veCh(r)NV*

Since the root model M" is a 1-PCGLM of the root’s children, then |M"| = |Ch(r)| —
1. Since each model M, is a m-PCGLM of v such that m < k, we can use the
recursive assumption and obtain | M, | = |v|—1. Therefore, the number of independent
equations of M is

MI=[Ch(r)| =1+ > (|-
veCh(r)NY*

=[Ch(r)| =1+ > (o|-1)

veCh(r)

Indistinguishability procedure

3.1 Indistinguishability procedure with (7, F, Z) specification

Here we express the indistinguishability procedure in terms of canonical models by simply
changing the design matrix. In fact, the hypothesis Hs,, ) corresponds to the canonical
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(reference, logistic, Z, s) model with

F ot -

the design matrix with 7 repetitions of &’ for the first block and s — r repetitions of !
for the second block. The indistinguishability procedure, specified in terms of the (v, F, Z)
triplet, can be seen as a design matrix selection procedure.

3.2 Indistinguishability procedure with PCGLM specification

Here we express the indistinguishability procedure in terms of PCGLM by simply chang-
ing the partition tree. In fact any canonical (reference, logistic, Z) model with a block-
structured design matrix Z is equivalent to a PCGLM of depth 2 with the canonical (ref-
erence, logistic, complete) model for the root and minimal response models for other non-
terminal vertices. Let us describe this result in details using the block-structured design
matrix Z; s.

Proposition 1 The canonical model (reference, logistic, Z, s) is equivalent to the PCGLM
specified in figure 1.

r = reference
F = logistic
7 = complete

Figure 1: PCGLM specification of indistinguishability hypothesis H(sz . ).

Proof: Assume that the distribution of Y is defined by the canonical (reference, logistic,
Z, ) model. We thus obtain

exp(a; +2'01), 1<j<m,
— =< exp(oj + 2dy), r<j<s, (3.1)
exp(a; ), s<j<J-1
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Let T denote the partition tree of figure 1 and €21, 22 and 3 the children of the ¥’s root.

We thus obtain
QT —+ ...+ T

T, Ts41+ ...+ 7g

Using (3.1), we obtain
T {Z;Zl exp(aj + xtél)} Ty

Qs {1 +Z}']:_51+1 eXp(Oéj)}ﬂ'J

)

and thus o
—* = eXp(O/l + xtéi)’
TQ

using the following parametrization

2 j=1 exp(;)

o) = log{ g } ,
1+ Zj:erl exp(a;)

5 explas
0/2 _ Iog{ Z]—rJrl p( J) }7

J—1
143 5 g1 exp(ay)

Therefore, the root model is exactly the canonical (reference, logistic, complete) model. We
want to ensure that we have a minimal response model for each non-terminal vertex of the
second level. For the non-terminal vertex Q; = {1,...,7}, we have

T MW

4T exp(aj + a:tél) exp(—ay, — a:tél) =exp(aj — ap),

T T Ty
for j < r. These r — 1 ratios do not depend on x and therefore correspond exactly to
the minimal response model. Similarly we have 7;/ms = exp(a; — ay) for r < j < s and
mj/my = exp(ay) for s < j < J. Then, Y follows exactly the expected PCGLM. As the
parametrization is invertible, we obtain the equivalence.

Using this proposition, the canonical (reference, logistic, Z, s) model is easily estimated. In
fact, we need to transform the data, aggregating the response categories according to the
partitioning sets Q; = {1,...,r}, Qo = {r+1,...,s} and Q3 = {s+1,...,J}. We then
simply need to estimate the canonical (reference, logistic, complete) model using this new
dataset (and also the three minimal response models of vertices 1, Q9 and Q3).
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